Richard Dean Wood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6938992/publications.pdf Version: 2024-02-01

	8181	9861
21,612	76	141
citations	h-index	g-index
211	211	12022
docs citations	times ranked	citing authors
	citations 211	21,612 76 citations h-index 211 211

#	Article	IF	CITATIONS
1	Quality Control by DNA Repair. Science, 1999, 286, 1897-1905.	12.6	1,360
2	Human DNA Repair Genes. Science, 2001, 291, 1284-1289.	12.6	1,195
3	Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell, 1995, 80, 859-868.	28.9	817
4	Proliferating cell nuclear antigen is required for DNA excision repair. Cell, 1992, 69, 367-374.	28.9	810
5	DNA Repair in Eukaryotes. Annual Review of Biochemistry, 1996, 65, 135-167.	11.1	654
6	DNA Repair and Mutagenesis. , 2005, , .		591
7	Xeroderma Pigmentosum Group F Caused by a Defect in a Structure-Specific DNA Repair Endonuclease. Cell, 1996, 86, 811-822.	28.9	492
8	DNA polymerases and cancer. Nature Reviews Cancer, 2011, 11, 96-110.	28.4	480
9	Complementation of the xeroderma pigmentosum DNA repair defect in cell-free extracts. Cell, 1988, 53, 97-106.	28.9	463
10	XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature, 1994, 371, 432-435.	27.8	450
11	Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO Journal, 1997, 16, 6559-6573.	7.8	436
12	Human DNA repair genes, 2005. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 577, 275-283.	1.0	390
13	Nucleotide Excision Repair in Mammalian Cells. Journal of Biological Chemistry, 1997, 272, 23465-23468.	3.4	382
14	Removal of oxygen free-radical-induced 5',8-purine cyclodeoxynucleosides from DNA by the nucleotide excision-repair pathway in human cells. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3832-3837.	7.1	332
15	Molecular cloning of a human DNA repair gene. Nature, 1984, 310, 425-429.	27.8	307
16	Preferential binding of the xeroderma pigmentosum group A complementing protein to damaged DNA. Biochemistry, 1993, 32, 12096-12104.	2.5	301
17	Defective repair of cisplatin-induced DNA damage caused by reduced XPA protein in testicular germ cell tumours. Current Biology, 1999, 9, 273-278.	3.9	279
18	Damage recognition in nucleotide excision repair of DNA. Gene, 2000, 241, 193-204.	2.2	276

#	Article	IF	CITATIONS
19	Nucleotide Excision Repair DNA Synthesis by DNA Polymerase .epsilon. in the Presence of PCNA, RFC, and RPA. Biochemistry, 1995, 34, 5011-5017.	2.5	272
20	Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK. Genes and Development, 2000, 14, 349-359.	5.9	270
21	Base Excision Repair of Oxidative DNA Damage Activated by XPG Protein. Molecular Cell, 1999, 3, 33-42.	9.7	261
22	Repair of an Interstrand DNA Cross-link Initiated by ERCC1-XPF Repair/Recombination Nuclease. Journal of Biological Chemistry, 2000, 275, 26632-26636.	3.4	257
23	DNA excision repair pathways. Current Opinion in Genetics and Development, 1997, 7, 158-169.	3.3	251
24	DNA damage recognition during nucleotide excision repair in mammalian cells. Biochimie, 1999, 81, 39-44.	2.6	249
25	Requirement for the replication protein SSB in human DMA excision repair. Nature, 1991, 349, 538-541.	27.8	242
26	Essential Roles for Polymerase Î,-Mediated End Joining in the Repair of Chromosome Breaks. Molecular Cell, 2016, 63, 662-673.	9.7	229
27	Mechanism of Suppression of Chromosomal Instability by DNA Polymerase POLQ. PLoS Genetics, 2014, 10, e1004654.	3.5	214
28	Open complex formation around a lesion during nucleotide excision repair provides a structure for cleavage by human XPG protein. EMBO Journal, 1997, 16, 625-638.	7.8	210
29	Stable binding of human XPC complex to irradiated DNA confers strong discrimination for damaged sites 1 1Edited by M. Yaniv. Journal of Molecular Biology, 2000, 300, 275-290.	4.2	208
30	DNA polymerase zeta (pol ζ) in higher eukaryotes. Cell Research, 2008, 18, 174-183.	12.0	187
31	High-efficiency bypass of DNA damage by human DNA polymerase Q. EMBO Journal, 2004, 23, 4484-4494.	7.8	186
32	Analysis of Incision Sites Produced by Human Cell Extracts and Purified Proteins during Nucleotide Excision Repair of a 1,3-Intrastrand d(GpTpG)-Cisplatin Adduct. Journal of Biological Chemistry, 1996, 271, 7177-7186.	3.4	185
33	Reduced levels of XPA, ERCC1 and XPF DNA repair proteins in testis tumor cell lines. International Journal of Cancer, 2004, 110, 352-361.	5.1	183
34	Strong Functional Interactions of TFIIH with XPC and XPG in Human DNA Nucleotide Excision Repair, without a Preassembled Repairosome. Molecular and Cellular Biology, 2001, 21, 2281-2291.	2.3	168
35	POLQ (Pol Â), a DNA polymerase and DNA-dependent ATPase in human cells. Nucleic Acids Research, 2003, 31, 6117-6126.	14.5	167
36	DNA repair: From molecular mechanism to human disease. DNA Repair, 2006, 5, 986-996.	2.8	162

