Roberto Assef

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6945058/publications.pdf

Version: 2024-02-01

119 8,492 50 papers citations h-index

123 6328
times ranked citing authors

90

g-index

123 all docs 123 docs citations

#	Article	IF	CITATIONS
1	MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE $\langle i \rangle$ WIDE-FIELD INFRARED SURVEY EXPLORER $\langle i \rangle$. I. CHARACTERIZING $\langle i \rangle$ WISE $\langle i \rangle$ -SELECTED ACTIVE GALACTIC NUCLEI IN COSMOS. Astrophysical Journal, 2012, 753, 30.	4.5	637
2	Active galactic nuclei: what's in a name?. Astronomy and Astrophysics Review, 2017, 25, 1.	25.5	399
3	THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: TECHNICAL SUMMARY. Astronomical Journal, 2008, 135, 338-347.	4.7	377
4	MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE (i) WIDE-FIELD INFRARED SURVEY EXPLORER (/i). II. PROPERTIES OF (i) WISE (/i) -SELECTED ACTIVE GALACTIC NUCLEI IN THE NDWFS BO×TES FIELD. Astrophysical Journal, 2013, 772, 26.	4.5	316
5	LOW-RESOLUTION SPECTRAL TEMPLATES FOR ACTIVE GALACTIC NUCLEI AND GALAXIES FROM 0.03 TO 30 μm. Astrophysical Journal, 2010, 713, 970-985.	4.5	251
6	EXTENDING THE NEARBY GALAXY HERITAGE WITH < i>WISE < /i>: FIRST RESULTS FROM THE < i>WISE < /i> ENHANCED RESOLUTION GALAXY ATLAS. Astronomical Journal, 2013, 145, 6.	4.7	236
7	The Multiwavelength Survey by Yaleâ€Chile (MUSYC): Survey Design and Deep Public UBVRI z ′ Images and Catalogs of the Extended Hubble Deep Field–South. Astrophysical Journal, Supplement Series, 2006, 162, 1-19.	7.7	228
8	PHAT: PHoto- <i>z</i> Accuracy Testing. Astronomy and Astrophysics, 2010, 523, A31.	5.1	194
9	ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: SURVEY DESCRIPTION. Astrophysical Journal, 2016, 833, 67.	4.5	172
10	A CORRELATION BETWEEN STAR FORMATION RATE AND AVERAGE BLACK HOLE ACCRETION IN STAR-FORMING GALAXIES. Astrophysical Journal, 2013, 773, 3.	4.5	171
11	<i>WIDE-FIELD INFRARED SURVEY EXPLORER</i> STAR-FORMING REGIONS. Astrophysical Journal, 2012, 744, 130.	4.5	156
12	THE FIRST HYPER-LUMINOUS INFRARED GALAXY DISCOVERED BY <i>WISE</i> . Astrophysical Journal, 2012, 755, 173.	4.5	149
13	CHARACTERIZING THE MID-INFRARED EXTRAGALACTIC SKY WITH <i>WISE</i> AND SDSS. Astronomical Journal, 2013, 145, 55.	4.7	146
14	THE LICK AGN MONITORING PROJECT 2011: SPECTROSCOPIC CAMPAIGN AND EMISSION-LINE LIGHT CURVES. Astrophysical Journal, Supplement Series, 2015, 217, 26.	7.7	145
15	The <i>WISE</i> AGN Catalog. Astrophysical Journal, Supplement Series, 2018, 234, 23.	7.7	144
16	AGES: THE AGN AND GALAXY EVOLUTION SURVEY. Astrophysical Journal, Supplement Series, 2012, 200, 8.	7.7	142
17	HALF OF THE MOST LUMINOUS QUASARS MAY BE OBSCURED: INVESTIGATING THE NATURE OF <i>WISE</i> SELECTED HOT DUST-OBSCURED GALAXIES. Astrophysical Journal, 2015, 804, 27.	4.5	138
18	BLACK HOLE MASS ESTIMATES BASED ON C IV ARE CONSISTENT WITH THOSE BASED ON THE BALMER LINES. Astrophysical Journal, 2011, 742, 93.	4.5	132

