Richard Dean Wood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6938992/publications.pdf

Version: 2024-02-01

194 papers

21,612 citations

76 h-index 9861

g-index

211 all docs

211 docs citations

times ranked

211

12022 citing authors

#	Article	IF	CITATIONS
1	Probing the structure and function of polymerase \hat{l}_{s} helicase-like domain. DNA Repair, 2022, 116, 103358.	2.8	2
2	Disruption of DNA polymerase ζ engages an innate immune response. Cell Reports, 2021, 34, 108775.	6.4	13
3	Regulating PolÎ, in Breast Cancer. Cancer Research, 2021, 81, 1441-1442.	0.9	2
4	Human DNA polymerase \hat{l}_s harbors DNA end-trimming activity critical for DNA repair. Molecular Cell, 2021, 81, 1534-1547.e4.	9.7	25
5	DNA polymerase zeta contributes to heterochromatin replication to prevent genome instability. EMBO Journal, 2021, 40, e104543.	7.8	12
6	POLÎ,-mediated end joining is restricted by RAD52 and BRCA2 until the onset of mitosis. Nature Cell Biology, 2021, 23, 1095-1104.	10.3	55
7	When DNA Polymerases Multitask: Functions Beyond Nucleotidyl Transfer. Frontiers in Molecular Biosciences, 2021, 8, 815845.	3.5	8
8	Defining the mutation signatures of DNA polymerase \hat{l}_s in cancer genomes. NAR Cancer, 2020, 2, zcaa017.	3.1	33
9	Mechanistic basis for microhomology identification and genome scarring by polymerase theta. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8476-8485.	7.1	96
10	DNA polymerase \hat{l}^1 compensates for Fanconi anemia pathway deficiency by countering DNA replication stress. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33436-33445.	7.1	13
11	DNA polymerase ζ in DNA replication and repair. Nucleic Acids Research, 2019, 47, 8348-8361.	14.5	59
12	Genetic determinants of cellular addiction to DNA polymerase theta. Nature Communications, 2019, 10, 4286.	12.8	106
13	CNDAC-Induced DNA Double-Strand Breaks Cause Aberrant Mitosis Prior to Cell Death. Molecular Cancer Therapeutics, 2019, 18, 2283-2295.	4.1	8
14	Response to "XPA is primarily cytoplasmic but is transported into the nucleus upon UV damage― DNA Repair, 2018, 62, 30-31.	2.8	3
15	<scp>FAM</scp> 35A associates with <scp>REV</scp> 7 and modulates <scp>DNA</scp> Âdamage responses of normal and <scp>BRCA</scp> 1â€defective cells. EMBO Journal, 2018, 37, .	7.8	73
16	Fifty years since DNA repair was linked to cancer. Nature, 2018, 557, 648-649.	27.8	6
17	DNA polymerase ζ deficiency causes impaired wound healing and stress-induced skin pigmentation. Life Science Alliance, 2018, 1, e201800048.	2.8	10
18	Transcriptional consequences of XPA disruption in human cell lines. DNA Repair, 2017, 57, 76-90.	2.8	19

