
Wojceich W Grabowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6939363/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Breaking the Cloud Parameterization Deadlock. Bulletin of the American Meteorological Society, 2003, 84, 1547-1564.	3.3	622
2	Coupling Cloud Processes with the Large-Scale Dynamics Using the Cloud-Resolving Convection Parameterization (CRCP). Journals of the Atmospheric Sciences, 2001, 58, 978-997.	1.7	393
3	Growth of Cloud Droplets in a Turbulent Environment. Annual Review of Fluid Mechanics, 2013, 45, 293-324.	25.0	333
4	The multidimensional positive definite advection transport algorithm: nonoscillatory option. Journal of Computational Physics, 1990, 86, 355-375.	3.8	329
5	CRCP: a Cloud Resolving Convection Parameterization for modeling the tropical convecting atmosphere. Physica D: Nonlinear Phenomena, 1999, 133, 171-178.	2.8	243
6	Cloud-Resolving Modeling of Tropical Cloud Systems during Phase III of GATE. Part I: Two-Dimensional Experiments. Journals of the Atmospheric Sciences, 1996, 53, 3684-3709.	1.7	219
7	Droplet growth in warm turbulent clouds. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 1401-1429.	2.7	204
8	Cloud-Resolving Modeling of Cloud Systems during Phase III of GATE. Part II: Effects of Resolution and the Third Spatial Dimension. Journals of the Atmospheric Sciences, 1998, 55, 3264-3282.	1.7	189
9	Toward Cloud Resolving Modeling of Large-Scale Tropical Circulations: A Simple Cloud Microphysics Parameterization. Journals of the Atmospheric Sciences, 1998, 55, 3283-3298.	1.7	183
10	Comparison of Bulk and Bin Warm-Rain Microphysics Models Using a Kinematic Framework. Journals of the Atmospheric Sciences, 2007, 64, 2839-2861.	1.7	174
11	Modeling Supersaturation and Subgrid-Scale Mixing with Two-Moment Bulk Warm Microphysics. Journals of the Atmospheric Sciences, 2008, 65, 792-812.	1.7	159
12	Confronting the Challenge of Modeling Cloud and Precipitation Microphysics. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001689.	3.8	154
13	MJO-like Coherent Structures: Sensitivity Simulations Using the Cloud-Resolving Convection Parameterization (CRCP). Journals of the Atmospheric Sciences, 2003, 60, 847-864.	1.7	141
14	A Novel Approach for Representing Ice Microphysics in Models: Description and Tests Using a Kinematic Framework. Journals of the Atmospheric Sciences, 2008, 65, 1528-1548.	1.7	139
15	Large-scale organization of tropical convection in two-dimensional explicit numerical simulations. Quarterly Journal of the Royal Meteorological Society, 2001, 127, 445-468.	2.7	137
16	Long-Term Behavior of Cloud Systems in TOGA COARE and Their Interactions with Radiative and Surface Processes. Part I: Two-Dimensional Modeling Study. Journals of the Atmospheric Sciences, 1998, 55, 2693-2714.	1.7	130
17	Influence of the Subcloud Layer on the Development of a Deep Convective Ensemble. Journals of the Atmospheric Sciences, 2012, 69, 2682-2698.	1.7	127
18	Cloud–Environment Interface Instability: Rising Thermal Calculations in Two Spatial Dimensions. Journals of the Atmospheric Sciences, 1991, 48, 527-546.	1.7	109

#	Article	IF	CITATIONS
19	Microscopic Approach to Cloud Droplet Growth by Condensation. Part II: Turbulence, Clustering, and Condensational Growth. Journals of the Atmospheric Sciences, 2002, 59, 3421-3435.	1.7	109
20	Theoretical Formulation of Collision Rate and Collision Efficiency of Hydrodynamically Interacting Cloud Droplets in Turbulent Atmosphere. Journals of the Atmospheric Sciences, 2005, 62, 2433-2450.	1.7	103
21	Modeling of Cloud Microphysics: Can We Do Better?. Bulletin of the American Meteorological Society, 2019, 100, 655-672.	3.3	98
22	Indirect Impact of Atmospheric Aerosols in Idealized Simulations of Convective–Radiative Quasi Equilibrium. Journal of Climate, 2006, 19, 4664-4682.	3.2	96
