Nicholas W. Wood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6941243/publications.pdf

Version: 2024-02-01

472 papers

68,214 citations

120 h-index 241 g-index

499 all docs 499 docs citations

499 times ranked 57134 citing authors

#	Article	IF	CITATIONS
1	Hereditary Early-Onset Parkinson's Disease Caused by Mutations in <i>PINK1</i> . Science, 2004, 304, 1158-1160.	12.6	3,060
2	Second consensus statement on the diagnosis of multiple system atrophy. Neurology, 2008, 71, 670-676.	1.1	2,720
3	Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature, 2011, 476, 214-219.	27.8	2,400
4	Cloning of the Gene Containing Mutations that Cause PARK8-Linked Parkinson's Disease. Neuron, 2004, 44, 595-600.	8.1	2,183
5	Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nature Genetics, 2009, 41, 1308-1312.	21.4	1,745
6	Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nature Genetics, 2014, 46, 989-993.	21.4	1,685
7	Association between Early-Onset Parkinson's Disease and Mutations in the <i>Parkin </i> Gene. New England Journal of Medicine, 2000, 342, 1560-1567.	27.0	1,448
8	Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2019, 18, 1091-1102.	10.2	1,414
9	Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nature Genetics, 2013, 45, 1150-1159.	21.4	1,395
10	Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study. Lancet Neurology, The, 2008, 7, 583-590.	10.2	1,340
11	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	12.6	1,085
12	A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nature Genetics, 2010, 42, 985-990.	21.4	918
13	Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nature Genetics, 2012, 44, 1341-1348.	21.4	848
14	Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet, The, 2011, 377, 641-649.	13.7	845
15	Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nature Genetics, 2011, 43, 761-767.	21.4	778
16	Expanding insights of mitochondrial dysfunction in Parkinson's disease. Nature Reviews Neuroscience, 2006, 7, 207-219.	10.2	773
17	Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nature Genetics, 1997, 17, 65-70.	21.4	758
18	Direct Observation of the Interconversion of Normal and Toxic Forms of α-Synuclein. Cell, 2012, 149, 1048-1059.	28.9	755

#	Article	IF	CITATIONS
19	Association of Multidrug Resistance in Epilepsy with a Polymorphism in the Drug-Transporter Gene <i>ABCB1</i> . New England Journal of Medicine, 2003, 348, 1442-1448.	27.0	690
20	Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes. Cell, 2018, 173, 1705-1715.e16.	28.9	623
21	Glucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease. Brain, 2009, 132, 1783-1794.	7.6	612
22	PINK1-Associated Parkinson's Disease Is Caused by Neuronal Vulnerability to Calcium-Induced Cell Death. Molecular Cell, 2009, 33, 627-638.	9.7	584
23	A robust model for read count data in exome sequencing experiments and implications for copy number variant calling. Bioinformatics, 2012, 28, 2747-2754.	4.1	534
24	Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Briefings in Bioinformatics, 2018, 19, 286-302.	6.5	498
25	Comprehensive Research Synopsis and Systematic Meta-Analyses in Parkinson's Disease Genetics: The PDGene Database. PLoS Genetics, 2012, 8, e1002548.	3.5	495
26	Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1043-1048.	21.4	494
27	The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain, 2004, 127, 2657-2671.	7.6	493
28	Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nature Genetics, 2009, 41, 1330-1334.	21.4	483
29	Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains. Annals of Neurology, 2012, 72, 455-463.	5.3	473
30	Localization of a Novel Locus for Autosomal Recessive Early-Onset Parkinsonism, PARK6, on Human Chromosome 1p35-p36. American Journal of Human Genetics, 2001, 68, 895-900.	6.2	459
31	The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1. Nature Cell Biology, 2007, 9, 1243-1252.	10.3	441
32	Parkin disease: a phenotypic study of a large case series. Brain, 2003, 126, 1279-1292.	7.6	427
33	The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson's disease. Brain, 2004, 127, 420-430.	7.6	404
34	Characterization of PLA2G6 as a locus for dystoniaâ€parkinsonism. Annals of Neurology, 2009, 65, 19-23.	5.3	399
35	A common LRRK2 mutation in idiopathic Parkinson's disease. Lancet, The, 2005, 365, 415-416.	13.7	391
36	Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nature Genetics, 2011, 43, 117-120.	21.4	390

#	Article	IF	CITATIONS
37	PINK1 cleavage at position A103 by the mitochondrial protease PARL. Human Molecular Genetics, 2011, 20, 867-879.	2.9	385
38	Structural characterization of toxic oligomers that are kinetically trapped during $\hat{I}\pm$ -synuclein fibril formation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1994-2003.	7.1	384
39	Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. Nature Genetics, 2012, 44, 328-333.	21.4	375
40	The role of pathogenic <i>DJâ€1 </i> mutations in Parkinson's disease. Annals of Neurology, 2003, 54, 283-286.	5. 3	362
41	A conserved sorting-associated protein is mutant in chorea-acanthocytosis. Nature Genetics, 2001, 28, 119-120.	21.4	357
42	100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care â€" Preliminary Report. New England Journal of Medicine, 2021, 385, 1868-1880.	27.0	352
43	Mitochondrial function and morphology are impaired in <i>parkin</i> â€mutant fibroblasts. Annals of Neurology, 2008, 64, 555-565.	5.3	339
44	Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy. American Journal of Human Genetics, 2016, 98, 500-513.	6.2	333
45	Excessive burden of lysosomal storage disorder gene variants in Parkinson's disease. Brain, 2017, 140, 3191-3203.	7.6	323
46	Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5507-5512.	7.1	321
47	Mutations in the gene LRRK2 encoding dardarin (PARK8) cause familial Parkinson's disease: clinical, pathological, olfactory and functional imaging and genetic data. Brain, 2005, 128, 2786-2796.	7.6	315
48	Targeting amyloid- \hat{l}^2 in glaucoma treatment. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13444-13449.	7.1	315
49	A novel mutation in the human voltage-gated potassium channel gene ($Kv1.1$) associates with episodic ataxia type 1 and sometimes with partial epilepsy. Brain, 1999, 122, 817-825.	7.6	314
50	Riluzole treatment, survival and diagnostic criteria in Parkinson plus disorders: The NNIPPS Study. Brain, 2009, 132, 156-171.	7.6	298
51	The Parkinson's disease–linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nature Neuroscience, 2013, 16, 1257-1265.	14.8	292
52	PINK1 protein in normal human brain and Parkinson's disease. Brain, 2006, 129, 1720-1731.	7.6	291
53	Parkin mutations are frequent in patients with isolated earlyâ€onset parkinsonism. Brain, 2003, 126, 1271-1278.	7.6	279
54	Understanding the molecular causes of Parkinson's disease. Trends in Molecular Medicine, 2006, 12, 521-528.	6.7	274

#	Article	IF	CITATIONS
55	PINK1 Is Necessary for Long Term Survival and Mitochondrial Function in Human Dopaminergic Neurons. PLoS ONE, 2008, 3, e2455.	2.5	273
56	How much phenotypic variation can be attributed toparkingenotype?. Annals of Neurology, 2003, 54, 176-185.	5.3	271
57	Deletion at ITPR1 Underlies Ataxia in Mice and Spinocerebellar Ataxia 15 in Humans. PLoS Genetics, 2007, 3, e108.	3.5	269
58	Alpha-Synuclein Oligomers Interact with Metal Ions to Induce Oxidative Stress and Neuronal Death in Parkinson's Disease. Antioxidants and Redox Signaling, 2016, 24, 376-391.	5.4	266
59	<i>SNCA</i> variants are associated with increased risk for multiple system atrophy. Annals of Neurology, 2009, 65, 610-614.	5.3	257
60	Mutations in the Gene PRRT2 Cause Paroxysmal Kinesigenic Dyskinesia with Infantile Convulsions. Cell Reports, 2012, 1, 2-12.	6.4	250
61	Gluten ataxia in perspective: epidemiology, genetic susceptibility and clinical characteristics. Brain, 2003, 126, 685-691.	7.6	248
62	A Two-Stage Meta-Analysis Identifies Several New Loci for Parkinson's Disease. PLoS Genetics, 2011, 7, e1002142.	3.5	247
63	Genome-wide Pleiotropy Between Parkinson Disease and Autoimmune Diseases. JAMA Neurology, 2017, 74, 780.	9.0	245
64	Rare Deletions at 16p13.11 Predispose to a Diverse Spectrum of Sporadic Epilepsy Syndromes. American Journal of Human Genetics, 2010, 86, 707-718.	6.2	231
65	Linkage disequilibrium fine mapping and haplotype association analysis of the tau gene in progressive supranuclear palsy and corticobasal degeneration. Journal of Medical Genetics, 2005, 42, 837-846.	3.2	225
66	Mutations in ANO3 Cause Dominant Craniocervical Dystonia: Ion Channel Implicated in Pathogenesis. American Journal of Human Genetics, 2012, 91, 1041-1050.	6.2	224
67	Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nature Genetics, 2021, 53, 1636-1648.	21.4	223
68	Dissection of the genetics of Parkinson's disease identifies an additional association 5' of SNCA and multiple associated haplotypes at 17q21. Human Molecular Genetics, 2011, 20, 345-353.	2.9	202
69	Homozygous deletions in parkin gene in European and North African families with autosomal recessive juvenile parkinsonism. Lancet, The, 1998, 352, 1355-1356.	13.7	199
70	Pathological inclusion bodies in tauopathies contain distinct complements of tau with three or four microtubule-binding repeat domains as demonstrated by new specific monoclonal antibodies. Neuropathology and Applied Neurobiology, 2003, 29, 288-302.	3.2	194
71	Huntington's disease progression. Brain, 1999, 122, 2353-2363.	7.6	193
72	Complex relationship between Parkin mutations and Parkinson disease. American Journal of Medical Genetics Part A, 2002, 114, 584-591.	2.4	193