#	Article	IF	Citations
19	Expression and Structural Analyses of Human DNA Polymerase Î, (POLQ). Methods in Enzymology, 2017, 592, 103-121.	1.0	13
20	Analysis of DNA polymerase $\hat{1}\frac{1}{2}$ function in meiotic recombination, immunoglobulin class-switching, and DNA damage tolerance. PLoS Genetics, 2017, 13, e1006818.	3.5	12
21	The Polymerase Activity of Mammalian DNA Pol \hat{I}_{\P} Is Specifically Required for Cell and Embryonic Viability. PLoS Genetics, 2016, 12, e1005759.	3.5	28
22	Histone H3K4 methylation regulates deactivation of the spindle assembly checkpoint through direct binding of Mad2. Genes and Development, 2016, 30, 1187-1197.	5.9	21
23	DNA polymerase Î, (POLQ), double-strand break repair, and cancer. DNA Repair, 2016, 44, 22-32.	2.8	158
24	Essential Roles for Polymerase Î,-Mediated End Joining in the Repair of Chromosome Breaks. Molecular Cell, 2016, 63, 662-673.	9.7	229
25	DNA polymerase ζ limits chromosomal damage and promotes cell survival following aflatoxin exposure. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13774-13779.	7.1	22
26	Conserved Overlapping Gene Arrangement, Restricted Expression, and Biochemical Activities of DNA Polymerase ν (POLN). Journal of Biological Chemistry, 2015, 290, 24278-24293.	3.4	9
27	REV7 is essential for DNA damage tolerance via two REV3L binding sites in mammalian DNA polymerase ζ. Nucleic Acids Research, 2015, 43, 1000-1011.	14.5	55
28	The ERCC1 and ERCC4 (XPF) genes and gene products. Gene, 2015, 569, 153-161.	2.2	109
29	Human DNA polymerase Î, grasps the primer terminus to mediate DNA repair. Nature Structural and Molecular Biology, 2015, 22, 304-311.	8.2	109
30	Increased Susceptibility to Skin Carcinogenesis Associated with a Spontaneous Mouse Mutation in the Palmitoyl Transferase Zdhhc13 Gene. Journal of Investigative Dermatology, 2015, 135, 3133-3143.	0.7	22
31	Managing DNA Strand Breaks in Eukaryotic Cells. , 2014, , 663-710.		0
32	Cell Cycle Checkpoints., 2014,, 779-815.		0
33	Hereditary Diseases That Implicate Defective Responses to DNA Damage. , 2014, , 1001-1047.		0
34	Nucleotide Excision Repair in Eukaryotes., 2014,, 267-315.		0
35	DNA Damage. , 2014, , 9-69.		0
36	Mechanism of Suppression of Chromosomal Instability by DNA Polymerase POLQ. PLoS Genetics, 2014, 10, e1004654.	3.5	214

#	Article	IF	CITATIONS
37	Breakthrough for a DNA break-preventer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2864-2865.	7.1	3
38	The SOS Responses of Prokaryotes to DNA Damage. , 2014, , 463-508.		1
39	DNA polymerase POLQ and cellular defense against DNA damage. DNA Repair, 2013, 12, 1-9.	2.8	89
40	Human DNA helicase HELQ participates in DNA interstrand crosslink tolerance with ATR and RAD51 paralogs. Nature Communications, 2013, 4, 2338.	12.8	66
41	Dual role for mammalian DNA polymerase ζ in maintaining genome stability and proliferative responses. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E687-96.	7.1	41
42	Abstract 5183: Loss of WWOX induces ANGPTL4 and ROS production in breast cells , 2013, , .		3
43	DNA damage tolerance and a web of connections with DNA repair at Yale. Yale Journal of Biology and Medicine, 2013, 86, 507-16.	0.2	1
44	DNA polymerase zeta is required for proliferation of normal mammalian cells. Nucleic Acids Research, 2012, 40, 4473-4482.	14.5	56
45	Replication of the 2,6-Diamino-4-hydroxy- <i>N</i> ⁵ -(methyl)-formamidopyrimidine (MeFapy-dGuo) Adduct by Eukaryotic DNA Polymerases. Chemical Research in Toxicology, 2012, 25, 1652-1661.	3.3	15
46	Lesion Bypass Activity of DNA Polymerase \hat{l}_s (POLQ) Is an Intrinsic Property of the Pol Domain and Depends on Unique Sequence Inserts. Journal of Molecular Biology, 2011, 405, 642-652.	4.2	81
47	DNA polymerases and cancer. Nature Reviews Cancer, 2011, 11, 96-110.	28.4	480
48	Mammalian nucleotide excision repair proteins and interstrand crosslink repair. Environmental and Molecular Mutagenesis, 2010, 51, 520-526.	2.2	102
49	Validation of ERCC1-XPF Immunodetection – Response. Cancer Research, 2010, 70, 3852-3852.	0.9	1
50	Evolutionary conservation of residues in vertebrate DNA polymerase N conferring low fidelity and bypass activity. Nucleic Acids Research, 2010, 38, 3233-3244.	14.5	25
51	<i>DNA polymerase $\langle i \rangle \hat{l}$, up-regulation is associated with poor survival in breast cancer, perturbs DNA replication, and promotes genetic instability. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13390-13395.</i>	7.1	157
52	Loss of DNA Polymerase ζ Enhances Spontaneous Tumorigenesis. Cancer Research, 2010, 70, 2770-2778.	0.9	68
53	Novel Enzymatic Function of DNA Polymerase ν in Translesion DNA Synthesis Past Major Groove DNAâ^'Peptide and DNAâ^'DNA Cross-Links. Chemical Research in Toxicology, 2010, 23, 689-695.	3.3	57
54	Immunodetection of DNA Repair Endonuclease ERCC1-XPF in Human Tissue. Cancer Research, 2009, 69, 6831-6838.	0.9	95