23	An Improved Framework for Superparameterization. Journals of the Atmospheric Sciences, 2004, 61, 1940-1952.	1.7	93
24	The diurnal cycle of rainfall over New Guinea in convection-permitting WRF simulations. Atmospheric Chemistry and Physics, 2016, 16, 161-175.	4.9	90
25	A Multiscale Anelastic Model for Meteorological Research. Monthly Weather Review, 2002, 130, 939-956.	1.4	89
26	Cloud-Environment Interface Instability: Part II: Extension to Three Spatial Dimensions. Journals of the Atmospheric Sciences, 1993, 50, 555-573.	1.7	86
27	Long-Term Behavior of Cloud Systems in TOGA COARE and Their Interactions with Radiative and Surface Processes. Part II: Effects of Ice Microphysics on Cloud–Radiation Interaction. Journals of the Atmospheric Sciences, 1999, 56, 3177-3195.	1.7	85
28	Growth of Cloud Droplets by Turbulent Collision–Coalescence. Journals of the Atmospheric Sciences, 2008, 65, 331-356.	1.7	78
29	Cloud-system resolving model simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment. Atmospheric Chemistry and Physics, 2011, 11, 10503-10523.	4.9	74
30	Broadening of Cloud Droplet Spectra through Eddy Hopping: Turbulent Adiabatic Parcel Simulations. Journals of the Atmospheric Sciences, 2017, 74, 1485-1493.	1.7	73
31	Numerical Simulation of Cloud–Clear Air Interfacial Mixing: Homogeneous versus Inhomogeneous Mixing. Journals of the Atmospheric Sciences, 2009, 66, 2493-2500.	1.7	72
32	Microscopic Approach to Cloud Droplet Growth by Condensation. Part I: Model Description and Results without Turbulence. Journals of the Atmospheric Sciences, 2001, 58, 1945-1964.	1.7	69
33	Numerical Simulation of Cloud–Clear Air Interfacial Mixing. Journals of the Atmospheric Sciences, 2004, 61, 1726-1739.	1.7	68
34	Two-Time-Level Semi-Lagrangian Modeling of Precipitating Clouds. Monthly Weather Review, 1996, 124, 487-497.	1.4	68
35	Cumulus Entrainment and Cloud Droplet Spectra: A Numerical Model within a Two-Dimensional Dynamical Framework. Journals of the Atmospheric Sciences, 1993, 50, 120-136.	1.7	66
36	Cloud Resolving Modeling of Tropical Circulations Driven by Large-Scale SST Gradients. Journals of the Atmospheric Sciences, 2000, 57, 2022-2040.	1.7	66

WOJCEICH W GRABOWSKI

#	Article	IF	CITATIONS
37	Numerical Simulation of Cloud–Clear Air Interfacial Mixing: Effects on Cloud Microphysics. Journals of the Atmospheric Sciences, 2006, 63, 3204-3225.	1.7	65
38	Cloudâ€aerosol interactions for boundary layer stratocumulus in the Lagrangian Cloud Model. Journal of Geophysical Research, 2010, 115, .	3.3	65
39	Monotone Finite-Difference Approximations to the Advection-Condensation Problem. Monthly Weather Review, 1990, 118, 2082-2098.	1.4	63
40	Cloud Resolving Modeling of Tropical Cloud Systems during Phase III of GATE. Part III: Effects of Cloud Microphysics. Journals of the Atmospheric Sciences, 1999, 56, 2384-2402.	1.7	63
41	Comments on "Preferential Concentration of Cloud Droplets by Turbulence:Effects on the Early Evolution of Cumulus Cloud Droplet Spectraâ€: Journals of the Atmospheric Sciences, 1999, 56, 1433-1436.	1.7	60
42	A hybrid approach for simulating turbulent collisions of hydrodynamically-interacting particles. Journal of Computational Physics, 2007, 225, 51-73.	3.8	59
43	Untangling Microphysical Impacts on Deep Convection Applying a Novel Modeling Methodology. Journals of the Atmospheric Sciences, 2015, 72, 2446-2464.	1.7	59
44	Cumulus entrainment, fine-scale mixing, and buoyancy reversal. Quarterly Journal of the Royal Meteorological Society, 1993, 119, 935-956.	2.7	57
45	Untangling Microphysical Impacts on Deep Convection Applying a Novel Modeling Methodology. Part II: Double-Moment Microphysics. Journals of the Atmospheric Sciences, 2016, 73, 3749-3770.	1.7	55
