Pei-Ni Jone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/69443/publications.pdf

Version: 2024-02-01

		516710	501196
54	955	16	28
papers	citations	h-index	g-index
57	57	57	1176
37	37	37	11/0
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Echocardiography in Pediatric Pulmonary Hypertension. Frontiers in Pediatrics, 2014, 2, 124.	1.9	99
2	Statement on imaging and pulmonary hypertension from the Pulmonary Vascular Research Institute (PVRI). Pulmonary Circulation, 2019, 9, 1-32.	1.7	96
3	Right Ventricular to Left Ventricular Diameter Ratio at End-Systole in Evaluating Outcomes in Children with Pulmonary Hypertension. Journal of the American Society of Echocardiography, 2014, 27, 172-178.	2.8	84
4	Multimodality 3-Dimensional Image Integration for Congenital Cardiac Catheterization. Methodist DeBakey Cardiovascular Journal, 2021, 10, 68.	1.0	62
5	3D echocardiographic evaluation of right ventricular function and strain: a prognostic study in paediatric pulmonary hypertension. European Heart Journal Cardiovascular Imaging, 2018, 19, 1026-1033.	1.2	57
6	Feasibility and Safety of Using a Fused Echocardiography/Fluoroscopy Imaging System in Patients with Congenital Heart Disease. Journal of the American Society of Echocardiography, 2016, 29, 513-521.	2.8	52
7	Tissue Doppler Imaging Predicts Adverse Outcome in Children withÂldiopathic Pulmonary Arterial Hypertension. Journal of Pediatrics, 2012, 161, 1126-1131.e2.	1.8	47
8	Right Atrial Deformation in Predicting Outcomes in Pediatric Pulmonary Hypertension. Circulation: Cardiovascular Imaging, 2017, 10, .	2.6	41
9	Prenatal Diagnosis of Congenital Heart Disease. Pediatric Clinics of North America, 2009, 56, 709-715.	1.8	34
10	Right Ventricular-Arterial Coupling Ratio Derived From 3-Dimensional Echocardiography Predicts Outcomes in Pediatric Pulmonary Hypertension. Circulation: Cardiovascular Imaging, 2019, 12, e008176.	2.6	29
11	Three-dimensional Echocardiography of Right Ventricular Function Correlates with Severity of Pediatric Pulmonary Hypertension. Congenital Heart Disease, 2016, 11, 562-569.	0.2	27
12	Phase I/IIa Trial of Atorvastatin in Patients with Acute Kawasaki Disease with Coronary Artery Aneurysm. Journal of Pediatrics, 2019, 215, 107-117.e12.	1.8	24
13	Congenital and Structural Heart Disease Interventions Using Echocardiography-Fluoroscopy Fusion Imaging. Journal of the American Society of Echocardiography, 2019, 32, 1495-1504.	2.8	21
14	The Kawasaki Disease Comparative Effectiveness (KIDCARE) trial: A phase III, randomized trial of second intravenous immunoglobulin versus infliximab for resistant Kawasaki disease. Contemporary Clinical Trials, 2019, 79, 98-103.	1.8	21
15	Three-Dimensional Echocardiographic Guidance of Right Heart Catheterization Decreases Radiation Exposure in Atrial Septal Defect Closures. Journal of the American Society of Echocardiography, 2018, 31, 1044-1049.	2.8	19
16	Echocardiography-Fluoroscopy Fusion Imaging for Guidance of Congenital and Structural Heart Disease Interventions. JACC: Cardiovascular Imaging, 2019, 12, 1279-1282.	5.3	18
17	Myocardial Strain and Strain Rate in Kawasaki Disease: Range, Recovery, and Relationship to Systemic Inflammation/Coronary Artery Dilation. , 2016, 07, .		17
18	Diagnostic and Treatment Trends in Children With Kawasaki Disease in the United States, 2006–2015. Pediatric Infectious Disease Journal, 2019, 38, 1010-1014.	2.0	16