#	Article	IF	CITATIONS
55	Bypass specialists operate together. EMBO Journal, 2009, 28, 313-314.	7.8	13
56	Lack of DNA Polymerase Î, (POLQ) Radiosensitizes Bone Marrow Stromal CellsIn Vitroand Increases Reticulocyte Micronuclei after Total-Body Irradiation. Radiation Research, 2009, 172, 165-174.	1.5	68
57	Elevation of XPA protein level in testis tumor cells without increasing resistance to cisplatin or UV radiation. Molecular Carcinogenesis, 2008, 47, 580-586.	2.7	33
58	DNA polymerase zeta (pol ζ) in higher eukaryotes. Cell Research, 2008, 18, 174-183.	12.0	187
59	DNA polymerase \hat{l}_{s} (POLQ) can extend from mismatches and from bases opposite a (6-4) photoproduct. DNA Repair, 2008, 7, 119-127.	2.8	78
60	Low-fidelity DNA synthesis by human DNA polymerase theta. Nucleic Acids Research, 2008, 36, 3847-3856.	14.5	126
61	ERCC1 and Non–Small-Cell Lung Cancer. New England Journal of Medicine, 2007, 356, 2538-2541.	27.0	83
62	DNA Polymerases \hat{I} and \hat{I} , Function in the Same Genetic Pathway to Generate Mutations at A/T during Somatic Hypermutation of Ig Genes*. Journal of Biological Chemistry, 2007, 282, 17387-17394.	3.4	62
63	New Insights into the Combined Cockayne/Xeroderma Pigmentosum Complex: Human XPG Protein Can Function in Transcription Factor Stability. Molecular Cell, 2007, 26, 162-164.	9.7	17
64	A unique error signature for human DNA polymerase $\hat{l}\sqrt[1]{2}$. DNA Repair, 2007, 6, 213-223.	2.8	44
65	Cells Lacking the PolQ Polymerase Are Moderately Sensitive to Ionizing Radiation and the Oxidant Induced Toxicity of Paraquat and Bleomycin Blood, 2007, 110, 4037-4037.	1.4	3
66	XPA protein as a limiting factor for nucleotide excision repair and UV sensitivity in human cells. DNA Repair, 2006, 5, 641-648.	2.8	79
67	DNA repair: From molecular mechanism to human disease. DNA Repair, 2006, 5, 986-996.	2.8	162
68	Vertebrate POLQ and POL \hat{I}^2 Cooperate in Base Excision Repair of Oxidative DNA Damage. Molecular Cell, 2006, 24, 115-125.	9.7	119
69	Assaying for the Dual Incisions of Nucleotide Excision Repair Using DNA with a Lesion at a Specific Site. Methods in Molecular Biology, 2006, 314, 435-456.	0.9	19
70	Loss of DNA Polymerase ζ Causes Chromosomal Instability in Mammalian Cells. Cancer Research, 2006, 66, 134-142.	0.9	121
71	Human DNA Polymerase N (POLN) Is a Low Fidelity Enzyme Capable of Error-free Bypass of 5S-Thymine Glycol. Journal of Biological Chemistry, 2006, 281, 23445-23455.	3.4	128
72	Repair Synthesis Assay for Nucleotide Excision Repair Activity Using Fractionated Cell Extracts and UV-Damaged Plasmid DNA. Methods in Molecular Biology, 2006, 314, 417-434.	0.9	9

