
MarÃ-a A Llamas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6940610/publications.pdf Version: 2024-02-01

Μαρδά Διιαμάς

#	Article	IF	CITATIONS
1	The <i>Pseudomonas putida</i> T6SS is a plant warden against phytopathogens. ISME Journal, 2017, 11, 972-987.	9.8	232
2	Type VI secretion systems in plantâ€associated bacteria. Environmental Microbiology, 2018, 20, 1-15.	3.8	199
3	The Heterologous Siderophores Ferrioxamine B and Ferrichrome Activate Signaling Pathways in Pseudomonas aeruginosa. Journal of Bacteriology, 2006, 188, 1882-1891.	2.2	145
4	Cell-surface signaling in <i>Pseudomonas</i> : stress responses, iron transport, and pathogenicity. FEMS Microbiology Reviews, 2014, 38, 569-597.	8.6	137
5	Characterization of five novel <i>Pseudomonas aeruginosa</i> cellâ€surface signalling systems. Molecular Microbiology, 2008, 67, 458-472.	2.5	102
6	Mutations in Each of the tol Genes ofPseudomonas putida Reveal that They Are Critical for Maintenance of Outer Membrane Stability. Journal of Bacteriology, 2000, 182, 4764-4772.	2.2	98
7	Analysis of the pathogenic potential of nosocomial Pseudomonas putida strains. Frontiers in Microbiology, 2015, 6, 871.	3.5	78
8	A Novel Extracytoplasmic Function (ECF) Sigma Factor Regulates Virulence in Pseudomonas aeruginosa. PLoS Pathogens, 2009, 5, e1000572.	4.7	77
9	Antibiotic adjuvants: identification and clinical use. Microbial Biotechnology, 2013, 6, 445-449.	4.2	76
10	Role of Pseudomonas putida tol-oprL Gene Products in Uptake of Solutes through the Cytoplasmic Membrane. Journal of Bacteriology, 2003, 185, 4707-4716.	2.2	63
11	Promising biotechnological applications of antibiofilm exopolysaccharides. Microbial Biotechnology, 2012, 5, 670-673.	4.2	56
12	Characterization of the integrated filamentous phage Pf5 and its involvement in small-colony formation. Microbiology (United Kingdom), 2007, 153, 1790-1798.	1.8	54
13	<i>Pseudomonas aeruginosa</i> possesses three distinct systems for sensing and using the host molecule haem. Environmental Microbiology, 2019, 21, 4629-4647.	3.8	42
14	Diversity of extracytoplasmic function sigma (σ ^{ECF}) factorâ€dependent signaling in <i>Pseudomonas</i> . Molecular Microbiology, 2019, 112, 356-373.	2.5	34
15	Phosphate starvation relayed by PhoB activates the expression of the Pseudomonas aeruginosa σvrel ECF factor and its target genes. Microbiology (United Kingdom), 2013, 159, 1315-1327.	1.8	33
16	The Prc and <scp>RseP</scp> proteases control bacterial cellâ€surface signalling activity. Environmental Microbiology, 2014, 16, 2433-2443.	3.8	32
17	Transcriptional Organization of the Pseudomonas putida tol-oprL Genes. Journal of Bacteriology, 2003, 185, 184-195.	2.2	30
18	The interaction of coenzyme Q with phosphatidylethanolamine membranes. FEBS Journal, 2001, 259, 739-746.	0.2	28

MarÃa A Llamas

#	Article	IF	CITATIONS
19	Processing of cellâ€surface signalling antiâ€sigma factors prior to signal recognition is a conserved autoproteolytic mechanism that produces two functional domains. Environmental Microbiology, 2015, 17, 3263-3277.	3.8	26
20	Self-cleavage of the Pseudomonas aeruginosa Cell-surface Signaling Anti-sigma Factor FoxR Occurs through an N-O Acyl Rearrangement. Journal of Biological Chemistry, 2015, 290, 12237-12246.	3.4	24
21	The Activity of the Pseudomonas aeruginosa Virulence Regulator σVreI Is Modulated by the Anti-σ Factor VreR and the Transcription Factor PhoB. Frontiers in Microbiology, 2016, 7, 1159.	3.5	20
22	Role of Regulated Proteolysis in the Communication of Bacteria With the Environment. Frontiers in Molecular Biosciences, 2020, 7, 586497.	3.5	13
23	The extracytoplasmic function sigma factor ÏfVrel is active during infection and contributes to phosphate starvation-induced virulence of Pseudomonas aeruginosa. Scientific Reports, 2020, 10, 3139.	3.3	13
24	A WbpL mutant of Pseudomonas putida DOT-T1E strain, which lacks the O-antigenic side chain of lipopolysaccharides, is tolerant to organic solvent shocks. Extremophiles, 2001, 5, 93-99.	2.3	11
25	Iron Gate: the Translocation System. Journal of Bacteriology, 2006, 188, 3172-3174.	2.2	11
26	Assessing Pseudomonas Virulence with Nonmammalian Host: Zebrafish. Methods in Molecular Biology, 2014, 1149, 709-721.	0.9	11
27	New Insights into the Regulation of Cell-Surface Signaling Activity Acquired from a Mutagenesis Screen of the Pseudomonas putida IutY Sigma/Anti-Sigma Factor. Frontiers in Microbiology, 2017, 8, 747.	3.5	11
28	Rhizosphere selection of <i>Pseudomonas putida</i> KT2440 variants with increased fitness associated to changes in gene expression. Environmental Microbiology Reports, 2016, 8, 842-850.	2.4	6
29	Cell-Surface Signalling in Pseudomonas. , 2010, , 59-95.		5
30	The Tol-OprL System of Pseudomonas. , 2004, , 603-633.		0

The Tol-OprL System of Pseudomonas. , 2004, , 603-633. 30

3