Giovanna Chiorino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6942340/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes and Development, 2006, 20, 1028-1042.	5.9	325
2	Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKÂ kinases. Genes and Development, 2007, 21, 562-577.	5.9	267
3	Current understanding of the thrombospondin-1 interactome. Matrix Biology, 2014, 37, 83-91.	3.6	228
4	Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect. Journal of Clinical Investigation, 2007, 117, 3236-3247.	8.2	212
5	c-Myc Phosphorylation Is Required for Cellular Response to Oxidative Stress. Molecular Cell, 2006, 21, 509-519.	9.7	175
6	Association between miR-200c and the survival of patients with stage I epithelial ovarian cancer: a retrospective study of two independent tumour tissue collections. Lancet Oncology, The, 2011, 12, 273-285.	10.7	173
7	High Commitment of Embryonic Keratinocytes to Terminal Differentiation through a Notch1-caspase 3 Regulatory Mechanism. Developmental Cell, 2004, 6, 551-562.	7.0	168
8	CD38 and ZAP-70 are functionally linked and mark CLL cells with high migratory potential. Blood, 2007, 110, 4012-4021.	1.4	149
9	Targeting EGFR/HER2 pathways enhances the antiproliferative effect of gemcitabine in biliary tract and gallbladder carcinomas. BMC Cancer, 2010, 10, 631.	2.6	149
10	Resistance to platinum-based chemotherapy is associated with epithelial to mesenchymal transition in epithelial ovarian cancer. European Journal of Cancer, 2013, 49, 520-530.	2.8	141
11	Cholangiocarcinoma stem-like subset shapes tumor-initiating niche by educating associated macrophages. Journal of Hepatology, 2017, 66, 102-115.	3.7	130
12	Re-education of Tumor-Associated Macrophages by CXCR2 Blockade Drives Senescence and Tumor Inhibition in Advanced Prostate Cancer. Cell Reports, 2019, 28, 2156-2168.e5.	6.4	129
13	ETS Transcription Factors Control Transcription of EZH2 and Epigenetic Silencing of the Tumor Suppressor Gene Nkx3.1 in Prostate Cancer. PLoS ONE, 2010, 5, e10547.	2.5	122
14	Patient-Derived Ovarian Tumor Xenografts Recapitulate Human Clinicopathology and Genetic Alterations. Cancer Research, 2014, 74, 6980-6990.	0.9	110
15	ESE3/EHF Controls Epithelial Cell Differentiation and Its Loss Leads to Prostate Tumors with Mesenchymal and Stem-like Features. Cancer Research, 2012, 72, 2889-2900.	0.9	109
16	The SRA protein UHRF1 promotes epigenetic crosstalks and is involved in prostate cancer progression. Oncogene, 2012, 31, 4878-4887.	5.9	109
17	Resveratrol inhibits ILâ€6â€induced ovarian cancer cell migration through epigenetic upâ€regulation of autophagy. Molecular Carcinogenesis, 2017, 56, 1164-1181.	2.7	89
18	Epidermal Growth Factor Receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer. BMC Cancer, 2011, 11, 31.	2.6	86

#	Article	IF	CITATIONS
19	iASPP/p63 autoregulatory feedback loop is required for the homeostasis of stratified epithelia. EMBO Journal, 2011, 30, 4261-4273.	7.8	84
20	GPR55 signalling promotes proliferation of pancreatic cancer cells and tumour growth in mice, and its inhibition increases effects of gemcitabine. Oncogene, 2018, 37, 6368-6382.	5.9	77
21	p63 is an alternative p53 repressor in melanoma that confers chemoresistance and a poor prognosis. Journal of Experimental Medicine, 2013, 210, 581-603.	8.5	74
22	The IKK/NF-κB signalingÂpathway requires Morgana to drive breast cancer metastasis. Nature Communications, 2017, 8, 1636.	12.8	73
23	ETS Transcription Factor ESE1/ELF3 Orchestrates a Positive Feedback Loop That Constitutively Activates NF-κB and Drives Prostate Cancer Progression. Cancer Research, 2013, 73, 4533-4547.	0.9	72
24	MicroRNA-424 impairs ubiquitination to activate STAT3 and promote prostate tumor progression. Journal of Clinical Investigation, 2016, 126, 4585-4602.	8.2	71
25	The FoxO3a gene is a key negative target of canonical Notch signalling in the keratinocyte UVB response. EMBO Journal, 2008, 27, 1243-1254.	7.8	69