#	Article	IF	Citations
73	DNA polymerases and somatic hypermutation of immunoglobulin genes. EMBO Reports, 2005, 6, 1143-1148.	4.5	64
74	Human DNA repair genes, 2005. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 577, 275-283.	1.0	390
75	DDB1-DDB2 (Xeroderma Pigmentosum Group E) Protein Complex Recognizes a Cyclobutane Pyrimidine Dimer, Mismatches, Apurinic/Apyrimidinic Sites, and Compound Lesions in DNA. Journal of Biological Chemistry, 2005, 280, 39982-39989.	3.4	140
76	Polymorphisms in the human XPD (ERCC2) gene, DNA repair capacity and cancer susceptibility: An appraisal. DNA Repair, 2005, 4, 1068-1074.	2.8	98
77	DNA Repair and Mutagenesis. , 2005, , .		591
78	Definition of a Short Region of XPG Necessary for TFIIH Interaction and Stable Recruitment to Sites of UV Damage. Molecular and Cellular Biology, 2004, 24, 10670-10680.	2.3	62
79	High-efficiency bypass of DNA damage by human DNA polymerase Q. EMBO Journal, 2004, 23, 4484-4494.	7.8	186
80	Reduced levels of XPA, ERCC1 and XPF DNA repair proteins in testis tumor cell lines. International Journal of Cancer, 2004, 110, 352-361.	5.1	183
81	DDB complexities. DNA Repair, 2003, 2, 1065-1069.	2.8	65
82	POLN, a Nuclear PolA Family DNA Polymerase Homologous to the DNA Cross-link Sensitivity Protein Mus308. Journal of Biological Chemistry, 2003, 278, 32014-32019.	3.4	99
83	POLQ (Pol Â), a DNA polymerase and DNA-dependent ATPase in human cells. Nucleic Acids Research, 2003, 31, 6117-6126.	14.5	167
84	A Human DNA Helicase Homologous to the DNA Cross-link Sensitivity Protein Mus308. Journal of Biological Chemistry, 2002, 277, 8716-8723.	3.4	80
85	Human DNA Repair Genes. Science, 2001, 291, 1284-1289.	12.6	1,195
86	Emerging links between hypermutation of antibody genes and DNA polymerases. Nature Reviews Immunology, 2001, 1, 187-192.	22.7	48
87	Oxygen Free Radical Damage to DNA. Journal of Biological Chemistry, 2001, 276, 49283-49288.	3.4	111
88	A thermostable endonuclease III homolog from the archaeon Pyrobaculum aerophilum. Nucleic Acids Research, 2001, 29, 604-613.	14.5	13
89	Strong Functional Interactions of TFIIH with XPC and XPG in Human DNA Nucleotide Excision Repair, without a Preassembled Repairosome. Molecular and Cellular Biology, 2001, 21, 2281-2291.	2.3	168
90	Activity of individual ERCC1 and XPF subunits in DNA nucleotide excision repair. Nucleic Acids Research, 2001, 29, 872-879.	14.5	88

