
Andrei I Molosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/694499/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intestinal Gpr17 deficiency improves glucose metabolism by promoting GLP-1 secretion. Cell Reports, 2022, 38, 110179.	6.4	5
2	CNO Administration Increases Dopamine and Glutamate in the Medial Prefrontal Cortex of Wistar Rats: Further Concerns for the Validity of the CNO-activated DREADD Procedure. Neuroscience, 2022, ,	2.3	5
3	77822 PSD95-nNOS interaction alters the basolateral amygdala transcriptome following fear conditioning: implications for molecular mechanisms underlying PTSD. Journal of Clinical and Translational Science, 2021, 5, 23-23.	0.6	1
4	Role of medial hypothalamic orexin system in panic, phobia and hypertension. Brain Research, 2020, 1731, 145942.	2.2	14
5	Panic results in unique molecular and network changes in the amygdala that facilitate fear responses. Molecular Psychiatry, 2020, 25, 442-460.	7.9	9
6	Role of PSD95 and nNOS Interaction in Gene Regulation following Fear Conditioning and Implications for Molecular Mechanisms Underlying Post-Traumatic Stress Disorder. Biological Psychiatry, 2020, 87, S334.	1.3	0
7	Atrial natriuretic peptide (ANP): A novel mechanism for reducing ethanol consumption and seeking behaviors in female alcohol preferring (P) rats. Peptides, 2020, 134, 170403.	2.4	4
8	4335 Role of PSD95 and nNOS interaction in gene regulation following fear conditioning and implications for molecular mechanisms underlying PTSD. Journal of Clinical and Translational Science, 2020, 4, 15-16.	0.6	0
9	The Rewarding and Anxiolytic Properties of Ethanol within the Central Nucleus of the Amygdala: Mediated by Genetic Background and Nociceptin. Journal of Pharmacology and Experimental Therapeutics, 2020, 374, 366-375.	2.5	10
10	Using loss- and gain-of-function approaches to target amygdala-projecting serotonergic neurons in the dorsal raphe nucleus that enhance anxiety-related and conditioned fear behaviors. Journal of Psychopharmacology, 2020, 34, 400-411.	4.0	7
11	The small molecule GAT1508 activates brain-specific GIRK1/2 channel heteromers and facilitates conditioned fear extinction in rodents. Journal of Biological Chemistry, 2020, 295, 3614-3634.	3.4	20
12	Assessment of fear and anxiety associated behaviors, physiology and neural circuits in rats with reduced serotonin transporter (SERT) levels. Translational Psychiatry, 2019, 9, 33.	4.8	17
13	75. Evaluation of Selective Orexin Receptor Antagonists in Preclinical Models of Panic Attack Provocation. Biological Psychiatry, 2019, 85, S31.	1.3	0
14	74. Mechanisms of Agoraphobia: Contribution of Orexin and mGluR2 Signaling in the Amygdala. Biological Psychiatry, 2019, 85, S30-S31.	1.3	0
15	73. Using Opto-Chemogenetics to Assess the Role of Orexin/Glutamate Hypothalamic System in Panic/Phobia and to Identify Panic/Phobia Off/On Inputs. Biological Psychiatry, 2019, 85, S30.	1.3	0
16	F10. Cue-Induced Conditioned Fear Learning Requires Orexin Receptor 1 Signaling in the Central Amygdala. Biological Psychiatry, 2019, 85, S216-S217.	1.3	0
17	S38. Dissecting the Functional Heterogeneity of Serotonergic Systems That Regulate Fear and Panic. Biological Psychiatry, 2019, 85, S311.	1.3	0
18	Orexin Depolarizes Central Amygdala Neurons via Orexin Receptor 1, Phospholipase C and Sodium-Calcium Exchanger and Modulates Conditioned Fear, Frontiers in Neuroscience, 2018, 12, 934	2.8	34

Andrei I Molosh

#	ARTICLE	IF	CITATIONS
19	Neurofibromatosis type 1 as a model system to study molecular mechanisms of autism spectrum disorder symptoms. Progress in Brain Research, 2018, 241, 37-62.	1.4	14
20	From bedside to bench and back: Translating ASD models. Progress in Brain Research, 2018, 241, 113-158.	1.4	2
21	PSD95 and nNOS interaction as a novel molecular target to modulate conditioned fear: relevance to PTSD. Translational Psychiatry, 2018, 8, 155.	4.8	22
22	Corrigendum to "Hypothalamic orexin's role in exacerbated cutaneous vasodilation responses to an anxiogenic stimulus in a surgical menopause model―[Psychoneuroendocrinology 65 (2016) 127–137]. Psychoneuroendocrinology, 2016, 73, 275.	2.7	4
23	Hypothalamic orexin's role in exacerbated cutaneous vasodilation responses to an anxiogenic stimulus in a surgical menopause model. Psychoneuroendocrinology, 2016, 65, 127-137.	2.7	12
24	Pharmacological depletion of serotonin in the basolateral amygdala complex reduces anxiety and disrupts fear conditioning. Pharmacology Biochemistry and Behavior, 2015, 138, 174-179.	2.9	48
25	Social learning and amygdala disruptions in Nf1 mice are rescued by blocking p21-activated kinase. Nature Neuroscience, 2014, 17, 1583-1590.	14.8	106
26	Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature, 2013, 500, 217-221.	27.8	369
27	NPY Y1 Receptors Differentially Modulate GABAA and NMDA Receptors via Divergent Signal-Transduction Pathways to Reduce Excitability of Amygdala Neurons. Neuropsychopharmacology, 2013, 38, 1352-1364.	5.4	49
28	Orexin, stress, and anxiety/panic states. Progress in Brain Research, 2012, 198, 133-161.	1.4	178
29	Orexin-A induces anxiety-like behavior through interactions with glutamatergic receptors in the bed nucleus of the stria terminalis of rats. Physiology and Behavior, 2012, 107, 726-732.	2.1	98
30	Neuroprotection against Traumatic Brain Injury by a Peptide Derived from the Collapsin Response Mediator Protein 2 (CRMP2). Journal of Biological Chemistry, 2011, 286, 37778-37792.	3.4	78
31	Changes in Central Sodium and not Osmolarity or Lactate Induce Panic-Like Responses in a Model of Panic Disorder. Neuropsychopharmacology, 2010, 35, 1333-1347.	5.4	29
32	Increase in plasma ACTH induced by urethane is not a consequence of hyperosmolality. Neuroscience Letters, 2010, 479, 10-12.	2.1	2
33	Dopamine D1 receptors co-distribute with N-methyl-d-aspartic acid type-1 subunits and modulate synaptically-evoked N-methyl-d-aspartic acid currents in rat basolateral amygdala. Neuroscience, 2006, 142, 671-690.	2.3	51
34	Endothelin-1 exerts a preconditioning-like cardioprotective effect against ischaemia/reperfusion injury via the ETA receptor and the mitochondrial KATP channel in the rat in vivo. British Journal of Pharmacology, 2005, 144, 331-337.	5.4	28
35	Effects of preconditioning on myocardial interstitial levels of ATP and its catabolites during regional ischemia and reperfusion in the rat. Basic Research in Cardiology, 2000, 95, 127-136.	5.9	24