#	Article	IF	CITATIONS
73	Clinical and subclinical dopaminergic dysfunction in PARK6-linked parkinsonism: An18F-dopa PET study. Annals of Neurology, 2002, 52, 849-853.	5.3	192
74	Molecular pathogenesis of Parkinson's disease. Human Molecular Genetics, 2005, 14, 2749-2755.	2.9	187
75	Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia. Nature Genetics, 2017, 49, 223-237.	21.4	186
76	Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11. Nature Genetics, 2007, 39, 1434-1436.	21.4	185
77	A Genetically Mediated Bias in Decision Making Driven by Failure of Amygdala Control. Journal of Neuroscience, 2009, 29, 5985-5991.	3.6	183
78	DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases. Annals of Neurology, 2016, 79, 983-990.	5. 3	183
79	Selection and Evaluation of Tagging SNPs in the Neuronal-Sodium-Channel Gene SCN1A: Implications for Linkage-Disequilibrium Gene Mapping. American Journal of Human Genetics, 2003, 73, 551-565.	6.2	181
80	Kinetic model of the aggregation of alpha-synuclein provides insights into prion-like spreading. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1206-15.	7.1	181
81	Mitophagy and Parkinson's disease: The PINK1–parkin link. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 623-633.	4.1	176
82	Using genome-wide complex trait analysis to quantify 'missing heritability' in Parkinson's disease. Human Molecular Genetics, 2012, 21, 4996-5009.	2.9	176
83	Multicentre search for genetic susceptibility loci in sporadic epilepsy syndrome and seizure types: a case-control study. Lancet Neurology, The, 2007, 6, 970-980.	10.2	175
84	Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson's disease. Nature Cell Biology, 2009, 11, 1370-1375.	10.3	173
85	Mutational spectrum of the CHAC gene in patients with chorea-acanthocytosis. European Journal of Human Genetics, 2002, 10, 773-781.	2.8	172
86	The fragile X tremor ataxia syndrome in the differential diagnosis of multiple system atrophy: data from the EMSA Study Group. Brain, 2005, 128, 1855-1860.	7.6	172
87	Genetic and phenotypic characterization of complex hereditary spastic paraplegia. Brain, 2016, 139, 1904-1918.	7.6	170
88	Parkinson's disease in GTP cyclohydrolase 1 mutation carriers. Brain, 2014, 137, 2480-2492.	7.6	169
89	Mutations in the <i>HSP27</i> (<i>HSPB1</i>) gene cause dominant, recessive, and sporadic distal HMN/CMT type 2. Neurology, 2008, 71, 1660-1668.	1.1	168
90	Common variants at the MHC locus and at chromosome 16q24.1 predispose to Barrett's esophagus. Nature Genetics, 2012, 44, 1131-1136.	21.4	162

#	Article	IF	Citations
91	The phenotypic spectrum of DYT24 due to ANO3 mutations. Movement Disorders, 2014, 29, 928-934.	3.9	161
92	Trinucleotide repeats and neurodegenerative disease. Brain, 2004, 127, 2385-2405.	7.6	160
93	<i>PRRT2</i> gene mutations. Neurology, 2012, 79, 2115-2121.	1.1	159
94	Mitochondrial dysfunction triggered by loss of HtrA2 results in the activation of a brain-specific transcriptional stress response. Cell Death and Differentiation, 2009, 16, 449-464.	11.2	156
95	Genome-Wide Association Study Implicates HLA-C*01:02 as a Risk Factor at the Major Histocompatibility Complex Locus in Schizophrenia. Biological Psychiatry, 2012, 72, 620-628.	1.3	156
96	Dopa-responsive dystonia: A clinical and molecular genetic study. Annals of Neurology, 1998, 44, 649-656.	5.3	153
97	Autosomal-dominant GTPCH1-deficient DRD: clinical characteristics and long-term outcome of 34 patients. Journal of Neurology, Neurosurgery and Psychiatry, 2009, 80, 839-845.	1.9	153
98	Estimating the causal influence of body mass index on risk of Parkinson disease: A Mendelian randomisation study. PLoS Medicine, 2017, 14, e1002314.	8.4	152
99	Genome scans and candidate gene approaches in the study of common diseases and variable drug responses. Trends in Genetics, 2003, 19, 615-622.	6.7	151
100	Mutations in HPCA Cause Autosomal-Recessive Primary Isolated Dystonia. American Journal of Human Genetics, 2015, 96, 657-665.	6.2	151
101	Investigating the Causal Relationship of C-Reactive Protein with 32 Complex Somatic and Psychiatric Outcomes: A Large-Scale Cross-Consortium Mendelian Randomization Study. PLoS Medicine, 2016, 13, e1001976.	8.4	150
102	A heterozygous effect for PINK1 mutations in Parkinson's disease?. Annals of Neurology, 2006, 60, 414-419.	5.3	149
103	Genetic modifiers of risk and age at onset in GBA associated Parkinson's disease and Lewy body dementia. Brain, 2020, 143, 234-248.	7.6	149
104	Mutations in the autoregulatory domain of βâ€ŧubulin 4a cause hereditary dystonia. Annals of Neurology, 2013, 73, 546-553.	5.3	148
105	Altered cleavage and localization of PINK1 to aggresomes in the presence of proteasomal stress. Journal of Neurochemistry, 2006, 98, 156-169.	3.9	146
106	Cortical α-synuclein load is associated with amyloid-β plaque burden in a subset of Parkinson's disease patients. Acta Neuropathologica, 2008, 115, 417-425.	7.7	146
107	Parkinson's disease and cancer: two wars, one front. Nature Reviews Cancer, 2011, 11, 813-823.	28.4	146
108	Genetic Variants of the α-Synuclein Gene SNCA Are Associated with Multiple System Atrophy. PLoS ONE, 2009, 4, e7114.	2.5	144

#	Article	IF	Citations
109	Myoclonus-dystonia syndrome: Îμ-sarcoglycan mutations and phenotype. Annals of Neurology, 2002, 52, 489-492.	5.3	143
110	A single-nucleotide polymorphism tagging set for human drug metabolism and transport. Nature Genetics, 2005, 37, 84-89.	21.4	142
111	Progression of nigrostriatal dysfunction in a parkin kindred: an [18F]dopa PET and clinical study. Brain, 2002, 125, 2248-2256.	7.6	141
112	Different patterns of electrophysiological deficits in manifesting and non-manifesting carriers of the DYT1 gene mutation. Brain, 2003, 126, 2074-2080.	7.6	141
113	Cancer and Neurodegeneration: Between the Devil and the Deep Blue Sea. PLoS Genetics, 2010, 6, e1001257.	3.5	141
114	Systematic Review and UKâ€Based Study of <i>PARK2 (parkin), PINK1, PARK7 (DJâ€1)</i> and <i>LRRK2</i> in earlyâ€onset Parkinson's disease. Movement Disorders, 2012, 27, 1522-1529.	3.9	141
115	Autosomal Dominant Cerebellar Ataxia Type III: Linkage in a Large British Family to a 7.6-cM Region on Chromosome 15q14-21.3. American Journal of Human Genetics, 1999, 65, 420-426.	6.2	140
116	<i>ADCY5</i> mutations are another cause of benign hereditary chorea. Neurology, 2015, 85, 80-88.	1.1	140
117	A genome-wide association study in multiple system atrophy. Neurology, 2016, 87, 1591-1598.	1.1	139
118	Clinical and genetic characterization of families with triple A (Allgrove) syndrome. Brain, 2002, 125, 2681-2690.	7.6	137
119	Unusual phenotypes in DYT1 dystonia: A report of five cases and a review of the literature. Movement Disorders, 2003, 18, 706-711.	3.9	137
120	Calcium is a key factor in α-synuclein induced neurotoxicity. Journal of Cell Science, 2016, 129, 1792-801.	2.0	136
121	Cytochrome c Oxidase Deficiency Associated with the First Stop-Codon Point Mutation in Human mtDNA. American Journal of Human Genetics, 1998, 63, 29-36.	6.2	135
122	Variant Alzheimer's disease with spastic paraparesis and cotton wool plaques is caused by PS-1 mutations that lead to exceptionally high amyloid-? concentrations. Annals of Neurology, 2000, 48, 806-808.	5.3	135
123	Genetic overlap between Alzheimer's disease and Parkinson's disease at the MAPT locus. Molecular Psychiatry, 2015, 20, 1588-1595.	7.9	133
124	Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study. Brain, 2010, 133, 2136-2147.	7.6	132
125	Signalling properties of inorganic polyphosphate in the mammalian brain. Nature Communications, 2013, 4, 1362.	12.8	132
126	The mitochondrial DNA G13513A transition in ND5 is associated with a LHON/MELAS overlap syndrome and may be a frequent cause of MELAS. Annals of Neurology, 1999, 46, 916-919.	5.3	129