#	Article	IF	Citations
91	DNA Damage Recognition and Nucleotide Excision Repair in Mammalian Cells. Cold Spring Harbor Symposia on Quantitative Biology, 2000, 65, 173-182.	1.1	52
92	RuvAB-mediated branch migration does not involve extensive DNA opening within the RuvB hexamer. Current Biology, 2000, 10, 103-106.	3.9	19
93	Disruption of the developmentally regulated Rev3l gene causes embryonic lethality. Current Biology, 2000, 10, 1217-1220.	3.9	161
94	UV damage causes uncontrolled DNA breakage in cells from patients with combined features of XP-D and Cockayne syndrome. EMBO Journal, 2000, 19, 1157-1166.	7.8	55
95	TFIIH with Inactive XPD Helicase Functions in Transcription Initiation but Is Defective in DNA Repair. Journal of Biological Chemistry, 2000, 275, 4258-4266.	3.4	153
96	Repair of an Interstrand DNA Cross-link Initiated by ERCC1-XPF Repair/Recombination Nuclease. Journal of Biological Chemistry, 2000, 275, 26632-26636.	3.4	257
97	Removal of oxygen free-radical-induced 5',8-purine cyclodeoxynucleosides from DNA by the nucleotide excision-repair pathway in human cells. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3832-3837.	7.1	332
98	Stable binding of human XPC complex to irradiated DNA confers strong discrimination for damaged sites 1 1Edited by M. Yaniv. Journal of Molecular Biology, 2000, 300, 275-290.	4.2	208
99	Damage recognition in nucleotide excision repair of DNA. Gene, 2000, 241, 193-204.	2.2	276
100	Differential expression of DNA polymerase $\tilde{A}\check{Z}\hat{A}\mu$ in resting and activated B lymphocytes is consistent with an in vivo role in replication and not repair. Molecular Immunology, 2000, 37, 125-131.	2.2	11
101	Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK. Genes and Development, 2000, 14, 349-359.	5.9	270
102	Conserved Residues of Human XPG Protein Important for Nuclease Activity and Function in Nucleotide Excision Repair. Journal of Biological Chemistry, 1999, 274, 5637-5648.	3.4	100
103	Variants on a theme. Nature, 1999, 399, 639-640.	27.8	14
104	Defective repair of cisplatin-induced DNA damage caused by reduced XPA protein in testicular germ cell tumours. Current Biology, 1999, 9, 273-278.	3.9	279
105	A relationship between a DNA-repair/recombination nuclease family and archaeal helicases. Trends in Biochemical Sciences, 1999, 24, 95-97.	7.5	40
106	Quality Control by DNA Repair. Science, 1999, 286, 1897-1905.	12.6	1,360
107	Base Excision Repair of Oxidative DNA Damage Activated by XPG Protein. Molecular Cell, 1999, 3, 33-42.	9.7	261
108	Protein complexes in nucleotide excision repair. Mutation Research DNA Repair, 1999, 435, 23-33.	3.7	87

