Petros Ligoxygakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6940586/publications.pdf

Version: 2024-02-01

46 2,983 25 43 papers citations h-index g-index

51 51 51 3585
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Bacterial recognition by PGRP-SA and downstream signalling by Toll/DIF sustain commensal gut bacteria in Drosophila. PLoS Genetics, 2022, 18, e1009992.	3.5	7
2	A genetic screen in Drosophila reveals the role of fucosylation in host susceptibility to Candida infection. DMM Disease Models and Mechanisms, 2022, , .	2.4	2
3	The Phlebotomus papatasi systemic transcriptional response to trypanosomatid-contaminated blood does not differ from the non-infected blood meal. Parasites and Vectors, 2021, 14, 15.	2.5	7
4	HYD3, a conidial hydrophobin of the fungal entomopathogen Metarhizium acridum induces the immunity of its specialist host locust. International Journal of Biological Macromolecules, 2020, 165, 1303-1311.	7.5	8
5	Beyond Host Defense: Deregulation of Drosophila Immunity and Age-Dependent Neurodegeneration. Frontiers in Immunology, 2020, $11,1574.$	4.8	9
6	Tools for the Genetic Manipulation of <i>Herpetomonas muscarum</i> . G3: Genes, Genomes, Genetics, 2020, 10, 1613-1616.	1.8	1
7	From pathogen to a commensal: modification of the <i>Microbacterium nematophilum-C. elegans </i> interaction during chronic infection by the absence of host insulin signalling. Biology Open, 2020, 9, .	1.2	2
8	Transcriptional and genomic parallels between the monoxenous parasite Herpetomonas muscarum and Leishmania. PLoS Genetics, 2019, 15, e1008452.	3.5	12
9	Accessibility to Peptidoglycan Is Important for the Recognition of Gram-Positive Bacteria in Drosophila. Cell Reports, 2019, 27, 2480-2492.e6.	6.4	32
10	Intestinal NF-κB and STAT signalling is important for uptake and clearance in a Drosophila-Herpetomonas interaction model. PLoS Genetics, 2019, 15, e1007931.	3.5	15
11	Convergence of longevity and immunity: lessons from animal models. Biogerontology, 2019, 20, 271-278.	3.9	10
12	Title is missing!. , 2019, 15, e1008452.		O
13	Title is missing!. , 2019, 15, e1008452.		0
14	Title is missing!. , 2019, 15, e1008452.		O
15	A Host-Pathogen Interaction Screen Identifies <i>ada2</i> as a Mediator of <i>Candida glabrata</i> Defenses Against Reactive Oxygen Species. G3: Genes, Genomes, Genetics, 2018, 8, 1637-1647.	1.8	12
16	Functional analysis of the C. elegans cyld-1 gene reveals extensive similarity with its human homolog. PLoS ONE, 2018, 13, e0191864.	2.5	6
17	Interaction Between Familial Transmission and a Constitutively Active Immune System Shapes Gut Microbiota in Drosophila melanogaster. Genetics, 2017, 206, 889-904.	2.9	30
18	NF-κB Immunity in the Brain Determines Fly Lifespan in Healthy Aging and Age-Related Neurodegeneration. Cell Reports, 2017, 19, 836-848.	6.4	155