46	Idealized Simulations of a Squall Line from the MC3E Field Campaign Applying Three Bin Microphysics Schemes: Dynamic and Thermodynamic Structure. Monthly Weather Review, 2017, 145, 4789-4812.	1.4	55
47	The role of air turbulence in warm rain initiation. Atmospheric Science Letters, 2009, 10, 1-8.	1.9	54
48	Droplet Activation and Mixing in Large-Eddy Simulation of a Shallow Cumulus Field. Journals of the Atmospheric Sciences, 2012, 69, 444-462.	1.7	50
49	Broadening of Cloud Droplet Spectra through Eddy Hopping: Turbulent Entraining Parcel Simulations. Journals of the Atmospheric Sciences, 2018, 75, 3365-3379.	1.7	49
50	Extracting Microphysical Impacts in Large-Eddy Simulations of Shallow Convection. Journals of the Atmospheric Sciences, 2014, 71, 4493-4499.	1.7	47
51	A parameterization of cloud microphysics for long-term cloud-resolving modeling of tropical convection. Atmospheric Research, 1999, 52, 17-41.	4.1	45
52	Representation of Turbulent Mixing and Buoyancy Reversal in Bulk Cloud Models. Journals of the Atmospheric Sciences, 2007, 64, 3666-3680.	1.7	45
53	Impact of Cloud Microphysics on Convective–Radiative Quasi Equilibrium Revealed by Cloud-Resolving Convection Parameterization. Journal of Climate, 2003, 16, 3463-3475.	3.2	44
54	Diffusional and accretional growth of water drops in a rising adiabatic parcel: effects of the turbulent collision kernel. Atmospheric Chemistry and Physics, 2009, 9, 2335-2353.	4.9	44

WOJCEICH W GRABOWSKI

#	Article	IF	CITATIONS
55	Anelastic and Compressible Simulation of Moist Deep Convection. Journals of the Atmospheric Sciences, 2014, 71, 3767-3787.	1.7	42
56	Long-term behaviour of precipitating tropical cloud systems: A numerical study. Quarterly Journal of the Royal Meteorological Society, 1996, 122, 1019-1042.	2.7	41
57	Cloud Microphysics and the Tropical Climate: Cloud-Resolving Model Perspective. Journal of Climate, 2000, 13, 2306-2322.	3.2	40
58	Effects of stochastic coalescence and air turbulence on the size distribution of cloud droplets. Atmospheric Research, 2006, 82, 416-432.	4.1	40
59	Toward the Mitigation of Spurious Cloud-Edge Supersaturation in Cloud Models. Monthly Weather Review, 2008, 136, 1224-1234.	1.4	40
60	Impact of Explicit Atmosphere–Ocean Coupling on MJO-Like Coherent Structures in Idealized Aquaplanet Simulations. Journals of the Atmospheric Sciences, 2006, 63, 2289-2306.	1.7	38
61	A numerical investigation of entrainment and transport within a stratocumulusâ€topped boundary layer. Quarterly Journal of the Royal Meteorological Society, 2009, 135, 77-92.	2.7	38
62	Numerical Experiments on the Dynamics of the Cloud–Environment Interface: Small Cumulus in a Shear-Free Environment. Journals of the Atmospheric Sciences, 1989, 46, 3513-3541.	1.7	37
63	Droplet growth in a bin warm-rain scheme with Twomey CCN activation. Atmospheric Research, 2011, 99, 290-301.	4.1	37
64	Simple two-dimensional kinematic framework designed to test warm rain microphysical models. Atmospheric Research, 1998, 45, 299-326.	4.1	36
65	Turbulent collision-coalescence in maritime shallow convection. Atmospheric Chemistry and Physics, 2013, 13, 8471-8487.	4.9	36
66	Observations of monsoon convective cloud microphysics over India and role of entrainmentâ€mixing. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9767-9788.	3.3	36
67	Modeling Condensation in Deep Convection. Journals of the Atmospheric Sciences, 2017, 74, 2247-2267.	1.7	36
68	Homogeneity of the Subgrid-Scale Turbulent Mixing in Large-Eddy Simulation of Shallow Convection. Journals of the Atmospheric Sciences, 2013, 70, 2751-2767.	1.7	35
69	Shallow-to-Deep Transition of Continental Moist Convection: Cold Pools, Surface Fluxes, and Mesoscale Organization. Journals of the Atmospheric Sciences, 2018, 75, 4071-4090.	1.7	35