#	Article	IF	CITATIONS
37	Disruption of the developmentally regulated Rev3l gene causes embryonic lethality. Current Biology, 2000, 10, 1217-1220.	3.9	161
38	A role for the human single-Stranded DNA binding protein HSSB/RPA in an early stage of nucleotide excision repair. Nucleic Acids Research, 1992, 20, 3873-3880.	14.5	159
39	DNA polymerase Î, (POLQ), double-strand break repair, and cancer. DNA Repair, 2016, 44, 22-32.	2.8	158
40	<i>DNA polymerase</i> Î, up-regulation is associated with poor survival in breast cancer, perturbs DNA replication, and promotes genetic instability. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13390-13395.	7.1	157
41	TFIIH with Inactive XPD Helicase Functions in Transcription Initiation but Is Defective in DNA Repair. Journal of Biological Chemistry, 2000, 275, 4258-4266.	3.4	153
42	Changes in DNA base sequence induced by targeted mutagenesis of lambda phage by ultraviolet light. Journal of Molecular Biology, 1984, 173, 273-291.	4.2	150
43	Cip1 inhibits DNA replication but not PCNA-dependent nucleotide excision—repair. Current Biology, 1994, 4, 1062-1068.	3.9	150
44	Which DNA polymerases are used for DNA-repair in eukaryotes?. Carcinogenesis, 1997, 18, 605-610.	2.8	145
45	DDB1-DDB2 (Xeroderma Pigmentosum Group E) Protein Complex Recognizes a Cyclobutane Pyrimidine Dimer, Mismatches, Apurinic/Apyrimidinic Sites, and Compound Lesions in DNA. Journal of Biological Chemistry, 2005, 280, 39982-39989.	3.4	140
46	Identical defects in DNA repair in xeroderma pigmentosum group G and rodent ERCC group 5. Nature, 1993, 363, 185-188.	27.8	134
47	The Evolutionarily Conserved Zinc Finger Motif in the Largest Subunit of Human Replication Protein A Is Required for DNA Replication and Mismatch Repair but Not for Nucleotide Excision Repair. Journal of Biological Chemistry, 1998, 273, 1453-1461.	3.4	130
48	Human DNA Polymerase N (POLN) Is a Low Fidelity Enzyme Capable of Error-free Bypass of 5S-Thymine Glycol. Journal of Biological Chemistry, 2006, 281, 23445-23455.	3.4	128
49	Low-fidelity DNA synthesis by human DNA polymerase theta. Nucleic Acids Research, 2008, 36, 3847-3856.	14.5	126
50	Role of the Rad1 and Rad10 Proteins in Nucleotide Excision Repair and Recombination. Journal of Biological Chemistry, 1995, 270, 24638-24641.	3.4	123
51	Loss of DNA Polymerase ζ Causes Chromosomal Instability in Mammalian Cells. Cancer Research, 2006, 66, 134-142.	0.9	121
52	Vertebrate POLQ and POL \hat{I}^2 Cooperate in Base Excision Repair of Oxidative DNA Damage. Molecular Cell, 2006, 24, 115-125.	9.7	119
53	Repair capability and the cellular age response for killing and mutation induction after UV. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1982, 95, 505-514.	1.0	118
54	Repair synthesis by human cell extracts in DNA damaged bycis- andtrans-diamminedichloroplatinum(II). Nucleic Acids Research, 1989, 17, 8073-8091.	14.5	114