#	Article	IF	CITATIONS
19	MicroRNAs That Contribute to Coordinating the Immune Response in (i>Drosophila melanogaster (/i>. Genetics, 2017, 207, 163-178.	2.9	22
20	Immunity: Insect Immune Memory Goes Viral. Current Biology, 2017, 27, R1218-R1220.	3.9	6
21	Exploring interactions between pathogens and the Drosophila gut. Developmental and Comparative Immunology, 2016, 64, 3-10.	2.3	17
22	Staphylococcus aureus Survives with a Minimal Peptidoglycan Synthesis Machine but Sacrifices Virulence and Antibiotic Resistance. PLoS Pathogens, 2015, 11, e1004891.	4.7	82
23	Bacterial autolysins trim cell surface peptidoglycan to prevent detection by the Drosophila innate immune system. ELife, 2014, 3, e02277.	6.0	32
24	Drosophila Responses to Microbial Infection: an Overview., 2014,, 31-44.		0
25	Loss of Trabid, a New Negative Regulator of the Drosophila Immune-Deficiency Pathway at the Level of TAK1, Reduces Life Span. PLoS Genetics, 2014, 10, e1004117.	3.5	58
26	A Spaetzle-like role for nerve growth factor \hat{l}^2 in vertebrate immunity to <i>Staphylococcus aureus</i> Science, 2014, 346, 641-646.	12.6	68
27	Drosophila as a model to study the role of blood cells in inflammation, innate immunity and cancer. Frontiers in Cellular and Infection Microbiology, 2014, 3, 113.	3.9	76
28	Genetics of Immune Recognition and Response in Drosophila host defense. Advances in Genetics, 2013, 83, 71-97.	1.8	20
29	<i>Drosophila</i> as a model system to unravel the layers of innate immunity to infection. Open Biology, 2012, 2, 120075.	3.6	162
30	Wild-type <i>Drosophila melanogaster</i> as an alternative model system for investigating the pathogenicity of <i>Candida albicans</i> DMM Disease Models and Mechanisms, 2011, 4, 504-514.	2.4	45
31	Pathogen and host factors are needed to provoke a systemic host response to gastrointestinal infection of <i>Drosophila </i> larvae by <i>Candida albicans </i> . DMM Disease Models and Mechanisms, 2011, 4, 515-525.	2.4	60
32	Wall Teichoic Acids of Staphylococcus aureus Limit Recognition by the Drosophila Peptidoglycan Recognition Protein-SA to Promote Pathogenicity. PLoS Pathogens, 2011, 7, e1002421.	4.7	46
33	Toll-dependent antimicrobial responses in <i>Drosophila</i> larval fat body require Spal^tzle secreted by haemocytes. Journal of Cell Science, 2009, 122, 4505-4515.	2.0	127
34	Short-Term Starvation of Immune Deficient Drosophila Improves Survival to Gram-Negative Bacterial Infections. PLoS ONE, 2009, 4, e4490.	2.5	36
35	Peptidoglycan recognition protein-SD provides versatility of receptor formation in <i>Drosophila</i> immunity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11881-11886.	7.1	35
36	A Drosophila ortholog of the human cylindromatosis tumor suppressor gene regulates triglyceride content and antibacterial defense. Development (Cambridge), 2007, 134, 2605-2614.	2.5	57

#	Article	IF	CITATION
37	Evolutionary Dynamics of Immune-Related Genes and Pathways in Disease-Vector Mosquitoes. Science, 2007, 316, 1738-1743.	12.6	550
38	Pathogen recognition and signalling in the Drosophila innate immune response. Immunobiology, 2006, 211, 251-261.	1.9	82
39	Sensing of Gram-positive bacteria in Drosophila: GNBP1 is needed to process and present peptidoglycan to PGRP-SA. EMBO Journal, 2006, 25, 5005-5014.	7.8	88
40	Prophenoloxidase activation is not required for survival to microbial infections in <i>Drosophila</i> . EMBO Reports, 2006, 7, 231-235.	4.5	131
41	Requirements of peptidoglycan structure that allow detection by the <i>Drosophila</i> Toll pathway. EMBO Reports, 2005, 6, 327-333.	4.5	99
42	Antimicrobial defences in Drosophila: the story so far. Molecular Immunology, 2004, 40, 887-896.	2.2	55
43	A Serpin Regulates Dorsal-Ventral Axis Formation in the Drosophila Embryo. Current Biology, 2003, 13, 2097-2102.	3.9	90
44	Activation of <i>Drosophila</i> Toll During Fungal Infection by a Blood Serine Protease. Science, 2002, 297, 114-116.	12.6	317
45	Critical evaluation of the role of the Tollâ€like receptor 18â€Wheeler in the host defense ofDrosophila. EMBO Reports, 2002, 3, 666-673.	4.5	67
46	A serpin mutant links Toll activation to melanization in the host defence of Drosophila. EMBO Journal, 2002, 21, 6330-6337.	7.8	244