#	Article	IF	CITATIONS
109	DNA damage recognition during nucleotide excision repair in mammalian cells. Biochimie, 1999, 81, 39-44.	2.6	249
110	Dual-Incision Assays for Nucleotide Excision Repair Using DNA with a Lesion at a Specific Site., 1999, 113, 373-392.		53
111	Assay for Nucleotide Excision Repair Protein Activity Using Fractionated Cell Extracts and UV-Damaged Plasmid DNA., 1999, 113, 357-372.		16
112	Assay for Nucleotide Excision Repair Protein Activity Using Fractionated Cell Extracts and UV-Damaged Plasmid DNA., 1999,, 357-372.		5
113	Dual-Incision Assays for Nucleotide Excision Repair Using DNA with a Lesion at a Specific Site. , 1999, , 373-392.		11
114	Resistance of human nucleotide excision repair synthesis in vitro to p21Cdn1. Oncogene, 1998, 17, 2827-2838.	5.9	71
115	No hedging on DNA repair. Trends in Genetics, 1998, 14, 433-434.	6.7	1
116	DNA repair: Knockouts still mutating after first round. Current Biology, 1998, 8, R757-R760.	3.9	18
117	The Evolutionarily Conserved Zinc Finger Motif in the Largest Subunit of Human Replication Protein A Is Required for DNA Replication and Mismatch Repair but Not for Nucleotide Excision Repair. Journal of Biological Chemistry, 1998, 273, 1453-1461.	3.4	130
118	Relationship of the Xeroderma Pigmentosum Group E DNA Repair Defect to the Chromatin and DNA Binding Proteins UV-DDB and Replication Protein A. Molecular and Cellular Biology, 1998, 18, 3182-3190.	2.3	113
119	Differential human nucleotide excision repair of paired and mispaired cisplatin-DNA adducts. Nucleic Acids Research, 1997, 25, 480-491.	14.5	113
120	Nucleotide Excision Repair in Mammalian Cells. Journal of Biological Chemistry, 1997, 272, 23465-23468.	3.4	382
121	A low content of ERCC1 and a 120 kDa protein is a frequent feature of group F xeroderma pigmentosum fibroblast cells. Mutagenesis, 1997, 12, 41-44.	2.6	41
122	Which DNA polymerases are used for DNA-repair in eukaryotes?. Carcinogenesis, 1997, 18, 605-610.	2.8	145
123	DNA excision repair pathways. Current Opinion in Genetics and Development, 1997, 7, 158-169.	3.3	251
124	Initiation and bidirectional propagation of chromatin assembly from a target site for nucleotide excision repair. EMBO Journal, 1997, 16, 6281-6289.	7.8	57
125	Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO Journal, 1997, 16, 6559-6573.	7.8	436
126	Open complex formation around a lesion during nucleotide excision repair provides a structure for cleavage by human XPG protein. EMBO Journal, 1997, 16, 625-638.	7.8	210

#	Article	IF	CITATIONS
127	Xeroderma Pigmentosum Group F Caused by a Defect in a Structure-Specific DNA Repair Endonuclease. Cell, 1996, 86, 811-822.	28.9	492
128	DNA Repair in Eukaryotes. Annual Review of Biochemistry, 1996, 65, 135-167.	11.1	654
129	Reversible Protein Phosphorylation Modulates Nucleotide Excision Repair of Damaged DNA by Human Cell Extracts. Nucleic Acids Research, 1996, 24, 433-440.	14.5	77
130	Analysis of Incision Sites Produced by Human Cell Extracts and Purified Proteins during Nucleotide Excision Repair of a 1,3-Intrastrand d(GpTpG)-Cisplatin Adduct. Journal of Biological Chemistry, 1996, 271, 7177-7186.	3.4	185
131	Hypersensitivity to Cisplatin in Mouse Leukemia L1210/0 Cells: An XPG DNA Repair Defect. , 1996, , 317-326.		0
132	An XPG DNA repair defect causing mutagen hypersensitivity in mouse leukemia L1210 cells. Molecular and Cellular Biology, 1995, 15, 290-297.	2.3	28
133	Role of the Rad1 and Rad10 Proteins in Nucleotide Excision Repair and Recombination. Journal of Biological Chemistry, 1995, 270, 24638-24641.	3.4	123
134	Nucleotide Excision Repair DNA Synthesis by DNA Polymerase .epsilon. in the Presence of PCNA, RFC, and RPA. Biochemistry, 1995, 34, 5011-5017.	2.5	272
135	Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell, 1995, 80, 859-868.	28.9	817
136	Enhancement of Damage-Specific DNA Binding of XPA by Interaction with the ERCC1 DNA Repair Protein. Biochemical and Biophysical Research Communications, 1995, 211, 960-966.	2.1	62
137	Detection of Nucleotide Excision Repair Incisions in Human Fibroblasts by Immunostaining for PCNA. Experimental Cell Research, 1995, 221, 326-332.	2.6	75
138	Detection and Measurement of Nucleotide Excision Repair Synthesis by Mammalian Cell Extracts in Vitro. Methods, 1995, 7, 163-175.	3.8	65
139	Proteins that participate in nucleotide excision repair of DNA in mammalian cells., 1995,, 65-70.		0
140	Analysis of cells harboring a putative DNA repair gene reveals a lack of evidence for a second independent xeroderma pigmentosum group A correcting gene. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1994, 324, 159-164.	1.1	4
141	Mutation and expression of the XPA gene in revertants and hybrids of a xeroderma pigmentosum cell line. Somatic Cell and Molecular Genetics, 1994, 20, 327-337.	0.7	10
142	XPG endonuclease makes the $3\hat{a} \in 2$ incision in human DNA nucleotide excision repair. Nature, 1994, 371, 432-435.	27.8	450
143	Cip1 inhibits DNA replication but not PCNA-dependent nucleotide excision—repair. Current Biology, 1994, 4, 1062-1068.	3.9	150
144	Repair of UV-damaged DNA by mammalian cells and Saccharomyces cerevisiae. Current Opinion in Genetics and Development, 1994, 4, 212-220.	3.3	78