26	Altered molecular pathways in melanocytic lesions. International Journal of Cancer, 2010, 126, 1869-1881.	5.1	68
27	CD38/CD31 Interactions Activate Genetic Pathways Leading to Proliferation and Migration in Chronic Lymphocytic Leukemia Cells. Molecular Medicine, 2010, 16, 87-91.	4.4	68
28	Context-dependent miR-204 and miR-211 affect the biological properties of amelanotic and melanotic melanoma cells. Oncotarget, 2017, 8, 25395-25417.	1.8	64
29	A novel Nrf2-miR-29-desmocollin-2 axis regulates desmosome function in keratinocytes. Nature Communications, 2014, 5, 5099.	12.8	58
30	lncRNAs as Novel Indicators of Patients' Prognosis in Stage I Epithelial Ovarian Cancer: A Retrospective and Multicentric Study. Clinical Cancer Research, 2017, 23, 2356-2366.	7.0	57
31	Reduced expression and tumor suppressor function of the ETS transcription factor ESE-3 in prostate cancer. Oncogene, 2008, 27, 2877-2885.	5.9	56
32	Identification of novel vascular markers through gene expression profiling of tumor-derived endothelium. BMC Genomics, 2008, 9, 201.	2.8	56
33	A randomized doubleâ€blind placebo controlled phase l–II study on clinical and molecular effects of dietary supplements in men with precancerous prostatic lesions. Chemoprevention or "chemopromotion�. Prostate, 2015, 75, 1177-1186.	2.3	55
34	Cell cycle phase perturbations and apoptosis in tumour cells induced by aplidine. British Journal of Cancer, 2002, 86, 1510-1517.	6.4	54
35	Desynchronization Rate in Cell Populations: Mathematical Modeling and Experimental Data. Journal of Theoretical Biology, 2001, 208, 185-199.	1.7	53
36	Comparison of Microarray Platforms for Measuring Differential MicroRNA Expression in Paired Normal/Cancer Colon Tissues. PLoS ONE, 2012, 7, e45105.	2.5	52

#	Article	IF	CITATIONS
37	PARP1 expression drives the synergistic antitumor activity of trabectedin and PARP1 inhibitors in sarcoma preclinical models. Molecular Cancer, 2017, 16, 86.	19.2	49
38	Post-apoptotic tumors are more palatable to dendritic cells and enhance their antigen cross-presentation activity. Vaccine, 2008, 26, 6422-6432.	3.8	48
39	Nicotinamide phosphoribosyltransferase (<scp>NAMPT</scp>) is overâ€expressed in melanoma lesions. Pigment Cell and Melanoma Research, 2013, 26, 144-146.	3.3	48
40	Glutathione Influences c-Myc-induced Apoptosis in M14 Human Melanoma Cells. Journal of Biological Chemistry, 2002, 277, 43763-43770.	3.4	47
41	Thrombospondinâ€1 is part of a Slugâ€independent motility and metastatic program in cutaneous melanoma, in association with <scp>VEGFR</scp> â€1 and <scp>FGF</scp> â€2. Pigment Cell and Melanoma Research, 2015, 28, 73-81.	3.3	45
42	Cross-Talk between Myeloid-Derived Suppressor Cells and Mast Cells Mediates Tumor-Specific Immunosuppression in Prostate Cancer. Cancer Immunology Research, 2018, 6, 552-565.	3.4	44
43	Multifactorial ERβ and NOTCH1 control of squamous differentiation and cancer. Journal of Clinical Investigation, 2014, 124, 2260-2276.	8.2	44
44	In melanocytic lesions the fraction of BRAFV600E alleles is associated with sun exposure but unrelated to ERK phosphorylation. Modern Pathology, 2008, 21, 716-726.	5.5	43
45	Analysis of Gene Expression in Early-Stage Ovarian Cancer. Clinical Cancer Research, 2008, 14, 7850-7860.	7.0	43
46	Wiring miRNAs to pathways: a topological approach to integrate miRNA and mRNA expression profiles. Nucleic Acids Research, 2014, 42, e96-e96.	14.5	41
47	iASPP is a novel autophagy inhibitor in keratinocytes. Journal of Cell Science, 2014, 127, 3079-3093.	2.0	40
48	Gene expression profiling and prediction of response to hormonal neoadjuvant treatment with anastrozole in surgically resectable breast cancer. Breast Cancer Research and Treatment, 2010, 121, 399-411.	2.5	35
49	Establishment of a patient-derived intrahepatic cholangiocarcinoma xenograft model with KRAS mutation. BMC Cancer, 2016, 16, 90.	2.6	35