70	Lagrangian condensation microphysics with Twomey CCN activation. Geoscientific Model Development, 2018, 11, 103-120.	3.6	35
71	Improved Formulations of the Superposition Method. Journals of the Atmospheric Sciences, 2005, 62, 1255-1266.	1.7	34
72	Cloudâ€edge mixing: Direct numerical simulation and observations in <scp>I</scp> ndian <scp>M</scp> onsoon clouds. Journal of Advances in Modeling Earth Systems, 2017, 9, 332-353.	3.8	34

#	Article	IF	CITATIONS
73	New Efficient Sparse Space–Time Algorithms for Superparameterization on Mesoscales. Monthly Weather Review, 2009, 137, 4307-4324.	1.4	33
74	libcloudph++ 1.0: a single-moment bulk, double-moment bulk, and particle-based warm-rain microphysics library in C++. Geoscientific Model Development, 2015, 8, 1677-1707.	3.6	33
75	Indirect Impact of Atmospheric Aerosols in Idealized Simulations of Convective–Radiative Quasi Equilibrium. Part II: Double-Moment Microphysics. Journal of Climate, 2011, 24, 1897-1912.	3.2	32
76	Modeling Condensation in Shallow Nonprecipitating Convection. Journals of the Atmospheric Sciences, 2015, 72, 4661-4679.	1.7	32
77	Cloud-Environment Interface Instability. Part III: Direct Influence of Environmental Shear. Journals of the Atmospheric Sciences, 1993, 50, 3821-3828.	1.7	31
78	Explicit and Parameterized Realizations of Convective Cloud Systems in TOGA COARE. Monthly Weather Review, 2001, 129, 1689-1703.	1.4	29
79	An Improved Representation of Rimed Snow and Conversion to Graupel in a Multicomponent Bin Microphysics Scheme. Journals of the Atmospheric Sciences, 2010, 67, 1337-1360.	1.7	29
80	Comments on "Droplets to Drops by Turbulent Coagulation― Journals of the Atmospheric Sciences, 2006, 63, 2397-2401.	1.7	28
81	Do Ultrafine Cloud Condensation Nuclei Invigorate Deep Convection?. Journals of the Atmospheric Sciences, 2020, 77, 2567-2583.	1.7	28
82	Modeling of Subgrid-Scale Mixing in Large-Eddy Simulation of Shallow Convection. Journals of the Atmospheric Sciences, 2009, 66, 2125-2133.	1.7	25
83	Hierarchical modelling of tropical convective systems using explicit and parametrized approaches. Quarterly Journal of the Royal Meteorological Society, 2001, 127, 493-515.	2.7	24
84	Response of Tropical Deep Convection to Localized Heating Perturbations: Implications for Aerosol-Induced Convective Invigoration. Journals of the Atmospheric Sciences, 2013, 70, 3533-3555.	1.7	24
85	Anelastic and Compressible Simulation of Moist Dynamics at Planetary Scales. Journals of the Atmospheric Sciences, 2015, 72, 3975-3995.	1.7	24
86	Resolution and domainâ€size sensitivity in implicit largeâ€eddy simulation of the stratocumulusâ€ŧopped boundary layer. Journal of Advances in Modeling Earth Systems, 2016, 8, 885-903.	3.8	24
87	Can the Impact of Aerosols on Deep Convection be Isolated from Meteorological Effects in Atmospheric Observations?. Journals of the Atmospheric Sciences, 2018, 75, 3347-3363.	1.7	24
88	Laboratory and modeling studies of cloud–clear air interfacial mixing: anisotropy of small-scale turbulence due to evaporative cooling. New Journal of Physics, 2008, 10, 075020.	2.9	23
89	WRF Grayâ€Zone Simulations of Precipitation Over the Middleâ€East and the UAE: Impacts of Physical Parameterizations and Resolution. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034648.	3.3	23
90	Characteristics of large-scale orographic precipitation: Evaluation of linear model in idealized problems. Journal of Hydrology, 2007, 340, 78-90.	5.4	22

#	Article	IF	CITATIONS
91	A bin integral method for solving the kinetic collection equation. Journal of Computational Physics, 2007, 226, 59-88.	3.8	21
92	Optical Properties of Shallow Convective Clouds Diagnosed from a Bulk-Microphysics Large-Eddy Simulation. Journal of Climate, 2008, 21, 1639-1647.	3.2	21