#	Article	IF	CITATIONS
19	THE MOST LUMINOUS GALAXIES DISCOVERED BY <i>WISE</i> . Astrophysical Journal, 2015, 805, 90.	4.5	129
20	THE LICK AGN MONITORING PROJECT 2011: Fe II REVERBERATION FROM THE OUTER BROAD-LINE REGION. Astrophysical Journal, 2013, 769, 128.	4.5	122
21	SUBMILLIMETER FOLLOW-UP OF (i) WISE (i)-SELECTED HYPERLUMINOUS GALAXIES. Astrophysical Journal, 2012, 756, 96.	4.5	120
22	THE ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: CONTINUUM NUMBER COUNTS, RESOLVED 1.2 mm EXTRAGALACTIC BACKGROUND, AND PROPERTIES OF THE FAINTEST DUSTY STAR-FORMING GALAXIES. Astrophysical Journal, 2016, 833, 68.	4.5	115
23	The ALMA Spectroscopic Survey in the HUDF: CO Luminosity Functions and the Molecular Gas Content of Galaxies through Cosmic History. Astrophysical Journal, 2019, 882, 138.	4.5	114
24	A Mid-IR Selected Changing-look Quasar and Physical Scenarios for Abrupt AGN Fading. Astrophysical Journal, 2018, 864, 27.	4.5	109
25	A NEW POPULATION OF COMPTON-THICK AGNs IDENTIFIED USING THE SPECTRAL CURVATURE ABOVE 10 keV. Astrophysical Journal, 2016, 825, 85.	4.5	101
26	HerMES: THE CONTRIBUTION TO THE COSMIC INFRARED BACKGROUND FROM GALAXIES SELECTED BY MASS AND REDSHIFT. Astrophysical Journal, 2013, 779, 32.	4.5	99
27	CLUSTERING OF OBSCURED AND UNOBSCURED QUASARS IN THE BO×TES FIELD: PLACING RAPIDLY GROWING BLACK HOLES IN THE COSMIC WEB. Astrophysical Journal, 2011, 731, 117.	4.5	98
28	ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: CO LUMINOSITY FUNCTIONS AND THE EVOLUTION OF THE COSMIC DENSITY OF MOLECULAR GAS. Astrophysical Journal, 2016, 833, 69.	4.5	97
29	<i>NuSTAR</i> AND <i>XMM-NEWTON</i> OBSERVATIONS OF LUMINOUS, HEAVILY OBSCURED, <i>WISE</i> -SELECTED QUASARS AT <i>Z</i> i>â^1/4 2. Astrophysical Journal, 2014, 794, 102.	4.5	93
30	THE LICK AGN MONITORING PROJECT 2011: REVERBERATION MAPPING OF MARKARIAN 50. Astrophysical Journal Letters, 2011, 743, L4.	8.3	87
31	A KILOPARSEC-SCALE BINARY ACTIVE GALACTIC NUCLEUS CONFIRMED BY THE EXPANDED VERY LARGE ARRAY. Astrophysical Journal Letters, 2011, 740, L44.	8.3	84
32	A new physical interpretation of optical and infrared variability in quasars. Monthly Notices of the Royal Astronomical Society, 2018, 480, 4468-4479.	4.4	82
33	Variability and stability in blazar jets on time-scales of years: optical polarization monitoring of OJ 287 in 2005-2009. Monthly Notices of the Royal Astronomical Society, 2010, 402, 2087-2111.	4.4	80
34	THE LICK AGN MONITORING PROJECT 2011: DYNAMICAL MODELING OF THE BROAD-LINE REGION IN Mrk 50. Astrophysical Journal, 2012, 754, 49.	4.5	76
35	ORIGIN OF $12\hat{l}$ 4m EMISSION ACROSS GALAXY POPULATIONS FROM (i) WISE (i) AND SDSS SURVEYS. Astrophysical Journal, 2012, 748, 80.	4.5	76
36	THE <i>NuSTAR</i> EXTRAGALACTIC SURVEY: A FIRST SENSITIVE LOOK AT THE HIGH-ENERGY COSMIC X-RAY BACKGROUND POPULATION. Astrophysical Journal, 2013, 773, 125.	4.5	73