50	TRF2 positively regulates SULF2 expression increasing VEGF-A release and activity in tumor microenvironment. Nucleic Acids Research, 2019, 47, 3365-3382.	14.5	34
51	Establishment and characterization of a human intrahepatic cholangiocarcinoma cell line derived from an Italian patient. Tumor Biology, 2016, 37, 4041-4052.	1.8	31
52	The protein restriction mimetic Resveratrol is an autophagy inducer stronger than amino acid starvation in ovarian cancer cells. Molecular Carcinogenesis, 2017, 56, 2681-2691.	2.7	29
53	Negative control of keratinocyte differentiation by Rho/CRIK signaling coupled with up-regulation of KyoT1/2 (FHL1) expression. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11313-11318.	7.1	27
54	Dual tumor suppressing and promoting function of Notch1 signaling in human prostate cancer. Oncotarget, 2016, 7, 48011-48026.	1.8	27

#	Article	IF	CITATIONS
55	CDCP1 overexpression drives prostate cancer progression and can be targeted in vivo. Journal of Clinical Investigation, 2020, 130, 2435-2450.	8.2	27
56	Targeting of the adaptor protein Tab2 as a novel approach to revert tamoxifen resistance in breast cancer cells. Oncogene, 2012, 31, 4353-4361.	5.9	26
57	A promoter-proximal transcript targeted by genetic polymorphism controls E-cadherin silencing in human cancers. Nature Communications, 2017, 8, 15622.	12.8	26
58	Circulating microRNAs combined with PSA for accurate and non-invasive prostate cancer detection. Carcinogenesis, 2019, 40, 246-253.	2.8	25
59	Class II phosphoinositide 3-kinase C2β regulates a novel signaling pathway involved in breast cancer progression. Oncotarget, 2016, 7, 18325-18345.	1.8	25
60	Gene Expression Signature Predictive of Neuroendocrine Transformation in Prostate Adenocarcinoma. International Journal of Molecular Sciences, 2020, 21, 1078.	4.1	24
61	Overexpression of CD157 Contributes to Epithelial Ovarian Cancer Progression by Promoting Mesenchymal Differentiation. PLoS ONE, 2012, 7, e43649.	2.5	22
62	Characterization of a new trabectedinâ€resistant myxoid liposarcoma cell line that shows collateral sensitivity to methylating agents. International Journal of Cancer, 2012, 131, 59-69.	5.1	22
63	Molecular characterisation of two human cancer cell lines selected in vitro for their chemotherapeutic drug resistance to ET-743. European Journal of Cancer, 2005, 41, 323-333.	2.8	21
64	Distress and quality of life after autologous stem cell transplantation: a randomized clinical trial to evaluate the outcome of a web-based stepped care intervention. BMC Cancer, 2010, 10, 361.	2.6	21
65	Aberrant expression of the neuronal-specific protein DCDC2 promotes malignant phenotypes and is associated with prostate cancer progression. Oncogene, 2013, 32, 2315-2324.	5.9	21
66	Metabolic Reprogramming by Malat1 Depletion in Prostate Cancer. Cancers, 2021, 13, 15.	3.7	20
67	A Systems Biology Approach to Characterize the Regulatory Networks Leading to Trabectedin Resistance in an In Vitro Model of Myxoid Liposarcoma. PLoS ONE, 2012, 7, e35423.	2.5	19
68	ABCC3 is a novel target for the treatment of pancreatic cancer. Advances in Biological Regulation, 2019, 73, 100634.	2.3	18
69	EZH2-induced lysine K362 methylation enhances TMPRSS2-ERG oncogenic activity in prostate cancer. Nature Communications, 2021, 12, 4147.	12.8	17
70	Regulation of aromatase expression in breast cancer treated with anastrozole neoadjuvant therapy. Experimental and Therapeutic Medicine, 2013, 5, 902-906.	1.8	16
71	Transcriptional Remodeling in Primary Hippocampal Astrocytes from an Alzheimer's Disease Mouse Model. Current Alzheimer Research, 2018, 15, 986-1004	1.4	15
72	Behavioral choices based on patch selection: a model using aggregation methods. Mathematical Biosciences, 1999, 157, 189-216.	1.9	14