93	Entrainment and mixing in buoyancy-reversing convection with applications to cloud-top entrainment instability. Quarterly Journal of the Royal Meteorological Society, 1995, 121, 231-253.	2.7	19
94	Convective environment in pre-monsoon and monsoon conditions over the Indian subcontinent: the impact of surface forcing. Atmospheric Chemistry and Physics, 2018, 18, 7473-7488.	4.9	19
95	Probability Distributions of Angle of Approach and Relative Velocity for Colliding Droplets in a Turbulent Flow. Journals of the Atmospheric Sciences, 2006, 63, 881-900.	1.7	18
96	A finite-volume module for cloud-resolving simulations of global atmospheric flows. Journal of Computational Physics, 2017, 341, 208-229.	3.8	18
97	Toward Multiscale Simulation of Moist Flows with Soundproof Equations. Journals of the Atmospheric Sciences, 2013, 70, 3995-4011.	1.7	17
98	Reexamination of the State of the Art of Cloud Modeling Shows Real Improvements. Bulletin of the American Meteorological Society, 2013, 94, ES45-ES48.	3.3	17
99	Multiscale Interactions in an Idealized Walker Circulation: Mean Circulation and Intraseasonal Variability. Journals of the Atmospheric Sciences, 2014, 71, 953-971.	1.7	17
100	Mean-State Convective Circulations over Large-Scale Tropical SST Gradients. Journals of the Atmospheric Sciences, 2002, 59, 1578-1592.	1.7	16
101	Comparison of Eulerian Bin and Lagrangian Particle-Based Schemes in Simulations of Pi Chamber Dynamics and Microphysics. Journals of the Atmospheric Sciences, 2019, 77, 1151-1165.	1.7	16
102	Comparison of Eulerian Bin and Lagrangian Particle-Based Microphysics in Simulations of Nonprecipitating Cumulus. Journals of the Atmospheric Sciences, 2020, 77, 3951-3970.	1.7	16
103	Diffusional growth of cloud droplets in homogeneous isotropic turbulence: DNS, scaled-up DNS, and stochastic model. Atmospheric Chemistry and Physics, 2020, 20, 9087-9100.	4.9	16
104	Large-scale organization of moist convection in idealized aquaplanet simulations. International Journal for Numerical Methods in Fluids, 2002, 39, 843-853.	1.6	15
105	A Hybrid Bulk–Bin Approach to Model Warm-Rain Processes. Journals of the Atmospheric Sciences, 2010, 67, 385-399.	1.7	15
106	Comments on "Preliminary Tests of Multiscale Modeling with a Two-Dimensional Framework: Sensitivity to Coupling Methods― Monthly Weather Review, 2006, 134, 2021-2026.	1.4	14
107	Macroscopic impacts of cloud and precipitation processes on maritime shallow convection as simulated by a large eddy simulation model with bin microphysics. Atmospheric Chemistry and Physics, 2015, 15, 913-926.	4.9	14
108	Separating physical impacts from natural variability using piggybacking technique. Advances in Geosciences, 0, 49, 105-111.	12.0	14

#	Article	IF	CITATIONS
109	The impact of atmospheric aerosols on precipitation from deep organized convection: A prescribedâ€flow model study using doubleâ€moment bulk microphysics. Quarterly Journal of the Royal Meteorological Society, 2009, 135, 1906-1913.	2.7	13
110	Activation of cloud droplets in bin-microphysics simulation of shallow convection. Acta Geophysica, 2011, 59, 1168-1183.	2.0	13
111	Multiscale Interactions in an Idealized Walker Cell: Simulations with Sparse Space–Time Superparameterization. Monthly Weather Review, 2015, 143, 563-580.	1.4	13
112	Is Shallow Convection Sensitive to Environmental Heterogeneities?. Geophysical Research Letters, 2019, 46, 1785-1793.	4.0	13
113	On the influence of small-scale topography on precipitation. Quarterly Journal of the Royal Meteorological Society, 1989, 115, 633-650.	2.7	12
114	Anisotropy of Observed and Simulated Turbulence in Marine Stratocumulus. Journal of Advances in Modeling Earth Systems, 2018, 10, 500-515.	3.8	11
115	Upshear and Downshear Evolution of Cloud Structure and Spectral Properties. Journals of the Atmospheric Sciences, 1997, 54, 1203-1217.	1.7	10