#	Article	IF	CITATIONS
19	Update on noninvasive imaging of right ventricle dysfunction in pulmonary hypertension. Cardiovascular Diagnosis and Therapy, 2020, 10, 1604-1624.	1.7	16
20	Circulating microRNAs differentiate Kawasaki Disease from infectious febrile illnesses in childhood. Journal of Molecular and Cellular Cardiology, 2020, 146, 12-18.	1.9	16
21	Right ventricular area strain from 3-dimensional echocardiography: Mechanistic insight of right ventricular dysfunction in pediatric pulmonary hypertension. Journal of Heart and Lung Transplantation, 2021, 40, 138-148.	0.6	13
22	Comprehensive Noninvasive Evaluation of Right Ventricle-Pulmonary Circulation Axis in Pediatric Patients with Pulmonary Hypertension. Current Treatment Options in Cardiovascular Medicine, 2019, 21, 6.	0.9	11
23	Right Ventricular Tissue Doppler Myocardial Performance Index in Children with Pulmonary Hypertension: Relation to Invasive Hemodynamics. Pediatric Cardiology, 2018, 39, 98-104.	1.3	10
24	Development and Utility of Quality Metrics for Ambulatory Pediatric Cardiology in Kawasaki Disease. Clinical Pediatrics, 2020, 59, 245-251.	0.8	9
25	Echocardiography–fluoroscopy fusion imaging: The essential features used in congenital and structural heart disease interventional guidance. Echocardiography, 2020, 37, 769-780.	0.9	9
26	Innovation in 3D Echocardiographic Imaging. Current Treatment Options in Cardiovascular Medicine, 2018, 20, 1.	0.9	8
27	Update on the Management of Kawasaki Disease. Pediatric Clinics of North America, 2020, 67, 811-819.	1.8	8
28	Right Atrial Conduit Phase Emptying Predicts Risk of Adverse Events in Pediatric Pulmonary Arterial Hypertension. Journal of the American Society of Echocardiography, 2020, 33, 1006-1013.	2.8	8
29	Repolarization Vector Magnitude Differentiates Kawasaki Disease from Normal Children. Annals of Noninvasive Electrocardiology, 2016, 21, 493-499.	1.1	7
30	Prenatal Diagnosis and Successful Outcome in Neonate of Aorto‣eft Ventricle Tunnel. Echocardiography, 2014, 31, E20-3.	0.9	6
31	Tissue Doppler Imaging as a Predictor of Immunoglobulin Resistance in Kawasaki Disease. Pediatric Cardiology, 2015, 36, 1618-1623.	1.3	6
32	Data-Driven Quality Improvement Project to Increase the Value of the Congenital Echocardiographic Report. Pediatric Cardiology, 2018, 39, 726-730.	1.3	6
33	Myocardial Perfusion Reserve Index in Children With Kawasaki Disease. Journal of Magnetic Resonance Imaging, 2018, 48, 132-139.	3.4	6
34	Vascular anatomical considerations and clinical decision making during insertion of the Avalon (sup) \hat{A}^{\otimes} (sup) Elite Dual Lumen single-site veno-venous ECMO cannula in children weighing less than 20 kg. Perfusion (United Kingdom), 2019, 34, 267-271.	1.0	6
35	Tricuspid Atresia Associated with Truncus Arteriosus versus Aortopulmonary Window: Combining Fetal and Postnatal Echocardiography to Make the Diagnosis. Echocardiography, 2013, 30, E336-9.	0.9	5
36	Successful Treatment of Myocardial Infarction in an Infant With Kawasaki Disease. Seminars in Cardiothoracic and Vascular Anesthesia, 2015, 19, 255-259.	1.0	5

#	Article	IF	CITATIONS
37	Children with kawasaki disease present elevated stiffness of great arteries: Phaseâ€contrast MRI study. Journal of Magnetic Resonance Imaging, 2018, 48, 1228-1236.	3.4	5
38	Right atrial function in pediatric heart transplant patients by echocardiographic strain measurements. Pediatric Transplantation, 2019, 23, e13383.	1.0	5
39	Multicentre validation of a computer-based tool for differentiation of acute Kawasaki disease from clinically similar febrile illnesses. Archives of Disease in Childhood, 2020, 105, 772-777.	1.9	5
40	Longitudinal assessment of right atrial conduit fraction provides additional insight to predict adverse events in pediatric pulmonary hypertension. International Journal of Cardiology, 2021, 329, 242-245.	1.7	5
41	Three-Dimensional Echocardiography Right Ventricular Volumes and Ejection Fraction Reference Values in Children: A North American Multicentre Study. Canadian Journal of Cardiology, 2022, 38, 1426-1433.	1.7	4
42	Threeâ€Dimensional Echocardiography Enhances Diagnostic Accuracy of Supramitral Ring. Echocardiography, 2015, 32, 1048-1050.	0.9	3
43	Applications of threeâ€dimensional transesophageal echocardiography in congenital heart disease. Echocardiography, 2020, 37, 1665-1672.	0.9	3
44	Management of Multisystem Inflammatory Syndrome in Children Associated with COVID-19 Infection. Current Treatment Options in Pediatrics, 2021, 7, 119-128.	0.6	2
45	Atrioventricular depolarization differences identify coronary artery anomalies in Kawasaki disease. , 2017, 22, e12406.		1
46	Transesophageal 3-Dimensional Echocardiographic Guidance for Pacemaker Lead Placement. JACC: Case Reports, 2019, 1, 391-393.	0.6	1
47	Transesophageal threeâ€dimensional echocardiographic guidance for pacemaker lead extraction. PACE - Pacing and Clinical Electrophysiology, 2021, 44, 641-650.	1.2	1
48	A multicenter study of threeâ€dimensional echocardiographic evaluation of normal pediatric left ventricular volumes and function. Echocardiography, 2021, 38, 641-645.	0.9	1
49	Multiple Coronary Artery Aneurysms of the Right Coronary Artery in Neonate with Pulmonary Atresia with Intact Ventricular Septum. Echocardiography, 2016, 33, 936-938.	0.9	0
50	Three-dimensional echocardiographic evaluation of Ebstein's anomaly of the tricuspid valve in a patient with hypoplastic left heart syndrome. Cardiology in the Young, 2018, 28, 885-887.	0.8	0
51	Pediatric Cardiology: From Basics to Innovation. Pediatric Clinics of North America, 2020, 67, xvii-xviii.	1.8	0
52	Abstract 15413: Comparison of Right Ventricular Functional Indices Using Two-dimensional and Three-dimensional Echocardiography to Predict Outcomes in Pediatric Pulmonary Hypertension. Circulation, 2015, 132, .	1.6	0
53	Abstract 10848: Increasing Left Anterior Descending Artery Size is Associated with Worsening Myocardial Function in the Setting of Multisystem Inflammatory Syndrome in Children. Circulation, 2021, 144, .	1.6	0
54	Using 3D Echocardiography for Surgical Planning in Congenital Heart Disease. Current Treatment Options in Pediatrics, 0 , 1 .	0.6	0