#	Article	IF	CITATIONS
73	Epigenetic Regulation of iASPP-p63 Feedback Loop in Cutaneous Squamous Cell Carcinoma. Journal of Investigative Dermatology, 2019, 139, 1658-1671.e8.	0.7	14
74	Targeting p63 Upregulation Abrogates Resistance to MAPK Inhibitors in Melanoma. Cancer Research, 2020, 80, 2676-2688.	0.9	14
75	Preclinical activity of EGFR and MEK1/2 inhibitors in the treatment of biliary tract carcinoma. Oncotarget, 2016, 7, 52354-52363.	1.8	14
76	PGC1α/β Expression Predicts Therapeutic Response to Oxidative Phosphorylation Inhibition in Ovarian Cancer. Cancer Research, 2022, 82, 1423-1434.	0.9	14
77	The ANDROMEDA prospective cohort study: predictive value of combined criteria to tailor breast cancer screening and new opportunities from circulating markers: study protocol. BMC Cancer, 2017, 17, 785.	2.6	13
78	Transcriptomic analysis and mutational status of IDH1 in paired primary-recurrent intrahepatic cholangiocarcinoma. BMC Genomics, 2018, 19, 440.	2.8	13
79	The epithelial–mesenchymal transition induced by keratinocyte growth conditions is overcome by E6 and E7 from HPV16, but not HPV8 and HPV38: Characterization of global transcription profiles. Virology, 2009, 388, 260-269.	2.4	12
80	Cross-Analysis of Gene and miRNA Genome-Wide Expression Profiles in Human Fibroblasts at Different Stages of Transformation. OMICS A Journal of Integrative Biology, 2012, 16, 24-36.	2.0	12
81	The DNA-PK Inhibitor AZD7648 Sensitizes Patient-Derived Ovarian Cancer Xenografts to Pegylated Liposomal Doxorubicin and Olaparib Preventing Abdominal Metastases. Molecular Cancer Therapeutics, 2022, 21, 555-567.	4.1	11
82	Expression of thrombospondin-1 by tumor cells in patient-derived ovarian carcinoma xenografts. Connective Tissue Research, 2015, 56, 355-363.	2.3	10
83	Systematic evaluation of the microRNAome through miR-CATCHv2.0 identifies positive and negative regulators of <i>BRAF</i> -X1 mRNA. RNA Biology, 2019, 16, 865-878.	3.1	10
84	Gene and microRNA modulation upon trabectedin treatment in a human intrahepatic cholangiocarcinoma paired patient derived xenograft and cell line. Oncotarget, 2016, 7, 86766-86780.	1.8	10
85	From single gene to integrative molecular concept MAPS: pitfalls and potentials of microarray technology. Journal of Biological Regulators and Homeostatic Agents, 2008, 22, 7-16.	0.7	10
86	Interpretation of expression-profiling results obtained from different platforms and tissue sources: examples using prostate cancer data. European Journal of Cancer, 2004, 40, 2592-2603.	2.8	9
87	Eps8 involvement in neuregulin1-ErbB4 mediated migration in the neuronal progenitor cell line ST14A. Experimental Cell Research, 2011, 317, 757-769.	2.6	9
88	A Novel Prostate Cell Type-Specific Gene Signature to Interrogate Prostate Tumor Differentiation Status and Monitor Therapeutic Response. Cancers, 2020, 12, 176.	3.7	9
89	Functional Network Profiles in ARSACS Disclosed by Aptamer-Based Proteomic Technology. Frontiers in Neurology, 2020, 11, 603774.	2.4	9
90	TRF2 cooperates with CTCF for controlling the oncomiR-193b-3p in colorectal cancer. Cancer Letters, 2022, 533, 215607.	7.2	9

#	Article	IF	CITATIONS
91	Truncating mutations of <i>TP53AIP1</i> gene predispose to cutaneous melanoma. Genes Chromosomes and Cancer, 2018, 57, 294-303.	2.8	8
92	Cells with stemness features are generated from in vitro transformed human fibroblasts. Scientific Reports, 2018, 8, 13838.	3.3	8
93	Development of a yeast-based system to identify new hBRAFV600E functional interactors. Oncogene, 2019, 38, 1355-1366.	5.9	8
94	HSD17B7 gene in selfâ€renewal and oncogenicity of keratinocytes from Black versus White populations. EMBO Molecular Medicine, 2021, 13, e14133.	6.9	8
95	AKR1C3 is a biomarker and druggable target for oropharyngeal tumors. Cellular Oncology (Dordrecht), 2021, 44, 357-372.	4.4	7
96	Two Novel Ceramide-Like Molecules and miR-5100 Levels as Biomarkers Improve Prediction of Prostate Cancer in Gray-Zone PSA. Frontiers in Oncology, 2021, 11, 769158.	2.8	7