116	Quantum chemical study of catalytic isomerization of olefins II. Intramolecular hydrogen shift in the presence of a basic center. Journal of Catalysis, 1977, 49, 363-368.	6.2	9
117	Separating Dynamic and Thermodynamic Impacts of Climate Change on Daytime Convective Development over Land. Journal of Climate, 2019, 32, 5213-5234.	3.2	9
118	Walker-Type Mean Circulations and Convectively Coupled Tropical Waves as an Interacting System. Journals of the Atmospheric Sciences, 2002, 59, 1566-1577.	1.7	8
119	Explicit Convection over the Western Pacific Warm Pool in the Community Atmospheric Model. Journal of Climate, 2005, 18, 1482-1502.	3.2	8
120	Limited-are a modelling of stratocumulus over South-Eastern Pacific. Atmospheric Chemistry and Physics, 2012, 12, 3511-3526.	4.9	8
121	On the bulk parameterization of snow and its application to the quantitative studies of precipitation growth. Pure and Applied Geophysics, 1988, 127, 79-92.	1.9	7
122	Sixth WMO International Cloud Modeling Workshop. Bulletin of the American Meteorological Society, 2006, 87, 639-642.	3.3	7
123	Reply to "Comments on â€~Do Ultrafine Cloud Condensation Nuclei Invigorate Deep Convection?'― Journals of the Atmospheric Sciences, 2021, 78, 341-350.	1.7	7
124	Supersaturation, buoyancy, and deep convection dynamics. Atmospheric Chemistry and Physics, 2021, 21, 13997-14018.	4.9	7
125	Impact of Cloud-Base Turbulence on CCN Activation: Single-Size CCN. Journals of the Atmospheric Sciences, 2022, 79, 551-566.	1.7	7
126	Observations and kinematic modeling of drizzling marine stratocumulus. Atmospheric Research, 2011, 102, 120-135.	4.1	6

#	Article	IF	CITATIONS
127	Macroscopic impacts of cloud and precipitation processes in shallow convection. Acta Geophysica, 2011, 59, 1184-1204.	2.0	5
128	Multiscale Interactions in an Idealized Walker Cell: Analysis with Isentropic Streamfunctions. Journals of the Atmospheric Sciences, 2016, 73, 1187-1203.	1.7	5
129	Cloud droplet diffusional growth in homogeneous isotropic turbulence: bin microphysics versus Lagrangian super-droplet simulations. Atmospheric Chemistry and Physics, 2021, 21, 4059-4077.	4.9	5
130	The Strong Impact of Weak Horizontal Convergence on Continental Shallow Convection. Journals of the Atmospheric Sciences, 2020, 77, 3119-3137.	1.7	5
131	Progress and Challenges in Modeling Dynamics–Microphysics Interactions: From the Pi Chamber to Monsoon Convection. Bulletin of the American Meteorological Society, 2022, 103, E1413-E1420.	3.3	5
132	Modeling microphysical effects of entrainment in clouds observed during EUCAARI-IMPACT field campaign. Atmospheric Chemistry and Physics, 2013, 13, 8489-8503.	4.9	4
133	Influences of Subsidence and Freeâ€Tropospheric Conditions on the Nocturnal Growth of Nonclassical Marine Stratocumulus. Journal of Advances in Modeling Earth Systems, 2018, 10, 2706-2730.	3.8	4
134	Impact of hygroscopic seeding on the initiation of precipitation formation: results of a hybrid bin microphysics parcel model. Atmospheric Chemistry and Physics, 2021, 21, 16143-16159.	4.9	4
135	The FastEddy [®] Residentâ€GPU Accelerated Largeâ€Eddy Simulation Framework: Moist Dynamics Extension, Validation and Sensitivities of Modeling Nonâ€Precipitating Shallow Cumulus Clouds. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	3
136	A model for interaction between methane and silica. Journal of Molecular Catalysis, 1978, 3, 299-303.	1.2	2
137	On the influence of microphysics parametrization on the rainfall rates in numerical models of clouds. Pure and Applied Geophysics, 1985, 123, 941-950.	1.9	2
138	Supersaturation Variability from Scalar Mixing: Evaluation of a New Subgrid-Scale Model Using Direct Numerical Simulations of Turbulent Rayleigh–Bénard Convection. Journals of the Atmospheric Sciences, 2022, 79, 1191-1210.	1.7	2