#	Article	IF	CITATIONS
37	The Evolution of the Baryons Associated with Galaxies Averaged over Cosmic Time and Space. Astrophysical Journal, 2020, 902, 111.	4.5	73
38	THE MID-IR- AND X-RAY-SELECTED QSO LUMINOSITY FUNCTION. Astrophysical Journal, 2011, 728, 56.	4.5	70
39	CONSTRUCTING A <i>WISE</i> HIGH RESOLUTION GALAXY ATLAS. Astronomical Journal, 2012, 144, 68.	4.7	65
40	<i>NuSTAR</i> REVEALS EXTREME ABSORPTION IN <i>z</i> < 0.5 TYPE 2 QUASARS. Astrophysical Journal, 2015, 809, 115.	4.5	62
41	The Atacama Large Millimeter/submillimeter Array Spectroscopic Survey in the Hubble Ultra Deep Field: CO Emission Lines and 3 mm Continuum Sources. Astrophysical Journal, 2019, 882, 139.	4.5	62
42	THE ANGULAR CLUSTERING OF (i) WISE (i) -SELECTED ACTIVE GALACTIC NUCLEI: DIFFERENT HALOS FOR OBSCURED AND UNOBSCURED ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2014, 789, 44.	4. 5	60
43	The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Evolution of the Molecular Gas in CO-selected Galaxies. Astrophysical Journal, 2019, 882, 136.	4.5	59
44	Lowâ∈Resolution Spectral Templates for Galaxies from 0.2 to 10 Î⅓m. Astrophysical Journal, 2008, 676, 286-303.	4. 5	58
45	<i>NuSTAR</i> OBSERVATIONS OF HEAVILY OBSCURED QUASARS AT <i>z</i> ê¹¾ 0.5. Astrophysical Journal, 2014, 785, 17.	4.5	58
46	BROADBAND OBSERVATIONS OF THE COMPTON-THICK NUCLEUS OF NGC 3393. Astrophysical Journal, 2015, 807, 149.	4. 5	58
47	THE STRIKINGLY UNIFORM, HIGHLY TURBULENT INTERSTELLAR MEDIUM OF THE MOST LUMINOUS GALAXY IN THE UNIVERSE. Astrophysical Journal Letters, 2016, 816, L6.	8.3	58
48	Submillimetre observations of WISE-selected high-redshift, luminous, dusty galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 443, 146-157.	4.4	55
49	NuSTAR OBSERVATIONS OF WISE J1036+0449, A GALAXY AT zÂâ^¼Â1 OBSCURED BY HOT DUST. Astrophysical Journal, 2017, 835, 105.	4.5	55
50	FIRST-YEAR SPECTROSCOPY FOR THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY. Astronomical Journal, 2008, 135, 1766-1784.	4.7	52
51	C IV LINE-WIDTH ANOMALIES: THE PERILS OF LOW SIGNAL-TO-NOISE SPECTRA. Astrophysical Journal, 2013, 775, 60.	4.5	51
52	THE <i>NuSTAR</i> EXTRAGALACTIC SURVEY: FIRST DIRECT MEASUREMENTS OF THE â%310 keV X-RAY LUMINOS FUNCTION FOR ACTIVE GALACTIC NUCLEI AT <i>z</i> egt; 0.1. Astrophysical Journal, 2015, 815, 66.	SITY 4.5	50
53	A CONNECTION BETWEEN OBSCURATION AND STAR FORMATION IN LUMINOUS QUASARS. Astrophysical Journal, 2015, 802, 50.	4.5	49
54	The ALMA Spectroscopic Survey in the HUDF: Deep 1.2 mm Continuum Number Counts. Astrophysical Journal, 2020, 897, 91.	4.5	49