#	Article	lF	Citations
145	Studying Nucleotide Excision Repair of Mammalian DNA in a Cell-Free System. Annals of the New York Academy of Sciences, 1994, 726, 274-280.	3.8	5
146	Xeroderma pigmentosum and nucleotide excision repair of DNA. Trends in Biochemical Sciences, 1994, 19, 83-86.	7. 5	94
147	The Human Gene for Xeroderma Pigmentosum Complementation Group G (XPG) Maps to 13q33 by Fluorescence in Situ Hybridization. Genomics, 1994, 21, 283-285.	2.9	16
148	Nomenclature of human DNA repair genes. Mutation Research DNA Repair, 1994, 315, 41-42.	3.7	35
149	Structural and functional homology between mammalian DNase IV and the 5'-nuclease domain of Escherichia coli DNA polymerase I. Journal of Biological Chemistry, 1994, 269, 28535-8.	3.4	107
150	Identical defects in DNA repair in xeroderma pigmentosum group G and rodent ERCC group 5. Nature, 1993, 363, 185-188.	27.8	134
151	Electron Microscopy of DNA Excision Repair Patches Produced by Human Cell Extracts. Journal of Molecular Biology, 1993, 231, 251-260.	4.2	16
152	Preferential binding of the xeroderma pigmentosum group A complementing protein to damaged DNA. Biochemistry, 1993, 32, 12096-12104.	2.5	301
153	Repair by human cell extracts of single (6-4) and cyclobutane thymine-thymine photoproducts in DNA Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 9823-9827.	7.1	87
154	Nucleotide Excision Repair of DNA by Mammalian Cell Extracts and Purified Proteins. Cold Spring Harbor Symposia on Quantitative Biology, 1993, 58, 625-632.	1.1	16
155	A role for the human single-Stranded DNA binding protein HSSB/RPA in an early stage of nucleotide excision repair. Nucleic Acids Research, 1992, 20, 3873-3880.	14.5	159
156	Repair of damaged DNA by extracts from a xeroderma pigmentosum complementation group A revertant and expression of a protein absent in its parental cell line. Nucleic Acids Research, 1992, 20, 991-995.	14.5	31
157	Proliferating cell nuclear antigen is required for DNA excision repair. Cell, 1992, 69, 367-374.	28.9	810
158	Effect of exogenous DNA fragments on human cell extract-mediated DNA repair synthesis. Mutation Research DNA Repair, 1991, 254, 217-224.	3.7	54
159	Requirement for the replication protein SSB in human DMA excision repair. Nature, 1991, 349, 538-541.	27.8	242
160	Seven genes for three diseases. Nature, 1991, 350, 190-190.	27.8	29
161	DNA excision repair in mammalian cell extracts. BioEssays, 1991, 13, 447-453.	2.5	30
162	Repair of Damaged DNA In Vitro by Extracts from Human Cell Lines. , 1991, , 221-229.		O