#	Article	IF	Citations
127	Vascular disease and vascular risk factors in relation to motor features and cognition in early Parkinson's disease. Movement Disorders, 2016, 31, 1518-1526.	3.9	128
128	Regional Distribution of Amyloid-Bri Deposition and Its Association with Neurofibrillary Degeneration in Familial British Dementia. American Journal of Pathology, 2001, 158, 515-526.	3.8	127
129	Chorea-Acanthocytosis: Genetic Linkage to Chromosome 9q21. American Journal of Human Genetics, 1997, 61, 899-908.	6.2	126
130	PINK1 function in health and disease. EMBO Molecular Medicine, 2009, 1, 152-165.	6.9	125
131	Genes and susceptibility to multiple sclerosis. Acta Neurologica Scandinavica, 1995, 91, 43-51.	2.1	124
132	Clinical genetics of familial progressive supranuclear palsy. Brain, 1999, 122, 1233-1245.	7.6	124
133	UCHL-1is not a Parkinson's disease susceptibility gene. Annals of Neurology, 2006, 59, 627-633.	5.3	123
134	Autosomal recessive, DYT2-like primary torsion dystonia. Neurology, 2003, 61, 1801-1803.	1.1	122
135	A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson's disease. Human Molecular Genetics, 2013, 22, 1039-1049.	2.9	122
136	Association of slow acetylator genotype for N-acetyltransferase 2 with familial Parkinson's disease. Lancet, The, 1997, 350, 1136-1139.	13.7	121
137	The glucocerobrosidase E326K variant predisposes to Parkinson's disease, but does not cause Gaucher's disease. Movement Disorders, 2013, 28, 232-236.	3.9	121
138	Low frequency of pathogenic mutations in the ubiquitin carboxyterminal hydrolase gene in familial Parkinson's disease. NeuroReport, 1999, 10, 427-429.	1.2	119
139	The structure of the tau haplotype in controls and in progressive supranuclear palsy. Human Molecular Genetics, 2004, 13, 1267-1274.	2.9	119
140	DYT13, a novel primary torsion dystonia locus, maps to chromosome 1p36.13-36.32 in an Italian family with cranial-cervical or upper limb onset. Annals of Neurology, 2001, 49, 362-366.	5.3	118
141	Developing and validating Parkinson's disease subtypes and their motor and cognitive progression. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 1279-1287.	1.9	116
142	<scp>LRRK</scp> 2 activation controls the repair of damaged endomembranes in macrophages. EMBO Journal, 2020, 39, e104494.	7.8	116
143	An mtDNA Mutation in the Initiation Codon of the Cytochrome C Oxidase Subunit II Gene Results in Lower Levels of the Protein and a Mitochondrial Encephalomyopathy. American Journal of Human Genetics, 1999, 64, 1330-1339.	6.2	115
144	Polygenic risk of <scp>P</scp> arkinson disease is correlated with disease age at onset. Annals of Neurology, 2015, 77, 582-591.	5.3	115

#	Article	IF	Citations
145	A Novel Prion Disease Associated with Diarrhea and Autonomic Neuropathy. New England Journal of Medicine, 2013, 369, 1904-1914.	27.0	113
146	Tau gene and Parkinson's disease: a case-control study and meta-analysis. Journal of Neurology, Neurosurgery and Psychiatry, 2004, 75, 962-965.	1.9	112
147	A novel TRK A (NTRK1) mutation associated with hereditary sensory and autonomic neuropathy type V. Annals of Neurology, 2001, 49, 521-525.	5.3	110
148	Large, expanded repeats in SCA8 are not confined to patients with cerebellar ataxia. Nature Genetics, 2000, 24, 214-215.	21.4	109
149	A Missense Mutation in KCTD17 Causes Autosomal Dominant Myoclonus-Dystonia. American Journal of Human Genetics, 2015, 96, 938-947.	6.2	109
150	Hyposmia and cognitive impairment in Gaucher disease patients and carriers. Movement Disorders, 2012, 27, 526-532.	3.9	108
151	NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. Neurobiology of Aging, 2017, 57, 247.e9-247.e13.	3.1	108
152	Dopa-responsive dystonia in British patients: new mutations of the GTP- cyclohydrolase I gene and evidence for genetic heterogeneity. Human Molecular Genetics, 1996, 5, 403-406.	2.9	107
153	Identifying Candidate Causal Variants Responsible for Altered Activity of the ABCB1 Multidrug Resistance Gene. Genome Research, 2004, 14, 1333-1344.	5.5	107
154	Origin of the Mutations in the parkin Gene in Europe: Exon Rearrangements Are Independent Recurrent Events, whereas Point Mutations May Result from Founder Effects. American Journal of Human Genetics, 2001, 68, 617-626.	6.2	106
155	Normal variation in fronto-occipital circuitry and cerebellar structure with an autism-associated polymorphism of CNTNAP2. Neurolmage, 2010, 53, 1030-1042.	4.2	105
156	Striatal and cortical pre- and postsynaptic dopaminergic dysfunction in sporadic parkin-linked parkinsonism. Brain, 2004, 127, 1332-1342.	7.6	104
157	Nova2 Interacts with a Cis-Acting Polymorphism to Influence the Proportions of Drug-Responsive Splice Variants of SCN1A. American Journal of Human Genetics, 2007, 80, 876-883.	6.2	104
158	Features of <i>GBA</i> -associated Parkinson's disease at presentation in the UK <i>Tracking Parkinson's</i> study. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 702-709.	1.9	103
159	The genetics of dystonia: new twists in an old tale. Brain, 2013, 136, 2017-2037.	7.6	102
160	Genomeâ€Wide Association Studies of Cognitive and Motor Progression in Parkinson's Disease. Movement Disorders, 2021, 36, 424-433.	3.9	101
161	Single-Molecule Imaging of Individual Amyloid Protein Aggregates in Human Biofluids. ACS Chemical Neuroscience, 2016, 7, 399-406.	3.5	99
162	Sequencing of the alpha-synuclein gene in a large series of cases of familial Parkinson's disease fails to reveal any further mutations. The European Consortium on Genetic Susceptibility in Parkinson's Disease (GSPD). Human Molecular Genetics, 1998, 7, 751-753.	2.9	98

#	Article	IF	CITATIONS
163	Park6â€linked parkinsonism occurs in several european families. Annals of Neurology, 2002, 51, 14-18.	5.3	98
164	De Novo Expansion of Intermediate Alleles in Spinocerebellar Ataxia 7. Human Molecular Genetics, 1998, 7, 1809-1813.	2.9	96
165	Molecular and Clinical Study of 18 Families with ADCA Type II: Evidence for Genetic Heterogeneity and De Novo Mutation. American Journal of Human Genetics, 1999, 64, 1594-1603.	6.2	96
166	NeuroX, a fast and efficient genotyping platform for investigation of neurodegenerative diseases. Neurobiology of Aging, 2015, 36, 1605.e7-1605.e12.	3.1	96
167	De Novo Mutations in PDE10A Cause Childhood-Onset Chorea with Bilateral Striatal Lesions. American Journal of Human Genetics, 2016, 98, 763-771.	6.2	96
168	Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets. JAMA Neurology, 2021, 78, 464.	9.0	95
169	Somatic and germline mosaicism in sporadic early-onset Alzheimer's disease. Human Molecular Genetics, 2004, 13, 1219-1224.	2.9	93
170	In vivo skeletal muscle mitochondrial function in Leber's hereditary optic neuropathy assessed by 31P magnetic resonance spectroscopy. Annals of Neurology, 1997, 42, 573-579.	5.3	91
171	The ?-synuclein Ala53Thr mutation is not a common cause of familial Parkinson's disease: A study of 230 European cases. Annals of Neurology, 1998, 44, 270-273.	5.3	91
172	Genome-wide association studies: the key to unlocking neurodegeneration?. Nature Neuroscience, 2010, 13, 789-794.	14.8	90
173	Loss-of-function mutations in <i>RAB39B</i> are associated with typical early-onset Parkinson disease. Neurology: Genetics, 2015, 1, e9.	1.9	90
174	Mutations in SNX14 Cause a Distinctive Autosomal-Recessive Cerebellar Ataxia and Intellectual Disability Syndrome. American Journal of Human Genetics, 2014, 95, 611-621.	6.2	89
175	Bioenergetic Consequences of PINK1 Mutations in Parkinson Disease. PLoS ONE, 2011, 6, e25622.	2.5	88
176	Neuronal intranuclear inclusions in SCA2: a genetic, morphological and immunohistochemical study of two cases. Brain, 2002, 125, 656-663.	7.6	87
177	Failure to replicate previously reported genetic associations with sporadic temporal lobe epilepsy: where to from here?. Brain, 2005, 128, 1832-1840.	7.6	87
178	Common variants in the HLA-DRB1–HLA-DQA1 HLA class II region are associated with susceptibility to visceral leishmaniasis. Nature Genetics, 2013, 45, 208-213.	21.4	86
179	Fine mapping of de novo CMT1A and HNPP rearrangements within CMTIA-REPs evidences two distinct sex-dependent mechanisms and candidate sequences involved in recombination. Human Molecular Genetics, 1998, 7, 141-148.	2.9	85
180	Genetic and clinical heterogeneity in paroxysmal kinesigenic dyskinesia: Evidence for a third EKD gene. Movement Disorders, 2002, 17, 717-725.	3.9	85