#	Article	IF	CITATIONS
55	Differential human nucleotide excision repair of paired and mispaired cisplatin-DNA adducts. Nucleic Acids Research, 1997, 25, 480-491.	14.5	113
56	Relationship of the Xeroderma Pigmentosum Group E DNA Repair Defect to the Chromatin and DNA Binding Proteins UV-DDB and Replication Protein A. Molecular and Cellular Biology, 1998, 18, 3182-3190.	2.3	113
57	Oxygen Free Radical Damage to DNA. Journal of Biological Chemistry, 2001, 276, 49283-49288.	3.4	111
58	The ERCC1 and ERCC4 (XPF) genes and gene products. Gene, 2015, 569, 153-161.	2.2	109
59	Human DNA polymerase Î, grasps the primer terminus to mediate DNA repair. Nature Structural and Molecular Biology, 2015, 22, 304-311.	8.2	109
60	Structural and functional homology between mammalian DNase IV and the 5'-nuclease domain of Escherichia coli DNA polymerase I. Journal of Biological Chemistry, 1994, 269, 28535-8.	3.4	107
61	Genetic determinants of cellular addiction to DNA polymerase theta. Nature Communications, 2019, 10, 4286.	12.8	106
62	Mammalian nucleotide excision repair proteins and interstrand crosslink repair. Environmental and Molecular Mutagenesis, 2010, 51, 520-526.	2.2	102
63	Conserved Residues of Human XPG Protein Important for Nuclease Activity and Function in Nucleotide Excision Repair. Journal of Biological Chemistry, 1999, 274, 5637-5648.	3.4	100
64	POLN, a Nuclear PolA Family DNA Polymerase Homologous to the DNA Cross-link Sensitivity Protein Mus308. Journal of Biological Chemistry, 2003, 278, 32014-32019.	3.4	99
65	Polymorphisms in the human XPD (ERCC2) gene, DNA repair capacity and cancer susceptibility: An appraisal. DNA Repair, 2005, 4, 1068-1074.	2.8	98
66	Mechanistic basis for microhomology identification and genome scarring by polymerase theta. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8476-8485.	7.1	96
67	Immunodetection of DNA Repair Endonuclease ERCC1-XPF in Human Tissue. Cancer Research, 2009, 69, 6831-6838.	0.9	95
68	Xeroderma pigmentosum and nucleotide excision repair of DNA. Trends in Biochemical Sciences, 1994, 19, 83-86.	7.5	94
69	DNA polymerase POLQ and cellular defense against DNA damage. DNA Repair, 2013, 12, 1-9.	2.8	89
70	Activity of individual ERCC1 and XPF subunits in DNA nucleotide excision repair. Nucleic Acids Research, 2001, 29, 872-879.	14.5	88
71	Repair by human cell extracts of single (6-4) and cyclobutane thymine-thymine photoproducts in DNA Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 9823-9827.	7.1	87
72	Protein complexes in nucleotide excision repair. Mutation Research DNA Repair, 1999, 435, 23-33.	3.7	87

#	Article	IF	CITATIONS
73	Non-targeted mutagenesis of unirradiated lambda phage in Escherichia coli host cells irradiated with ultraviolet light. Journal of Molecular Biology, 1984, 173, 293-305.	4.2	83
74	ERCC1 and Non–Small-Cell Lung Cancer. New England Journal of Medicine, 2007, 356, 2538-2541.	27.0	83
75	Lesion Bypass Activity of DNA Polymerase Î, (POLQ) Is an Intrinsic Property of the Pol Domain and Depends on Unique Sequence Inserts. Journal of Molecular Biology, 2011, 405, 642-652.	4.2	81
76	Repair of pyrimidine dimer ultraviolet light photoproducts by human cell extracts. Biochemistry, 1989, 28, 8287-8292.	2.5	80
77	A Human DNA Helicase Homologous to the DNA Cross-link Sensitivity Protein Mus308. Journal of Biological Chemistry, 2002, 277, 8716-8723.	3.4	80
78	XPA protein as a limiting factor for nucleotide excision repair and UV sensitivity in human cells. DNA Repair, 2006, 5, 641-648.	2.8	79
79	Repair of UV-damaged DNA by mammalian cells and Saccharomyces cerevisiae. Current Opinion in Genetics and Development, 1994, 4, 212-220.	3.3	78
80	DNA polymerase Î, (POLQ) can extend from mismatches and from bases opposite a (6-4) photoproduct. DNA Repair, 2008, 7, 119-127.	2.8	78
81	Reversible Protein Phosphorylation Modulates Nucleotide Excision Repair of Damaged DNA by Human Cell Extracts. Nucleic Acids Research, 1996, 24, 433-440.	14.5	77
82	Detection of Nucleotide Excision Repair Incisions in Human Fibroblasts by Immunostaining for PCNA. Experimental Cell Research, 1995, 221, 326-332.	2.6	75
83	<scp>FAM</scp> 35A associates with <scp>REV</scp> 7 and modulates <scp>DNA</scp> Âdamage responses of normal and <scp>BRCA</scp> 1â€defective cells. EMBO Journal, 2018, 37, .	7.8	73
84	Resistance of human nucleotide excision repair synthesis in vitro to p21Cdn1. Oncogene, 1998, 17, 2827-2838.	5.9	71
85	Lack of DNA Polymerase Î, (POLQ) Radiosensitizes Bone Marrow Stromal CellsIn Vitroand Increases Reticulocyte Micronuclei after Total-Body Irradiation. Radiation Research, 2009, 172, 165-174.	1.5	68
86	Loss of DNA Polymerase ζ Enhances Spontaneous Tumorigenesis. Cancer Research, 2010, 70, 2770-2778.	0.9	68
87	Human DNA helicase HELQ participates in DNA interstrand crosslink tolerance with ATR and RAD51 paralogs. Nature Communications, 2013, 4, 2338.	12.8	66
88	Detection and Measurement of Nucleotide Excision Repair Synthesis by Mammalian Cell Extracts in Vitro. Methods, 1995, 7, 163-175.	3.8	65
89	DDB complexities. DNA Repair, 2003, 2, 1065-1069.	2.8	65
90	DNA polymerases and somatic hypermutation of immunoglobulin genes. EMBO Reports, 2005, 6, 1143-1148.	4.5	64