#	Article	IF	CITATIONS
163	A gene for tumour prevention. Nature, 1990, 348, 13-14.	27.8	10
164	Influence of RNA synthesis on DNA-repair replication in human cell extracts. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1990, 244, 287-293.	1.1	5
165	Complementation of the xeroderma pigmentosum DNA repair synthesis defect withEscherichia coliUvrABC proteins in a cell-free system. Nucleic Acids Research, 1990, 18, 35-40.	14.5	49
166	Use of in vivo and in vitro assays for the characterization of mammalian excision repair and isolation of repair proteins. Mutation Research DNA Repair, 1990, 236, 223-238.	3.7	38
167	Repair synthesis by human cell extracts in DNA damaged bycis- andtrans-diamminedichloroplatinum(II). Nucleic Acids Research, 1989, 17, 8073-8091.	14.5	114
168	DNA repair replication by soluble extracts from human lymphoid cell lines. Genome, 1989, 31, 601-604.	2.0	10
169	Inhibition of in vitro SV40 DNA replication by ultraviolet light. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1989, 227, 193-197.	1.1	12
170	DNA repair and recombination. Current Opinion in Cell Biology, 1989, 1, 475-480.	5.4	9
171	Repair of pyrimidine dimer ultraviolet light photoproducts by human cell extracts. Biochemistry, 1989, 28, 8287-8292.	2.5	80
172	Parallels Between Nucleotide Excision Repair in Human Cells and E. Coli., 1989,, 483-488.		1
173	Complementation of the xeroderma pigmentosum DNA repair defect in cell-free extracts. Cell, 1988, 53, 97-106.	28.9	463
174	Effect of photoreactivation on mutagenesis of lambda phage by ultraviolet light. Journal of Molecular Biology, 1988, 202, 593-601.	4.2	31
175	Ultraviolet light-induced mutagenesis in the Escherichia coli chromosome. Journal of Molecular Biology, 1987, 193, 637-641.	4.2	29
176	Role of the RecF gene product in UV mutagenesis of lambda phage. Molecular Genetics and Genomics, 1986, 204, 82-84.	2.4	9
177	Molecular aspects of mutagenesis. Mutagenesis, 1986, 1, 399-405.	2.6	13
178	Mechanisms of Mutagenesis of E. Coli by Ultraviolet Light. , 1986, 38, 377-383.		1
179	Pyrimidine dimers are not the principal pre-mutagenic lesions induced in lambda phage DNA by ultraviolet light. Journal of Molecular Biology, 1985, 184, 577-585.	4.2	46
180	Molecular cloning of a human DNA repair gene. Nature, 1984, 310, 425-429.	27.8	307

#	Article	IF	CITATIONS
181	Changes in DNA base sequence induced by targeted mutagenesis of lambda phage by ultraviolet light. Journal of Molecular Biology, 1984, 173, 273-291.	4.2	150
182	Non-targeted mutagenesis of unirradiated lambda phage in Escherichia coli host cells irradiated with ultraviolet light. Journal of Molecular Biology, 1984, 173, 293-305.	4.2	83
183	Radiation-induced Lethality and Mutation in a Repair-deficient CHO Cell Line. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 1983, 43, 207-213.	1.0	10
184	Repair capability and the cellular age response for killing and mutation induction after UV. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1982, 95, 505-514.	1.0	118
185	POSTIRRADIATION PROPERTIES OF A UV-SENSITIVE VARIANT OF CHO. Photochemistry and Photobiology, 1982, 36, 169-174.	2.5	15
186	UV-light-induced mutations in synchronous CHO cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1980, 69, 347-356.	1.0	42
187	DNA Damage Tolerance and Mutagenesis in Eukaryotic Cells. , 0, , 613-661.		0
188	Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA., 0,, 895-918.		O
189	Diseases Associated with Disordered DNA Helicase Function. , 0, , 947-978.		0
190	Mutagenesis and Translesion Synthesis in Prokaryotes. , 0, , 509-568.		0
191	Mismatch Repair. , 0, , 389-447.		0
192	Base Excision Repair., 0,, 169-226.		1
193	Mechanism of Nucleotide Excision Repair in Eukaryotes. , 0, , 317-350.		0
194	Introduction to Mutagenesis. , 0, , 71-106.		0