#	Article	IF	Citations
55	DETECTING TRANSITS OF PLANETARY COMPANIONS TO GIANT STARS. Astrophysical Journal, 2009, 701, 1616-1626.	4.5	47
56	THE GLOBULAR CLUSTER NGC 5286. II. VARIABLE STARS. Astronomical Journal, 2010, 139, 357-371.	4.7	47
57	HOT DUST OBSCURED GALAXIES WITH EXCESS BLUE LIGHT: DUAL AGN OR SINGLE AGN UNDER EXTREME CONDITIONS?. Astrophysical Journal, 2016, 819, 111.	4.5	47
58	MID-INFRARED VARIABILITY FROM THE <i>SPITZER</i> DEEP WIDE-FIELD SURVEY. Astrophysical Journal, 2010, 716, 530-543.	4.5	46
59	NuSTAR RESOLVES THE FIRST DUAL AGN ABOVE 10 keV IN SWIFT J2028.5+2543. Astrophysical Journal Letters, 2016, 824, L4.	8.3	46
60	The NuSTAR Serendipitous Survey: Hunting for the Most Extreme Obscured AGN at >10 keV. Astrophysical Journal, 2017, 846, 20.	4.5	46
61	The Mass of the Black Hole in the Quasar PG 2130+099. Astrophysical Journal, 2008, 688, 837-843.	4.5	45
62	The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: The Nature of the Faintest Dusty Star-forming Galaxies. Astrophysical Journal, 2020, 901, 79.	4.5	45
63	TIDALLY INDUCED OUTBURSTS IN OJ 287 DURING 2005-2008. Astrophysical Journal, 2009, 698, 781-785.	4.5	44
64	Heavy X-ray obscuration in the most luminous galaxies discovered by WISE. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4528-4540.	4.4	44
65	The X-Ray and Mid-infrared Luminosities in Luminous Type 1 Quasars. Astrophysical Journal, 2017, 837, 145.	4.5	42
66	Eddington-limited Accretion in z \hat{a}^4 2 WISE-selected Hot, Dust-obscured Galaxies. Astrophysical Journal, 2018, 852, 96.	4.5	42
67	The ALMA Spectroscopic Survey in the HUDF: The Cosmic Dust and Gas Mass Densities in Galaxies up to zÂâ°¼Â3. Astrophysical Journal, 2020, 892, 66.	4.5	41
68	A CANDIDATE DUAL ACTIVE GALACTIC NUCLEUS AT <i>z</i> = 1.175. Astrophysical Journal, 2012, 744, 7.	4.5	39
69	Extending the Calibration of C iv-based Single-epoch Black Hole Mass Estimators for Active Galactic Nuclei*. Astrophysical Journal, 2017, 839, 93.	4.5	38
70	RADIO JET FEEDBACK AND STAR FORMATION IN HEAVILY OBSCURED, HYPERLUMINOUS QUASARS AT REDSHIFTS ⰼ 0.5–3. I. ALMA OBSERVATIONS. Astrophysical Journal, 2015, 813, 45.	4.5	37
71	The multiple merger assembly of a hyperluminous obscured quasar at redshift 4.6. Science, 2018, 362, 1034-1036.	12.6	36
72	THE <i>NuSTAR</i> EXTRAGALACTIC SURVEYS: INITIAL RESULTS AND CATALOG FROM THE EXTENDED <i>CHANDRA</i> DEEP FIELD SOUTH. Astrophysical Journal, 2015, 808, 184.	4.5	35