#	Article	IF	CITATIONS
181	Genetic variability at the PARK16 locus. European Journal of Human Genetics, 2010, 18, 1356-1359.	2.8	85
182	Genetic and functional characterisation of the P/Q calcium channel in episodic ataxia with epilepsy. Journal of Physiology, 2010, 588, 1905-1913.	2.9	85
183	The role of the SCA2 trinucleotide repeat expansion in 89 autosomal dominant cerebellar ataxia families. Frequency, clinical and genetic correlates. Brain, 1998, 121, 459-467.	7.6	84
184	Rare Individual Amyloid- \hat{l}^2 Oligomers Act on Astrocytes to Initiate Neuronal Damage. Biochemistry, 2014, 53, 2442-2453.	2.5	83
185	Hyposmia in G2019S LRRK2-related parkinsonism. Neurology, 2008, 71, 1021-1026.	1.1	82
186	Characterization of the clinical and immunologic phenotype and management of 157 individuals with 56 distinct heterozygous NFKB1 mutations. Journal of Allergy and Clinical Immunology, 2020, 146, 901-911.	2.9	78
187	Identification and sizing of the GAA trinucleotide repeat expansion of Friedreich's ataxia in 56 patients. Clinical and genetic correlates. Brain, 1997, 120, 673-680.	7.6	77
188	A clinical, genetic and biochemical study of SPG7 mutations in hereditary spastic paraplegia. Brain, 2004, 127, 973-980.	7.6	77
189	Genotype and phenotype in Parkinson's disease: Lessons in heterogeneity from deep brain stimulation. Movement Disorders, 2013, 28, 1370-1375.	3.9	77
190	Deletions at 22q11.2 in idiopathic Parkinson's disease: a combined analysis of genome-wide association data. Lancet Neurology, The, 2016, 15, 585-596.	10.2	77
191	A Multicenter Study of BRD2 as a Risk Factor for Juvenile Myoclonic Epilepsy. Epilepsia, 2007, 48, 706-712.	5.1	76
192	The Ile93Met mutation in the ubiquitin carboxy-terminal-hydrolase-L1 gene is not observed in European cases with familial Parkinson's disease. Neuroscience Letters, 1999, 270, 1-4.	2.1	75
193	The genetics of Parkinson's disease. Current Opinion in Genetics and Development, 2000, 10, 292-298.	3.3	73
194	Systemic Amyloid Deposits in Familial British Dementia. Journal of Biological Chemistry, 2001, 276, 43909-43914.	3.4	73
195	The Role of Interruptions in polyQ in the Pathology of SCA1. PLoS Genetics, 2013, 9, e1003648.	3.5	73
196	A new family with paroxysmal exercise induced dystonia and migraine: a clinical and genetic study. Journal of Neurology, Neurosurgery and Psychiatry, 2000, 68, 609-614.	1.9	72
197	Parkin is recruited into aggresomes in a stress-specific manner: over-expression of parkin reduces aggresome formation but can be dissociated from parkin's effect on neuronal survival. Human Molecular Genetics, 2003, 13, 117-135.	2.9	72
198	The correlation between reading and mathematics ability at age twelve has a substantial genetic component. Nature Communications, 2014, 5, 4204.	12.8	72

#	Article	IF	CITATIONS
199	Cell Death Pathways in Parkinson's Disease: Role of Mitochondria. Antioxidants and Redox Signaling, 2009, 11, 2135-2149.	5.4	70
200	Lossâ€ofâ€Function Variants in <scp>HOPS</scp> Complex Genes <scp><i>VPS16</i></scp> and <scp><i>VPS41</i></scp> Cause Early Onset Dystonia Associated with Lysosomal Abnormalities. Annals of Neurology, 2020, 88, 867-877.	5.3	70
201	Molecular basis of Parkinson's disease. NeuroReport, 2009, 20, 150-156.	1.2	69
202	Localization of the Gene for Distal Hereditary Motor Neuronopathy VII (dHMN-VII) to Chromosome 2q14. American Journal of Human Genetics, 2001, 68, 1270-1276.	6.2	68
203	ADCY5-related movement disorders: Frequency, disease course and phenotypic variability in a cohort of paediatric patients. Parkinsonism and Related Disorders, 2017, 41, 37-43.	2.2	67
204	Parkinson's disease is not associated with the combined ?-synuclein/apolipoprotein E susceptibility genotype. Annals of Neurology, 2001, 49, 665-668.	5.3	66
205	Dopamine Induced Neurodegeneration in a PINK1 Model of Parkinson's Disease. PLoS ONE, 2012, 7, e37564.	2.5	66
206	Frequency of Loss of Function Variants in <i>LRRK2</i> in Parkinson Disease. JAMA Neurology, 2018, 75, 1416.	9.0	66
207	The endocytic membrane trafficking pathway plays a major role in the risk of Parkinson's disease. Movement Disorders, 2019, 34, 460-468.	3.9	66
208	Ataxia telangiectasia presenting as dopa-responsive cervical dystonia. Neurology, 2013, 81, 1148-1151.	1.1	65
209	Multiple sclerosis and the HLA-D region: linkage and association studies. Journal of Neuroimmunology, 1995, 58, 183-190.	2.3	64
210	Tracking Parkinson's: Study Design and Baseline Patient Data. Journal of Parkinson's Disease, 2015, 5, 947-959.	2.8	64
211	Autosomal dominant cerebellar ataxia: SCA2 is the most frequent mutation in eastern India. Journal of Neurology, Neurosurgery and Psychiatry, 2004, 75, 448-452.	1.9	62
212	Genetic analysis of Mendelian mutations in a large UK population-based Parkinson's disease study. Brain, 2019, 142, 2828-2844.	7.6	62
213	Association between a polymorphism of ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) gene and sporadic Parkinson's disease. Parkinsonism and Related Disorders, 2000, 6, 195-197.	2.2	61
214	PINK, PANK, or PARK? A clinicians' guide to familial parkinsonism. Lancet Neurology, The, 2004, 3, 652-662.	10.2	61
215	Dopa-Responsive Dystonia - The Story so Far. Neuropediatrics, 2002, 33, 1-5.	0.6	60
216	GLUCOCEREBROSIDASE MUTATIONS IN 108 NEUROPATHOLOGICALLY CONFIRMED CASES OF MULTIPLE SYSTEM ATROPHY. Neurology, 2009, 72, 1185-1186.	1.1	60

#	Article	IF	Citations
217	A functional polymorphism regulating dopamine ?-hydroxylase influences against Parkinson's disease. Annals of Neurology, 2004, 55, 443-446.	5. 3	59
218	Mitochondrial ND5 Gene Variation Associated with Encephalomyopathy and Mitochondrial ATP Consumption. Journal of Biological Chemistry, 2007, 282, 36845-36852.	3.4	59
219	PREDICT-PD: An online approach to prospectively identify risk indicators of Parkinson's disease. Movement Disorders, 2017, 32, 219-226.	3.9	59
220	Targeting mitochondrial dysfunction in neurodegenerative disease: Part II. Expert Opinion on Therapeutic Targets, 2010, 14, 497-511.	3.4	58
221	Cell metabolism affects selective vulnerability in PINK1-associated Parkinson's disease. Journal of Cell Science, 2011, 124, 4194-4202.	2.0	58
222	Sex–dependent rearrangements resulting in CMT1A and HNPP. Nature Genetics, 1997, 17, 136-137.	21.4	57
223	<i>C9ORF72</i> expansions, parkinsonism, and Parkinson disease. Neurology, 2013, 81, 808-811.	1.1	57
224	Genetic comorbidities in Parkinson's disease. Human Molecular Genetics, 2014, 23, 831-841.	2.9	57
225	Penetrance of Parkinson's Disease in <i>LRRK2</i> p.G2019S Carriers Is Modified by a Polygenic Risk Score. Movement Disorders, 2020, 35, 774-780.	3.9	57
226	Six novel connexin32 (GJB1) mutations in X-linked Charcot-Marie-Tooth disease. Journal of Neurology, Neurosurgery and Psychiatry, 2002, 73, 304-306.	1.9	56
227	Targeting mitochondrial dysfunction in neurodegenerative disease: Part I. Expert Opinion on Therapeutic Targets, 2010, 14, 369-385.	3.4	56
228	<i>PDXK</i> mutations cause polyneuropathy responsive to pyridoxal 5′â€phosphate supplementation. Annals of Neurology, 2019, 86, 225-240.	5.3	54
229	The pathogenesis of demyelinating disease. Progress in Neurobiology, 1994, 43, 143-173.	5.7	53
230	Screening for VPS35 mutations in Parkinson's disease. Neurobiology of Aging, 2012, 33, 838.e1-838.e5.	3.1	53
231	Hereditary sensory neuropathy is caused by a mutation in the delta subunit of the cytosolic chaperonin-containing t-complex peptide-1 (Cct4) gene. Human Molecular Genetics, 2003, 12, 1917-1925.	2.9	51
232	Genetic causes of Parkinson?s disease: UCHL-1. Cell and Tissue Research, 2004, 318, 189-194.	2.9	51
233	Causes of Parkinson?s disease: genetics of DJ-1. Cell and Tissue Research, 2004, 318, 185-188.	2.9	51
234	Connexin 32 promoter P2 mutations: A mechanism of peripheral nerve dysfunction. Annals of Neurology, 2004, 56, 730-734.	5. 3	51

