Bernhard Krismer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6943879/publications.pdf

Version: 2024-02-01

218677 361022 3,328 35 26 citations h-index papers

g-index 38 38 38 4506 docs citations times ranked citing authors all docs

35

#	Article	IF	Citations
1	Human commensals producing a novel antibiotic impair pathogen colonization. Nature, 2016, 535, 511-516.	27.8	667
2	Abyssomicins, Inhibitors of the para-Aminobenzoic Acid Pathway Produced by the Marine Verrucosispora Strain AB-18-032. Journal of Antibiotics, 2004, 57, 271-279.	2.0	272
3	Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl. Molecular Microbiology, 2010, 75, 864-873.	2.5	232
4	The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nature Reviews Microbiology, 2017, 15, 675-687.	28.6	222
5	Skin Commensals Amplify the Innate Immune Response to Pathogens by Activation of Distinct Signaling Pathways. Journal of Investigative Dermatology, 2011, 131, 382-390.	0.7	218
6	The Stringent Response of Staphylococcus aureus and Its Impact on Survival after Phagocytosis through the Induction of Intracellular PSMs Expression. PLoS Pathogens, 2012, 8, e1003016.	4.7	209
7	Nutrient Limitation Governs Staphylococcus aureus Metabolism and Niche Adaptation in the Human Nose. PLoS Pathogens, 2014, 10, e1003862.	4.7	166
8	The microbiome-shaping roles of bacteriocins. Nature Reviews Microbiology, 2021, 19, 726-739.	28.6	143
9	High Frequency and Diversity of Antimicrobial Activities Produced by Nasal Staphylococcus Strains against Bacterial Competitors. PLoS Pathogens, 2016, 12, e1005812.	4.7	124
10	Temporal Expression of Adhesion Factors and Activity of Global Regulators during Establishment of <i>Staphylococcus aureus </i> Nasal Colonization. Journal of Infectious Diseases, 2010, 201, 1414-1421.	4.0	114
11	The Nitrate Reductase and Nitrite Reductase Operons and the narT Gene of Staphylococcus carnosus Are Positively Controlled by the Novel Two-Component System NreBC. Journal of Bacteriology, 2002, 184, 6624-6634.	2.2	86
12	Relative contribution of Prevotella intermedia and Pseudomonas aeruginosa to lung pathology in airways of patients with cystic fibrosis. Thorax, 2010, 65, 978-984.	5 . 6	84
13	Lugdunin amplifies innate immune responses in the skin in synergy with host- and microbiota-derived factors. Nature Communications, 2019, 10, 2730.	12.8	74
14	Keratinocytes as sensors and central players in the immune defense against Staphylococcus aureus in the skin. Journal of Dermatological Science, 2017, 87, 215-220.	1.9	65
15	Marker Removal in Staphylococci via Cre Recombinase and Different <i>lox</i> Sites. Applied and Environmental Microbiology, 2008, 74, 1316-1323.	3.1	61
16	An essential role for the baseplate protein Gp45 in phage adsorption to Staphylococcus aureus. Scientific Reports, 2016, 6, 26455.	3.3	61
17	The Lipid-Modifying Multiple Peptide Resistance Factor Is an Oligomer Consisting of Distinct Interacting Synthase and Flippase Subunits. MBio, 2015, 6, .	4.1	60
18	<i>Staphylococcus aureus</i> Colonization of the Human Nose and Interaction with Other Microbiome Members. Microbiology Spectrum, 2019, 7, .	3.0	60

#	Article	IF	Citations
19	Exometabolome Analysis Identifies Pyruvate Dehydrogenase as a Target for the Antibiotic Triphenylbismuthdichloride in Multiresistant Bacterial Pathogens. Journal of Biological Chemistry, 2012, 287, 2887-2895.	3.4	55
20	Synthetic Lugdunin Analogues Reveal Essential Structural Motifs for Antimicrobial Action and Proton Translocation Capability. Angewandte Chemie - International Edition, 2019, 58, 9234-9238.	13.8	44
21	Does <i>Staphylococcus aureus</i> nasal colonization involve biofilm formation?. Future Microbiology, 2011, 6, 489-493.	2.0	39
22	The MazEF Toxin-Antitoxin System Alters the \hat{I}^2 -Lactam Susceptibility of Staphylococcus aureus. PLoS ONE, 2015, 10, e0126118.	2.5	39
23	Staphylococcus epidermidis clones express Staphylococcus aureus-type wall teichoic acid to shift from a commensal to pathogen lifestyle. Nature Microbiology, 2021, 6, 757-768.	13.3	37
24	The microbial community structure of the cotton rat nose. Environmental Microbiology Reports, 2015, 7, 929-935.	2.4	35
25	Secretome analysis revealed adaptive and nonâ€adaptive responses of the Staphylococcus carnosus femB mutant. Proteomics, 2015, 15, 1268-1279.	2.2	29
26	Transfer of Plasmid DNA to Clinical Coagulase-Negative Staphylococcal Pathogens by Using a Unique Bacteriophage. Applied and Environmental Microbiology, 2015, 81, 2481-2488.	3.1	28
27	Sensitizing Staphylococcus aureus to antibacterial agents by decoding and blocking the lipid flippase MprF. ELife, 2022, 11, .	6.0	23
28	Lantibiotic production is a burden for the producing staphylococci. Scientific Reports, 2018, 8, 7471.	3.3	18
29	Secondary Metabolites Governing Microbiome Interaction of Staphylococcal Pathogens and Commensals. Microbial Physiology, 2021, 31, 198-216.	2.4	14
30	Intracellular monitoring of target protein production in <i>Staphylococcus aureus</i> by peptide tagâ€induced reporter fluorescence. Microbial Biotechnology, 2012, 5, 129-134.	4.2	12
31	Secretion of and Self-Resistance to the Novel Fibupeptide Antimicrobial Lugdunin by Distinct ABC Transporters in Staphylococcus lugdunensis. Antimicrobial Agents and Chemotherapy, 2020, 65, .	3.2	10
32	<i>Staphylococcus aureus</i> Colonization of the Human Nose and Interaction with Other Microbiome Members., 0,, 723-730.		5
33	Highly Efficient Staphylococcus carnosus Mutant Selection System Based on Suicidal Bacteriocin Activation. Applied and Environmental Microbiology, 2012, 78, 1148-1156.	3.1	4
34	Synthetische Analoga zeigen die essentiellen Strukturmotive von Lugdunin und seinen Protonentransport. Angewandte Chemie, 2019, 131, 9333-9338.	2.0	2
35	Distinct Lugdunins from a New Efficient Synthesis and Broad Exploitation of Its MRSA-Antimicrobial Structure. Journal of Medicinal Chemistry, 2021, 64, 4034-4058.	6.4	2