#	Article	IF	Citations
73	Submillimetre observations of WISE/radio-selected AGN and their environments. Monthly Notices of the Royal Astronomical Society, 2015, 448, 3325-3338.	4.4	35
74	MID-INFRARED GALAXY LUMINOSITY FUNCTIONS FROM THE AGN AND GALAXY EVOLUTION SURVEY. Astrophysical Journal, 2009, 697, 506-521.	4.5	34
75	A UV TO MID-IR STUDY OF AGN SELECTION. Astrophysical Journal, 2014, 790, 54.	4.5	34
76	QUASAR VARIABILITY IN THE MID-INFRARED. Astrophysical Journal, 2016, 817, 119.	4.5	34
77	High-redshift Extremely Red Quasars in X-Rays. Astrophysical Journal, 2018, 856, 4.	4.5	33
78	EVOLUTION OF THE UV EXCESS IN EARLY-TYPE GALAXIES. Astrophysical Journal, 2009, 694, 1539-1549.	4.5	30
79	INTERFEROMETRIC FOLLOW-UP OF < i>WISE < /i> HYPER-LUMINOUS HOT, DUST-OBSCURED GALAXIES. Astrophysical Journal, 2014, 793, 8.	4.5	30
80	The Role of the Most LuminousÂObscured AGNs in Galaxy Assembly at zÂâ ¹ /4Â2. Astrophysical Journal, 2017, 844, 106.	4.5	28
81	A Catalog of AGN Host Galaxies Observed with HST/ACS: Correlations between Star Formation and AGN Activity. Astrophysical Journal, 2020, 888, 78.	4.5	28
82	SDWFS-MT-1: A SELF-OBSCURED LUMINOUS SUPERNOVA AT <i>z</i> å‰f 0.2. Astrophysical Journal, 2010, 722, 1624-1632.	4.5	25
83	The ALMA Spectroscopic Survey in the HUDF: A Model to Explain Observed 1.1 and 0.85 mm Dust Continuum Number Counts. Astrophysical Journal, 2020, 891, 135.	4.5	25
84	OPTICAL SPECTROSCOPIC SURVEY OF HIGH-LATITUDE <i>WISE </i> Journal, 2012, 143, 7.	4.7	24
85	BASS. XXV. DR2 Broad-line-based Black Hole Mass Estimates and Biases from Obscuration. Astrophysical Journal, Supplement Series, 2022, 261, 5.	7.7	24
86	A Catalog of 204 Offset and Dual Active Galactic Nuclei (AGNs): Increased AGN Activation in Major Mergers and Separations under 4 kpc. Astrophysical Journal, 2021, 923, 36.	4.5	23
87	A Luminous Transient Event in a Sample of WISE-selected Variable AGNs. Astrophysical Journal, 2018, 866, 26.	4.5	21
88	The Chandra Deep Wide-field Survey: A New Chandra Legacy Survey in the Boötes Field. I. X-Ray Point Source Catalog, Number Counts, and Multiwavelength Counterparts. Astrophysical Journal, Supplement Series, 2020, 251, 2.	7.7	21
89	THE ORIGIN OF THE 24 μm EXCESS IN RED GALAXIES. Astrophysical Journal, 2009, 693, 340-346.	4.5	20
90	THE UV-MID-IR SPECTRAL ENERGY DISTRIBUTION OF A $\langle i \rangle z \langle j \rangle = 1.7$ QUASAR HOST GALAXY. Astrophysical Journal, 2009, 702, 472-479.	4.5	18