#	Article	IF	CITATIONS
235	Analysis of Genome-Wide Association Studies of Alzheimer Disease and of Parkinson Disease to Determine If These 2 Diseases Share a Common Genetic Risk. JAMA Neurology, 2013, 70, 1268-76.	9.0	51
236	Multiple sclerosis in the Cambridge health district of east Anglia Journal of Neurology, Neurosurgery and Psychiatry, 1992, 55, 877-882.	1.9	50
237	Mitochondrial DNA polymorphisms in pathologically proven Parkinson's disease. Journal of Neurology, 1997, 244, 262-265.	3.6	50
238	Cervical dystonia is associated with a polymorphism in the dopamine (D5) receptor gene. Journal of Neurology, Neurosurgery and Psychiatry, 2001, 71, 262-264.	1.9	50
239	CHCHD2 and Parkinson's disease. Lancet Neurology, The, 2015, 14, 678-679.	10.2	50
240	The Parkinson's Disease Mendelian Randomization Research Portal. Movement Disorders, 2019, 34, 1864-1872.	3.9	50
241	Dystonia genes functionally converge in specific neurons and share neurobiology with psychiatric disorders. Brain, 2020, 143, 2771-2787.	7.6	50
242	Strong association of a novel Tau promoter haplotype in progressive supranuclear palsy. Neuroscience Letters, 2001, 311, 145-148.	2.1	49
243	<i>SLC25A46</i> mutations underlie progressive myoclonic ataxia with optic atrophy and neuropathy. Movement Disorders, 2016, 31, 1249-1251.	3.9	49
244	Generalized chorea in two patients harboring the Friedreich's ataxia gene trinucleotide repeat expansion. Movement Disorders, 1998, 13, 339-340.	3.9	48
245	Association of MAPT haplotype-tagging SNPs with sporadic Parkinson's disease. Neurobiology of Aging, 2009, 30, 1477-1482.	3.1	48
246	Autosomal-recessive cerebellar ataxia caused by a novel ADCK3 mutation that elongates the protein: clinical, genetic and biochemical characterisation. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 493-498.	1.9	48
247	Additional rare variant analysis in Parkinson's disease cases with and without known pathogenic mutations: evidence for oligogenic inheritance. Human Molecular Genetics, 2016, 25, ddw348.	2.9	48
248	Ataxin-7 aggregation and ubiquitination in infantile SCA7 with 180 CAG repeats. Annals of Neurology, 2004, 56, 448-452.	5.3	47
249	Hyperexcitable Substantia Nigra Dopamine Neurons in <i>PINK1</i> Journal of Neurophysiology, 2010, 104, 3009-3020.	1.8	47
250	The Genetic Architecture of Parkinson Disease in Spain: Characterizing Populationâ€Specific Risk, Differential Haplotype Structures, and Providing Etiologic Insight. Movement Disorders, 2019, 34, 1851-1863.	3.9	47
251	Paroxysmal dystonic choreoathetosis: Clinical features and investigation of pathophysiology in a large family. Movement Disorders, 2000, 15, 648-657.	3.9	46
252	Equating scores of the University of Pennsylvania Smell Identification Test and Sniffin' Sticks test in patients with Parkinson's disease. Parkinsonism and Related Disorders, 2016, 33, 96-101.	2.2	46

#	Article	IF	Citations
253	Depletion of mitochondrial DNA by ddC in untransformed human cell lines. Somatic Cell and Molecular Genetics, 1997, 23, 287-290.	0.7	45
254	Parkinsonism and nigrostriatal dysfunction are associated with spinocerebellar ataxia type 6 (SCA6). Movement Disorders, 2005, 20, 1115-1119.	3.9	45
255	The Â-synuclein gene in multiple system atrophy. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 77, 464-467.	1.9	45
256	Myoclonus-dystonia syndrome due to tyrosine hydroxylase deficiency. Neurology, 2012, 79, 435-441.	1.1	45
257	Fine-Mapping, Gene Expression and Splicing Analysis of the Disease Associated LRRK2 Locus. PLoS ONE, 2013, 8, e70724.	2.5	45
258	Genome-Wide Analysis of the Parkinsonism-Dementia Complex of Guam. Archives of Neurology, 2004, 61, 1889-97.	4.5	44
259	Nigrostriatal dysfunction in homozygous and heterozygous <i>parkin</i> gene carriers: An ¹⁸ Fâ€dopa PET progression study. Movement Disorders, 2009, 24, 2260-2266.	3.9	44
260	LRRK2 expression in idiopathic and G2019S positive Parkinson's disease subjects: a morphological and quantitative study. Neuropathology and Applied Neurobiology, 2011, 37, 777-790.	3.2	44
261	A Genome-wide Association Analysis of a Broad Psychosis Phenotype Identifies Three Loci for Further Investigation. Biological Psychiatry, 2014, 75, 386-397.	1.3	44
262	Finding genetically-supported drug targets for Parkinson's disease using Mendelian randomization of the druggable genome. Nature Communications, 2021, 12, 7342.	12.8	44
263	Familial adult onset of Krabbe's disease resembling hereditary spastic paraplegia with normal neuroimaging. Journal of Neurology, Neurosurgery and Psychiatry, 2002, 72, 635-638.	1.9	43
264	Mendelian randomization study shows no causal relationship between circulating urate levels and Parkinson's disease. Annals of Neurology, 2018, 84, 191-199.	5.3	43
265	Dejerine-sottas neuropathy and PMP22 point mutations: A new base pair substitution and a possible ?hot spot? on Ser72. Annals of Neurology, 1998, 43, 680-683.	5.3	42
266	Neuropathology of primary adult-onset dystonia. Neurology, 2008, 70, 695-699.	1.1	42
267	Differential DJ-1 gene expression in Parkinson's disease. Neurobiology of Disease, 2009, 36, 393-400.	4.4	42
268	Use of support vector machines for disease risk prediction in genome-wide association studies: Concerns and opportunities. Human Mutation, 2012, 33, 1708-1718.	2.5	42
269	Mouse models for neurological disease. Lancet Neurology, The, 2002, 1, 215-224.	10.2	41
270	Identification of sixteen novel candidate genes for late onset Parkinson's disease. Molecular Neurodegeneration, 2021, 16, 35.	10.8	41

#	Article	IF	CITATIONS
271	Neurofibrillary tangle parkinsonian disorders?tau pathology andtau genetics. Movement Disorders, 1999, 14, 731-736.	3.9	40
272	Partial epilepsy with pericentral spikes: A new familial epilepsy syndrome with evidence for linkage to chromosome 4p15. Annals of Neurology, 2002, 51, 740-749.	5.3	40
273	Synphilin-1 and parkin show overlapping expression patterns in human brain and form aggresomes in response to proteasomal inhibition. Neurobiology of Disease, 2005, 20, 401-411.	4.4	40
274	PINK1 deficiency in \hat{l}^2 -cells increases basal insulin secretion and improves glucose tolerance in mice. Open Biology, 2014, 4, 140051.	3.6	40
275	Paroxysmal dystonic choreoathetosis. Genetic linkage studies in a British family. Brain, 1997, 120, 2125-2130.	7.6	39
276	The tau locus is not significantly associated with pathologically confirmed sporadic Parkinson's disease. Neuroscience Letters, 2002, 330, 201-203.	2.1	39
277	Polymorphism in a lincRNA Associates with a Doubled Risk of Pneumococcal Bacteremia in Kenyan Children. American Journal of Human Genetics, 2016, 98, 1092-1100.	6.2	39
278	Genetic aspects of Parkinson's disease. Movement Disorders, 1998, 13, 203-211.	3.9	38
279	Genome-wide scan linkage analysis for Parkinson's disease: the European genetic study of Parkinson's disease. Journal of Medical Genetics, 2004, 41, 900-907.	3.2	38
280	The gene responsible for PARK6 Parkinson's disease, PINK1, does not influence common forms of parkinsonism. Annals of Neurology, 2004, 56, 329-335.	5.3	38
281	The sepiapterin reductase gene region reveals association in the PARK3 locus: analysis of familial and sporadic Parkinson's disease in European populations. Journal of Medical Genetics, 2005, 43, 557-562.	3.2	38
282	Familial dopa-responsive cervical dystonia. Neurology, 2006, 66, 599-601.	1.1	38
283	Alternative ion channel splicing in mesial temporal lobe epilepsy and Alzheimer's disease. Genome Biology, 2007, 8, R32.	9.6	38
284	Mutations in NKX6-2 Cause Progressive Spastic Ataxia and Hypomyelination. American Journal of Human Genetics, 2017, 100, 969-977.	6.2	38
285	PDE10A and ADCY5 mutations linked to molecular and microstructural basal ganglia pathology. Movement Disorders, 2018, 33, 1961-1965.	3.9	38
286	Neuronal intranuclear inclusion disease is genetically heterogeneous. Annals of Clinical and Translational Neurology, 2020, 7, 1716-1725.	3.7	38
287	Detailed genotyping demonstrates association between the slow acetylator genotype for N-Acetyltransferase 2 (NAT2) and familial parkinson's disease. Movement Disorders, 2000, 15, 30-35.	3.9	37
288	Genetics of movement disorders and ataxia. Journal of Neurology, Neurosurgery and Psychiatry, 2002, 73, 22ii-26.	1.9	37

#	Article	IF	Citations
289	Immunological study of hereditary motor and sensory neuropathy type 1a (HMSN1a). Journal of Neurology, Neurosurgery and Psychiatry, 2002, 72, 230-235.	1.9	37
290	Molecular genetic pathways in Parkinson's disease: a review. Clinical Science, 2005, 109, 355-364.	4.3	37
291	Susceptibility to multiple sclerosis and the immunoglobulin heavy chain variable region. Journal of Neurology, 1995, 242, 677-682.	3.6	36
292	Characterisation of a novel NR4A2 mutation in Parkinson's disease brain. Neuroscience Letters, 2009, 457, 75-79.	2.1	36
293	Phenotypic variation of a new PO mutation in genetically identical twins. Journal of Neurology, 1999, 246, 596-599.	3.6	35
294	Slowly progressive cerebellar ataxia and cervical dystonia: Clinical presentation of a new form of spinocerebellar ataxia?. Movement Disorders, 2003, 18, 200-206.	3.9	35
295	Effects of age and MAOA genotype on the neural processing of social rejection. Genes, Brain and Behavior, 2010, 9, 628-637.	2.2	35
296	Phosphorylation of HtrA2 by cyclin-dependent kinase-5 is important for mitochondrial function. Cell Death and Differentiation, 2012, 19, 257-266.	11.2	35
297	Exome sequencing in an SCA14 family demonstrates its utility in diagnosing heterogeneous diseases. Neurology, 2012, 79, 127-131.	1.1	35
298	Study of the genetic variability in a Parkinson's Disease gene: EIF4G1. Neuroscience Letters, 2012, 518, 19-22.	2.1	35
299	Autonomic Dysfunction in Early Parkinson's Disease: Results from the United Kingdom Tracking Parkinson's Study. Movement Disorders Clinical Practice, 2017, 4, 509-516.	1.5	35
300	Stratification of candidate genes for Parkinson's disease using weighted protein-protein interaction network analysis. BMC Genomics, 2018, 19, 452.	2.8	35
301	Typical features of Parkinson disease and diagnostic challenges with microdeletion 22q11.2. Neurology, 2018, 90, e2059-e2067.	1.1	35
302	PARK6 is a common cause of familial parkinsonism. Neurological Sciences, 2002, 23, s117-s118.	1.9	34
303	Clinical heterogeneity and genotypeâ€phenotype correlations in hereditary spastic paraplegia because of Spatacsin mutations (SPG11). European Journal of Neurology, 2008, 15, 1065-1070.	3.3	34
304	Partial loss-of-function of sodium channel SCN8A in familial isolated myoclonus. Human Mutation, 2018, 39, 965-969.	2.5	34
305	No linkage or association between multiple sclerosis and the myelin basic protein gene in affected sibling pairs Journal of Neurology, Neurosurgery and Psychiatry, 1994, 57, 1191-1194.	1.9	33
306	Cathepsin D deficiency causes juvenile-onset ataxia and distinctive muscle pathology. Neurology, 2014, 83, 1873-1875.	1.1	33