97	Variability in the timing of G1/S transition. Mathematical Biosciences, 2002, 177-178, 85-101.	1.9	6
98	Repurposing of the Antiepileptic Drug Levetiracetam to Restrain Neuroendocrine Prostate Cancer and Inhibit Mast Cell Support to Adenocarcinoma. Frontiers in Immunology, 2021, 12, 622001.	4.8	6
99	Establishment of patient-derived tumor xenograft models of mucinous ovarian cancer. American Journal of Cancer Research, 2020, 10, 572-580.	1.4	6
100	Absence of the K303R estrogen receptor α mutation in breast cancer patients exhibiting different responses to aromatase inhibitor anastrozole neoadjuvant treatment. Experimental and Therapeutic Medicine, 2010, 1, 939-942.	1.8	5
101	A Circulating Risk Score, Based on Combined Expression of Exo-miR-130a-3p and Fibrinopeptide A, as Predictive Biomarker of Relapse in Resectable Non-Small Cell Lung Cancer Patients. Cancers, 2022, 14, 3412.	3.7	4
102	AGGREGATION, EMERGENCE AND IMMERGENCE IN HIERARCHICALLY ORGANIZED SYSTEMS. International Journal of General Systems, 1999, 27, 349-371.	2.5	3
103	GJB5 association with BRAF mutation and survival in cutaneous malignant melanoma. British Journal of Dermatology, 2022, 186, 117-128.	1.5	3
104	Comprehensive Gene Expression Analysis to Identify Differences and Similarities between Sex- and Stage-Stratified Melanoma Samples. Cells, 2022, 11, 1099.	4.1	3
105	812 Comparison of Microarray Platforms for Measuring Differential MicroRNA Expression in Paired Normal/cancer Colon Tissues. European Journal of Cancer, 2012, 48, S194.	2.8	2
106	G1/S transition and cell population dynamics. Networks and Heterogeneous Media, 2009, 4, 67-90.	1.1	2
107	Cholangiocarcinoma Stem-Like Subset Shapes Tumor-Initiating Niche by Educating Associated Macrophages. Journal of Hepatology, 2016, 64, S157-S158.	3.7	1
108	371 Differences in the stroma of human ovarian carcinoma xenografts endowed with different angiogenic phenotypes. European Journal of Cancer, Supplement, 2010, 8, 94-95.	2.2	0

#	Article	IF	CITATIONS
109	441 Involvement of CD157 in the Control of Ovarian Cancer Progression. European Journal of Cancer, 2012, 48, S106-S107.	2.8	0
110	mRNA Biomarkers in Melanoma. , 2012, , 79-88.		0
111	556 Antagonizing microRNA mediated epigenetic reprogramming as therapeutic strategy for aggressive prostate cancer. European Journal of Cancer, 2014, 50, 180.	2.8	0
112	476 GJB5 association with BRAF mutation and survival in cutaneous melanoma. Journal of Investigative Dermatology, 2019, 139, S296.	0.7	0
113	Abstract B64: Gene expression profile of a liposarcoma mixoid cell line selectedin vitrofor resistance to Trabectedin. , 2009, , .		0
114	Abstract 196: UHRF1 is upregulated in prostate cancer and induces epigenetic silencing of tumor suppressor genes. , 2010, , .		0
115	Abstract 4965: The epithelial-specific ETS transcription factor ESE1 links inflammation with prostate cancer transformation and progression. , 2010, , .		0
116	p63 is an alternative p53 repressor in melanoma that confers chemoresistance and a poor prognosis. Journal of Cell Biology, 2013, 200, i11-i11.	5.2	0
117	Abstract 1451: MicroRNAs regulated by ESE3/EHF control important mediators of epithelial cell differentiation and stemness in prostate tumors. , 2014, , .		0
118	Abstract 5551: Antitumor activity, gene and miRNA modulation upon ET-743 treatment in an intrahepatic cholangiocarcinoma patient-derived xenograft model. , 2014, , .		0
119	Abstract 4968: microRNA-mediated silencing of COP1 and altered ubiquitination of key oncogenic transcription factors promote cancer stem cell (CSC) phenotype and prostate cancer progression. , 2015, , .		0
120	Abstract LB-152: EZH2-induced lysine methylation and ERG-EZH2 genomic co-occupancy set the basis for extensive transcriptome reprogramming and prostate cancer progression. , 2016, , .		0