#	Article	IF	CITATIONS
91	<i>WISE</i> DETECTIONS OF KNOWN QSOs AT REDSHIFTS GREATER THAN SIX. Astrophysical Journal, 2013, 778, 113.	4.5	18
92	Overdensities of SMGs around WISE-selected, ultraluminous, high-redshift AGNs. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4565-4577.	4.4	18
93	Super-Eddington Accretion in the WISE-selected Extremely Luminous Infrared Galaxy W2246â^'0526. Astrophysical Journal, 2018, 868, 15.	4.5	18
94	Spectral Classification and Ionized Gas Outflows in zÂâ^1/4Â2 WISE-selected Hot Dust-obscured Galaxies. Astrophysical Journal, 2020, 888, 110.	4.5	18
95	HerMES: THE FAR-INFRARED EMISSION FROM DUST-OBSCURED GALAXIES. Astrophysical Journal, 2013, 775, 61.	4.5	17
96	NuSTAR and Keck Observations of Heavily Obscured Quasars Selected by WISE. Astrophysical Journal, 2019, 870, 33.	4.5	17
97	A Large Population of Luminous Active Galactic Nuclei Lacking X-Ray Detections: Evidence for Heavy Obscuration?. Astrophysical Journal, 2021, 908, 185.	4.5	16
98	Hot Dust-obscured Galaxies with Excess Blue Light. Astrophysical Journal, 2020, 897, 112.	4.5	16
99	A Catalog of Host Galaxies for WISE-selected AGN: Connecting Host Properties with Nuclear Activity and Identifying Contaminants. Astrophysical Journal, 2021, 922, 179.	4.5	14
100	A MULTI-WAVELENGTH STUDY OF LOW-REDSHIFT CLUSTERS OF GALAXIES. I. COMPARISON OF X-RAY AND MID-INFRARED SELECTED ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2011, 729, 22.	4.5	13
101	THE IMPORTANCE OF BROAD EMISSION LINE WIDTHS IN SINGLE-EPOCH BLACK HOLE MASS ESTIMATES. Astrophysical Journal Letters, 2012, 753, L2.	8.3	13
102	Cold molecular gas and free–free emission from hot, dust-obscured galaxies at z â^¼ 3. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1565-1578.	4.4	12
103	The Dust-to-gas Ratio and the Role of Radiation Pressure in Luminous, Obscured Quasars. Astrophysical Journal, 2021, 906, 21.	4.5	12
104	WISE J233237.05–505643.5: A DOUBLE-PEAKED, BROAD-LINED ACTIVE GALACTIC NUCLEUS WITH A SPIRAL-SHAPED RADIO MORPHOLOGY. Astrophysical Journal, 2013, 779, 41.	4.5	11
105	Local AGN survey (LASr): I. Galaxy sample, infrared colour selection, and predictions for AGN within 100 Mpc. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1784-1816.	4.4	11
106	The characterization of the distant blazar GB6 J1239+0443 from flaring and low activity periods. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2015-2026.	4.4	10
107	Kinematics and star formation of high-redshift hot dust-obscured quasars as seen by ALMA. Astronomy and Astrophysics, 2021, 654, A37.	5.1	10
108	Removing the Microlensing Blendingâ€Parallax Degeneracy Using Source Variability. Astrophysical Journal, 2006, 649, 954-964.	4.5	10

#	Article	IF	CITATIONS
109	Investigating the Evolution of the Dual AGN System ESO 509-IG066. Astrophysical Journal, 2017, 850, 168.	4.5	8
110	The environments of luminous radio-WISE selected infrared galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 483, 514-528.	4.4	8
111	REVISITING THE GAMMA-RAY SOURCE 2FGL J1823.8+4312. Astrophysical Journal Letters, 2013, 764, L30.	8.3	6
112	NuSTAR J163433-4738.7: A FAST X-RAY TRANSIENT IN THE GALACTIC PLANE. Astrophysical Journal, 2014, 785, 4.	4. 5	5
113	Addressing systematic uncertainties in black hole mass measurements. , 2011, , .		5
114	The Broadband X-Ray Spectrum of the X-Ray-obscured Type 1 AGN 2MASX J193013.80+341049.5. Astrophysical Journal, 2019, 887, 255.	4.5	4
115	First black hole mass estimation for the quadruple lensed system WGD2038-4008. Astronomy and Astrophysics, 2021, 656, A108.	5.1	4
116	The 2.4 $\hat{l}\sqrt[4]{m}$ Galaxy Luminosity Function as Measured Using WISE. III. Measurement Results. Astrophysical Journal, 2018, 866, 45.	4. 5	3
117	The Contribution of Galaxies to the 3.4 \hat{l} 4m Cosmic Infrared Background as Measured Using WISE. Astrophysical Journal, 2019, 887, 207.	4.5	2
118	The black hole masses of extremely luminous radio- <i>WISE</i> selected galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1527-1548.	4.4	2
119	The 2.4 î¼m Galaxy Luminosity Function as Measured Using WISE. II. Sample Selection. Astrophysical Journal, 2018, 866, 44.	4.5	1