#	Article	IF	CITATIONS
307	The genetic associations of acute anterior uveitis and their overlap with the genetics of ankylosing spondylitis. Genes and Immunity, 2016, 17, 46-51.	4.1	33
308	Parkin disease in a Brazilian kindred: Manifesting heterozygotes and clinical follow-up over 10 years. Movement Disorders, 2005, 20, 479-484.	3.9	32
309	Large-scale pathways-based association study in amyotrophic lateral sclerosis. Brain, 2007, 130, 2292-2301.	7.6	32
310	No major role of common SV2A variation for predisposition or levetiracetam response in epilepsy. Epilepsy Research, 2009, 83, 44-51.	1.6	32
311	HtrA2 deficiency causes mitochondrial uncoupling through the F1F0-ATP synthase and consequent ATP depletion. Cell Death and Disease, 2012, 3, e335-e335.	6.3	32
312	Dissecting the Phenotype and Genotype of <scp><i>PLA2G6</i></scp> â€Related Parkinsonism. Movement Disorders, 2022, 37, 148-161.	3.9	32
313	Nonmotor symptoms in <i>Parkin</i> geneâ€related parkinsonism. Movement Disorders, 2010, 25, 1279-1284.	3.9	31
314	Detection of novel mutations and review of published data suggests that hereditary spastic paraplegia caused by spastin (SPAST) mutations is found more often in males. Journal of the Neurological Sciences, 2011, 306, 62-65.	0.6	31
315	Genomeâ€Wide Association Study Identifies Risk Loci for Cluster Headache. Annals of Neurology, 2021, 90, 193-202.	5.3	31
316	Insufficient evidence for pathogenicity of SNCA His50Gln (H50Q) in Parkinson's disease. Neurobiology of Aging, 2018, 64, 159.e5-159.e8.	3.1	30
317	Clinical, neuropathological, and genetic characterization of STUB1 variants in cerebellar ataxias: a frequent cause of predominant cognitive impairment. Genetics in Medicine, 2020, 22, 1851-1862.	2.4	30
318	Truncating mutations in <i>SPAST </i> patients are associated with a high rate of psychiatric comorbidities in hereditary spastic paraplegia. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 681-687.	1.9	30
319	Chromosome 13 dementia syndromes as models of neurodegeneration. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2001, 8, 277-284.	3.0	29
320	Motor cortical physiology in patients and asymptomatic carriers of parkin gene mutations. Movement Disorders, 2008, 23, 1812-1819.	3.9	29
321	GJB1 gene mutations in suspected inflammatory demyelinating neuropathies not responding to treatment. Journal of Neurology, Neurosurgery and Psychiatry, 2009, 80, 699-700.	1.9	29
322	Genome-wide association study of intraocular pressure identifies the GLCCI1/ICA1 region as a glaucoma susceptibility locus. Human Molecular Genetics, 2013, 22, 4653-4660.	2.9	29
323	<i>ALS2</i> mutations. Neurology, 2014, 82, 1065-1067.	1.1	29
324	Investigation of Autosomal Genetic Sex Differences in Parkinson's Disease. Annals of Neurology, 2021, 90, 35-42.	5. 3	29

#	Article	IF	CITATIONS
325	Expression of BRI2 mRNA and protein in normal human brain and familial British dementia: its relevance to the pathogenesis of disease. Neuropathology and Applied Neurobiology, 2008, 34, 492-505.	3.2	28
326	Susceptibility loci for pigmentation and melanoma in relation to Parkinson's disease. Neurobiology of Aging, 2014, 35, 1512.e5-1512.e10.	3.1	28
327	The <i>CACNA1B</i> R1389H variant is not associated with myoclonus-dystonia in a large European multicentric cohort. Human Molecular Genetics, 2015, 24, 5326-5329.	2.9	28
328	Corticobasal degeneration syndrome with basal ganglia calcification: Fahr's disease as a corticobasal look-alike?. Movement Disorders, 2002, 17, 563-567.	3.9	27
329	Apolipoprotein E4 is probably responsible for the chromosome 19 linkage peak for Parkinson's disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 136B, 72-74.	1.7	27
330	Mitochondria in Parkinson Disease. Archives of Neurology, 2006, 63, 649.	4.5	27
331	Youngâ€onset parkinsonism due to homozygous duplication of αâ€synuclein in a consanguineous family. Movement Disorders, 2012, 27, 1829-1830.	3.9	27
332	Nonsyndromic Parkinson disease in a family with autosomal dominant optic atrophy due to <i>OPA1</i> mutations. Neurology: Genetics, 2017, 3, e188.	1.9	27
333	Effect of ApoE and tau on age of onset of progressive supranuclear palsy and multiple system atrophy. Neuroscience Letters, 2001, 312, 118-120.	2.1	26
334	A pharmacogenetic exploration of vigabatrin-induced visual field constriction. Epilepsy Research, 2006, 70, 144-152.	1.6	26
335	Genotypeâ€phenotype correlations, dystonia and disease progression in spinocerebellar ataxia type 14. Movement Disorders, 2018, 33, 1119-1129.	3.9	26
336	Using global team science to identify genetic parkinson's disease worldwide. Annals of Neurology, 2019, 86, 153-157.	5.3	26
337	<scp><i>RFC1</i></scp> Intronic Repeat Expansions Absent in Pathologically Confirmed Multiple Systems Atrophy. Movement Disorders, 2020, 35, 1277-1279.	3.9	26
338	In vivo assessment of brain monoamine systems in parkin gene carriers: A PET study. Experimental Neurology, 2010, 222, 120-124.	4.1	25
339	The Role of the Mitochondrial NCX in the Mechanism of Neurodegeneration in Parkinson's Disease. Advances in Experimental Medicine and Biology, 2013, 961, 241-249.	1.6	25
340	Genetic and Clinical Heterogeneity in Thirteen New Cases with Aceruloplasminemia. Atypical Anemia as a Clue for an Early Diagnosis. International Journal of Molecular Sciences, 2020, 21, 2374.	4.1	25
341	<i>RFC1</i> -related ataxia is a mimic of early multiple system atrophy. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 444-446.	1.9	25
342	Statins are underused in recent-onset Parkinson's disease with increased vascular risk: findings from the UK Tracking Parkinson's and Oxford Parkinson's Disease Centre (OPDC) discovery cohorts. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1183-1190.	1.9	24

#	Article	IF	CITATIONS
343	Heterogeneity in clinical features and disease severity in ataxia-associated SYNE1 mutations. Journal of Neurology, 2016, 263, 1503-1510.	3.6	24
344	The GTP-cyclohydrolase I gene in atypical Parkinsonian patients: a clinico-genetic study. Journal of the Neurological Sciences, 1996, 141, 27-32.	0.6	23
345	The human homologue of the weaver mouse gene in familial and sporadic Parkinson's disease. Neuroscience, 1996, 72, 877-879.	2.3	23
346	Prader-Willi and Angelman syndromes: update on genetic mechanisms and diagnostic complexities. Current Opinion in Neurology, 1999, 12, 149-154.	3.6	23
347	Identification of a novel primary torsion dystonia locus (DYT13) on chromosome 1p36 in an Italian family with cranial-cervical or upper limb onset. Neurological Sciences, 2001, 22, 95-96.	1.9	23
348	PARK11 is not linked with Parkinson's disease in European families. European Journal of Human Genetics, 2005, 13, 193-197.	2.8	23
349	Clinical and genetic analysis of spinocerebellar ataxia type 11. Cerebellum, 2008, 7, 159-164.	2.5	23
350	Tau acts as an independent genetic risk factor in pathologically proven PD. Neurobiology of Aging, 2012, 33, 838.e7-838.e11.	3.1	23
351	Low Prevalence of NOTCH2NLC GGC Repeat Expansion in White Patients with Movement Disorders. Movement Disorders, 2021, 36, 251-255.	3.9	23
352	What Have <i>PINK1</i> and <i>HtrA2</i> Genes Told Us about the Role of Mitochondria in Parkinson's Disease?. Annals of the New York Academy of Sciences, 2008, 1147, 30-36.	3.8	22
353	Analysis of Parkinson's disease brain–derived DNA for alphaâ€synuclein coding somatic mutations. Movement Disorders, 2014, 29, 1060-1064.	3.9	22
354	Atypical parkinsonism with apraxia and supranuclear gaze abnormalities in type 1 Gaucher disease. Expanding the spectrum: Case report and literature review. Movement Disorders, 2010, 25, 1506-1509.	3.9	21
355	Variation in Recent Onset Parkinson's Disease: Implications for Prodromal Detection. Journal of Parkinson's Disease, 2016, 6, 289-300.	2.8	21
356	Olfaction in <i>Parkin</i> single and compound heterozygotes in a cohort of young onset Parkinson's disease patients. Acta Neurologica Scandinavica, 2016, 134, 271-276.	2.1	21
357	Complexity of the Genetics and Clinical Presentation of Spinocerebellar Ataxia 17. Frontiers in Cellular Neuroscience, 2018, 12, 429.	3.7	21
358	Cooperative Genome-Wide Analysis Shows Increased Homozygosity in Early Onset Parkinson's Disease. PLoS ONE, 2012, 7, e28787.	2.5	21
359	Genetic screening of Greek patients with Huntington's disease phenocopies identifies an SCA8 expansion. Journal of Neurology, 2012, 259, 1874-1878.	3.6	20
360	Mitochondrial DNA Point Mutation T9176C in Leigh Syndrome. Journal of Child Neurology, 2000, 15, 830-833.	1.4	19

#	Article	IF	CITATIONS
361	Genetic association studies of complex neurological diseases. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 77, 1302-1304.	1.9	19
362	The syndrome of (predominantly cervical) dystonia and cerebellar ataxia: new cases indicate a distinct but heterogeneous entity. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 78, 774-775.	1.9	19
363	No pathogenic mutations in the synphilin-1 gene in Parkinson's disease. Neuroscience Letters, 2001, 307, 125-127.	2.1	18
364	Nigral degeneration and striatal dopaminergic dysfunction in idiopathic andparkin-linked Parkinson's disease. Movement Disorders, 2006, 21, 299-305.	3.9	18
365	Assessment of Parkinson's disease risk loci in Greece. Neurobiology of Aging, 2014, 35, 442.e9-442.e16.	3.1	18
366	Is the <i>MC1R</i> variant p.R160W associated with Parkinson's?. Annals of Neurology, 2016, 79, 159-161.	5.3	18
367	Mutations in XRCC1 cause cerebellar ataxia and peripheral neuropathy. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 1230-1232.	1.9	18
368	Biallelic variants in TSPOAP1, encoding the active-zone protein RIMBP1, cause autosomal recessive dystonia. Journal of Clinical Investigation, 2021, 131, .	8.2	18
369	Sequence analysis of tau in familial and sporadic progressive supranuclear palsy. Journal of Neurology, Neurosurgery and Psychiatry, 2002, 72, 388-390.	1.9	17
370	Intrafamilial Phenotypic Variability in Friedreich Ataxia Associated With a G130V Mutation in the FRDA Gene. Archives of Neurology, 2002, 59, 296.	4.5	17
371	Reduction in endogenous parkin levels renders glial cells sensitive to both caspase-dependent and caspase-independent cell death. European Journal of Neuroscience, 2004, 20, 2038-2048.	2.6	17
372	UCHL-1 gene in multiple system atrophy: A haplotype tagging approach. Movement Disorders, 2005, 20, 1338-1343.	3.9	17
373	Examining the role of common genetic variation in the \hat{I}^3 2 subunit of the GABAA receptor in epilepsy using tagging SNPs. Epilepsy Research, 2006, 70, 229-238.	1.6	17
374	Migraine with aura as the predominant phenotype in a family with a PRRT2 mutation. Journal of Neurology, 2013, 260, 656-660.	3.6	17
375	Advances in the Genetics of Parkinson's Disease: A Guide for the Clinician. Movement Disorders Clinical Practice, 2014, 1, 3-13.	1.5	17
376	Mutations in the gene encoding human persyn are not associated with amyotrophic lateral sclerosis or familial Parkinson's disease. Neuroscience Letters, 1999, 274, 21-24.	2.1	16
377	Mutational analysis of parkin and PINK1 in multiple system atrophy. Neurobiology of Aging, 2011, 32, 548.e5-548.e7.	3.1	16
378	Late-onset Lafora disease with prominent parkinsonism due to a rare mutation in <i>EPM2A</i> Neurology: Genetics, 2016, 2, e101.	1.9	16

#	Article	IF	Citations
379	Analysis of DNM3 and VAMP4 as genetic modifiers of LRRK2 Parkinson's disease. Neurobiology of Aging, 2021, 97, 148.e17-148.e24.	3.1	16
380	Genetic risk factors in parkinson's disease. Annals of Neurology, 1998, 44, S58-S62.	5. 3	15
381	NR4A2 genetic variation in sporadic Parkinson's disease: A genewide approach. Movement Disorders, 2006, 21, 1960-1963.	3.9	15
382	Evidence for pre and postsynaptic nigrostriatal dysfunction in the fragile X tremor–Ataxia syndrome. Movement Disorders, 2009, 24, 1245-1247.	3.9	15
383	Endothelial, Sympathetic, and Cardiac Function in Inherited (6 <i>R</i>)- <scp> </scp> -Erythro-5,6,7,8-Tetrahydro- <scp> </scp> -Biopterin Deficiency. Circulation: Cardiovascular Genetics, 2010, 3, 513-522.	5.1	15
384	Utility of the new Movement Disorder Society clinical diagnostic criteria for Parkinson's disease applied retrospectively in a large cohort study of recent onset cases. Parkinsonism and Related Disorders, 2017, 40, 40-46.	2.2	15
385	Establishing the role of rare coding variants in known Parkinson's disease risk loci. Neurobiology of Aging, 2017, 59, 220.e11-220.e18.	3.1	15
386	LRP10 in α-synucleinopathies. Lancet Neurology, The, 2018, 17, 1032.	10.2	15
387	The genetics of Parkinson's disease. Current Opinion in Neurology, 1999, 12, 427-432.	3.6	15
388	Preliminary investigation of the influence of dopamine regulating genes on social working memory. Social Neuroscience, 2014, 9, 437-451.	1.3	14
389	Polygenic risk of ischemic stroke is associated with cognitive ability. Neurology, 2016, 86, 611-618.	1.1	14
390	L-dopa responsiveness in early Parkinson's disease is associated with the rate of motor progression. Parkinsonism and Related Disorders, 2019, 65, 55-61.	2.2	14
391	<scp>GGC</scp> Repeat Expansion in <scp><i>NOTCH2NLC</i></scp> Is Rare in European Leukoencephalopathy. Annals of Neurology, 2020, 88, 641-642.	5. 3	14
392	No linkage between multiple sclerosis and the T cell receptor \hat{l}_{\pm} chain locus. Journal of the Neurological Sciences, 1994, 124, 32-37.	0.6	13
393	Multiple mitochondrial DNA deletions in monozygotic twins with OPMD. Journal of Neurology, Neurosurgery and Psychiatry, 2008, 79, 68-71.	1.9	13
394	Friedreich's ataxia and other hereditary ataxias in Greece: An 18-year perspective. Journal of the Neurological Sciences, 2014, 336, 87-92.	0.6	13
395	<i><scp>GLS</scp></i> loss of function causes autosomal recessive spastic ataxia and optic atrophy. Annals of Clinical and Translational Neurology, 2018, 5, 216-221.	3.7	13
396	<i>MYORG</i> -related disease is associated with central pontine calcifications and atypical parkinsonism. Neurology: Genetics, 2020, 6, e399.	1.9	13

#	Article	IF	CITATIONS
397	GGC repeat expansion in NOTCH2NLC is rare in European patients with essential tremor. Brain, 2020, 143, e57-e57.	7.6	13
398	Mutation analysis of the sodium/hydrogen exchanger gene (NHE5) in familial paroxysmal kinesigenic dyskinesia. Journal of Neural Transmission, 2002, 109, 1189-1194.	2.8	12
399	An intragenic duplication in guanosine triphosphate cyclohydrolaseâ€1 gene in a dopaâ€responsive dystonia family. Movement Disorders, 2011, 26, 905-909.	3.9	12
400	The frequency of spinocerebellar ataxia type 23 in a UK population. Journal of Neurology, 2013, 260, 856-859.	3.6	12
401	Genetic variation in VAC14 is associated with bacteremia secondary to diverse pathogens in African children. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3601-E3603.	7.1	12
402	<scp>DNA</scp> repair in trinucleotide repeat ataxias. FEBS Journal, 2018, 285, 3669-3682.	4.7	12
403	Using Mendelian randomization to understand and develop treatments for neurodegenerative disease. Brain Communications, 2020, 2, fcaa031.	3.3	12
404	Mitochondrial <scp>D</scp> <scp>NA</scp> Analysis from Exome Sequencing Data Improves Diagnostic Yield in Neurological Diseases. Annals of Neurology, 2021, 89, 1240-1247.	5.3	12
405	Influence of COMT genotype and affective distractors on the processing of self-generated thought. Social Cognitive and Affective Neuroscience, 2015, 10, 777-782.	3.0	11
406	LRP10 in α-synucleinopathies. Lancet Neurology, The, 2018, 17, 1033-1034.	10.2	11
407	The paroxysmal dyskinesias. , 2001, , 125-140.		11
408	Population genetics for target identification. Drug Discovery Today: Technologies, 2004, 1, 69-74.	4.0	10
409	Delineating the phenotype of autosomalâ€recessive HPCA mutations: Not only isolated dystonia!. Movement Disorders, 2019, 34, 589-592.	3.9	10
410	Novel peripheral myelin protein 22 (PMP22) micromutations associated with variable phenotypes in Greek patients with Charcot-Marie-Tooth disease. Brain, 2012, 135, e217-e217.	7.6	9
411	Identification of UBAP1 mutations in juvenile hereditary spastic paraplegia in the 100,000 Genomes Project. European Journal of Human Genetics, 2020, 28, 1763-1768.	2.8	9
412	Expanding the Spectrum of <scp><i>AP5Z1â€</i></scp> Related Hereditary Spastic Paraplegia (<scp>HSPâ€5PG48</scp>): A Multicenter Study on a Rare Disease. Movement Disorders, 2021, 36, 1034-1038.	3.9	9
413	Combining biomarkers for prognostic modelling of Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 707-715.	1.9	9
414	Running a neurogenetic clinic. Journal of Neurology, Neurosurgery and Psychiatry, 2002, 73, 2ii-4.	1.9	8

#	Article	IF	CITATIONS
415	Mutation of the sterol 27-hydroxylase gene (CYP27A1) in a Taiwanese family with cerebrotendinous xanthomatosis. Journal of Neurology, 2002, 249, 1311-1312.	3.6	8
416	Characterisation and Validation of Insertions and Deletions in 173 Patient Exomes. PLoS ONE, 2012, 7, e51292.	2.5	8
417	No pathogenic <i>GNAL</i> mutations in 192 sporadic and familial cases of cervical dystonia. Movement Disorders, 2014, 29, 154-155.	3.9	8
418	Association of genetic loci: Replication or not, that is the question. Neurology, 2005, 64, 1989.	1.1	7
419	Analysis of spinocerebellar ataxias due to expanded triplet repeats in Greek patients with cerebellar ataxia. Journal of the Neurological Sciences, 2012, 318, 178-180.	0.6	7
420	Sequencing analysis of the SCA6 CAG expansion excludes an influence of repeat interruptions on disease onset. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 1226-1227.	1.9	7
421	The influence of microsatellite polymorphisms in sex steroid receptor genes ESR1, ESR2 and AR on sex differences in brain structure. Neurolmage, 2020, 221, 117087.	4.2	7
422	<scp><i>NOTCH2NLC</i></scp> Intermediateâ€Length Repeat Expansion and Parkinson's Disease in Patients of European Descent. Annals of Neurology, 2021, 89, 633-635.	5.3	7
423	Mendelian Randomisation Finds No Causal Association between Urate and Parkinson's Disease Progression. Movement Disorders, 2021, 36, 2182-2187.	3.9	7
424	Spastic paraplegia preceding PSEN1 â€related familial Alzheimer's disease. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2021, 13, e12186.	2.4	7
425	TheADH1C stop mutation in multiple system atrophy patients and healthy probands in the United Kingdom and Germany. Movement Disorders, 2006, 21, 2034-2034.	3.9	6
426	Diagnostic clues and manifesting carriers in fukutin-related protein (FKRP) limb-girdle muscular dystrophy. Journal of the Neurological Sciences, 2015, 348, 266-268.	0.6	6
427	Childhoodâ€Onset Chorea Caused by a Recurrent De Novo <i>DRD2</i> Variant. Movement Disorders, 2021, 36, 1472-1473.	3.9	6
428	A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson's disease. Human Molecular Genetics, 2014, 23, 562-562.	2.9	5
429	Ca2+ is a key factor in α-synuclein-induced neurotoxicity. Development (Cambridge), 2016, 143, e1.1-e1.1.	2.5	5
430	Population genetic approaches to neurological disease: Parkinson's disease as an example. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 1573-1578.	4.0	4
431	Reply: Parkinson's disease in GTP cyclohydrolase 1 mutation carriers. Brain, 2015, 138, e352-e352.	7.6	4
432	Triple trouble: a striking new phenotype or competing genes in a family with hereditary spastic paraplegia. Journal of Neurology, 2016, 263, 1232-1233.	3.6	4

#	Article	IF	Citations
433	Fibrillation and molecular characteristics are coherent with clinical and pathological features of 4-repeat tauopathy caused by MAPT variant G273R. Neurobiology of Disease, 2020, 146, 105079.	4.4	4
434	Mitochondrial disorders in neuro-ophthalmology. Current Opinion in Neurology, 1996, 9, 1-4.	3.6	3
435	Using genome-wide complex trait analysis to quantify 'missing heritability' in Parkinson's disease. Human Molecular Genetics, 2013, 22, 1696-1696.	2.9	3
436	The repeat variant in MSH3 is not a genetic modifier for spinocerebellar ataxia type 3 and Friedreich's ataxia. Brain, 2020, 143, e25-e25.	7.6	3
437	Variant Alzheimer's disease with spastic paraparesis and cotton wool plaques is caused by PSâ€1 mutations that lead to exceptionally high amyloidâ€Î² concentrations. Annals of Neurology, 2000, 48, 806-808.	5. 3	3
438	DYT13, a novel primary torsion dystonia locus, maps to chromosome 1p36.13–36.32 in an Italian family with cranialâ€ervical or upper limb onset. Annals of Neurology, 2001, 49, 362-366.	5.3	3
439	The role of body fat in multiple sclerosis susceptibility and severity: A Mendelian randomisation study. Multiple Sclerosis Journal, 2022, 28, 1673-1684.	3.0	3
440	Assessment of a DJ-1 (PARK7) polymorphism in Finnish PD. Neurology, 2004, 62, 2335-2335.	1.1	2
441	Introduction: genetic variation and human health. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 1539-1541.	4.0	2
442	Mutational analysis of <i><scp>PMP22</scp></i> , <i><scp>EGR2</scp></i> , <i><scp>LITAF</scp></i> and <i><scp>NEFL</scp></i> in Greek Charcotâ€"Marieâ€"Tooth type 1 patients. Clinical Genetics, 2013, 83, 388-391.	2.0	2
443	Hypersomnia with dilated pupils in adenosine monophosphate deaminase (<scp>AMPD</scp>) deficiency. Journal of Sleep Research, 2014, 23, 118-120.	3.2	2
444	Populationâ€based identityâ€byâ€descent mapping combined with exome sequencing to detect rare risk variants for schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2019, 180, 223-231.	1.7	2
445	Reply to: "Dopaâ€Responsive Parkinsonism in a Patient With Homozygous RFC1 Expansions― Movement Disorders, 2020, 35, 1890-1891.	3.9	2
446	The mitochondrial DNA G13513A transition in ND5 is associated with a LHON/MELAS overlap syndrome and may be a frequent cause of MELAS. , 1999, 46, 916.		2
447	Mendelian Randomization Studies: A Path to Better Understand Sex and Gender Differences in Parkinson's Disease?. Movement Disorders, 2021, 36, 2220-2222.	3.9	2
448	Genetic Approaches to Solving Common Diseases. Journal of Neurology, 2004, 251, 1169-1172.	3.6	1
449	The human genome project – what it really means and where next. , 0, , 1-5.		1
450	Genetic linkage analysis of a large family with photoparoxysmal response. Epilepsy Research, 2012, 99, 38-45.	1.6	1

#	Article	IF	Citations
451	Screening of mutations in NOL3 in a myoclonic syndromes series. Journal of Neurology, 2014, 261, 1830-1831.	3.6	1
452	Cerebellar and Midbrain Lysosomal Enzyme Deficiency in Isolated Dystonia. Movement Disorders, 2022, 37, 875-877.	3.9	1
453	Progressive cognitive decline with truncal/limb ataxia and ballistic movements. Movement Disorders, 1997, 12, 1075-1084.	3.9	O
454	Pharmacogenomics and the Treatment of Neurological Disease., 0,, 337-346.		0
455	Commentary on "A genome wide linkage disequilibrium screen in Parkinson's disease― Journal of Neurology, 2005, 252, 603-604.	3.6	0
456	Genetic testing in neurology. Medicine, 2008, 36, 566-568.	0.4	0
457	Genetics of progressive supranuclear palsy. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2008, 89, 475-485.	1.8	0
458	Cerebellar Ataxias and Related Conditions. , 0, , 629-643.		0
459	Ataxia in a young patient. Practical Neurology, 2011, 11, 319-322.	1.1	O
460	Interview: The genetics of Parkinson's disease: piecing together the jigsaw. Neurodegenerative Disease Management, 2011, 1, 105-107.	2,2	0
461	The ataxias. , 0, , 52-63.		O
462	Channelopathies., 0,, 121-135.		0
463	FAMILY HISTORY IN YOUNG ONSET PARKINSON'S DISEASE. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, e2.69-e2.	1.9	O
464	TRACKING PARKINSON'S (THE PROBAND STUDY)–INTERIM REPORT FROM THE FIRST 1000 CASES. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, e2.70-e2.	1.9	0
465	When the penny drops. Practical Neurology, 2014, 14, 409-414.	1.1	0
466	Alpha-Synuclein Modulates [Ca2+]c of Neurons and Astrocytes that Trigger Cell Death. Biophysical Journal, 2014, 106, 529a.	0.5	0
467	Alpha-Synuclein Induces Mitochondrial Dysfunction Leading to a Higher Susceptibility of PTP Opening. Biophysical Journal, 2014, 106, 590a.	0.5	O
468	B48â€DNA repair pathways as a common genetic mechanism modulating the age at onset in polyglutamine diseases. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A26.1-A26.	1.9	O

#	Article	IF	CITATIONS
469	EFFECTS OF VASCULAR COMORBIDITY IN PARKINSON'S DISEASE. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, e1.13-e1.	1.9	O
470	Genetics of the overlap between epilepsy and movement disorders., 2001,, 451-464.		0
471	Mutations in Nuclear Genes That Affect Mitochondrial Function in Parkinson's Disease. , 2012, , 43-61.		0
472	Clinical and genetic analysis of spinocerebellar ataxia type 11. Cerebellum, 2008, 7, 1-6.	2.5	0