#	Article	IF	CITATIONS
91	Enhancement of Damage-Specific DNA Binding of XPA by Interaction with the ERCC1 DNA Repair Protein. Biochemical and Biophysical Research Communications, 1995, 211, 960-966.	2.1	62
92	Definition of a Short Region of XPG Necessary for TFIIH Interaction and Stable Recruitment to Sites of UV Damage. Molecular and Cellular Biology, 2004, 24, 10670-10680.	2.3	62
93	DNA Polymerases η and Î, Function in the Same Genetic Pathway to Generate Mutations at A/T during Somatic Hypermutation of Ig Genes*. Journal of Biological Chemistry, 2007, 282, 17387-17394.	3.4	62
94	DNA polymerase ζ in DNA replication and repair. Nucleic Acids Research, 2019, 47, 8348-8361.	14.5	59
95	Initiation and bidirectional propagation of chromatin assembly from a target site for nucleotide excision repair. EMBO Journal, 1997, 16, 6281-6289.	7.8	57
96	Novel Enzymatic Function of DNA Polymerase ν in Translesion DNA Synthesis Past Major Groove DNAâ^Peptide and DNAâ^DNA Cross-Links. Chemical Research in Toxicology, 2010, 23, 689-695.	3.3	57
97	DNA polymerase zeta is required for proliferation of normal mammalian cells. Nucleic Acids Research, 2012, 40, 4473-4482.	14.5	56
98	UV damage causes uncontrolled DNA breakage in cells from patients with combined features of XP-D and Cockayne syndrome. EMBO Journal, 2000, 19, 1157-1166.	7.8	55
99	REV7 is essential for DNA damage tolerance via two REV3L binding sites in mammalian DNA polymerase ζ. Nucleic Acids Research, 2015, 43, 1000-1011.	14.5	55
100	POLÎ,-mediated end joining is restricted by RAD52 and BRCA2 until the onset of mitosis. Nature Cell Biology, 2021, 23, 1095-1104.	10.3	55
101	Effect of exogenous DNA fragments on human cell extract-mediated DNA repair synthesis. Mutation Research DNA Repair, 1991, 254, 217-224.	3.7	54
102	Dual-Incision Assays for Nucleotide Excision Repair Using DNA with a Lesion at a Specific Site. , 1999, 113, 373-392.		53
103	DNA Damage Recognition and Nucleotide Excision Repair in Mammalian Cells. Cold Spring Harbor Symposia on Quantitative Biology, 2000, 65, 173-182.	1.1	52
104	Complementation of the xeroderma pigmentosum DNA repair synthesis defect withEscherichia coliUvrABC proteins in a cell-free system. Nucleic Acids Research, 1990, 18, 35-40.	14.5	49
105	Emerging links between hypermutation of antibody genes and DNA polymerases. Nature Reviews Immunology, 2001, 1, 187-192.	22.7	48
106	Pyrimidine dimers are not the principal pre-mutagenic lesions induced in lambda phage DNA by ultraviolet light. Journal of Molecular Biology, 1985, 184, 577-585.	4.2	46
107	A unique error signature for human DNA polymerase ν. DNA Repair, 2007, 6, 213-223.	2.8	44
108	UV-light-induced mutations in synchronous CHO cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1980, 69, 347-356.	1.0	42

#	Article	IF	CITATIONS
109	A low content of ERCC1 and a 120 kDa protein is a frequent feature of group F xeroderma pigmentosum fibroblast cells. Mutagenesis, 1997, 12, 41-44.	2.6	41
110	Dual role for mammalian DNA polymerase ζ in maintaining genome stability and proliferative responses. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E687-96.	7.1	41
111	A relationship between a DNA-repair/recombination nuclease family and archaeal helicases. Trends in Biochemical Sciences, 1999, 24, 95-97.	7.5	40
112	Use of in vivo and in vitro assays for the characterization of mammalian excision repair and isolation of repair proteins. Mutation Research DNA Repair, 1990, 236, 223-238.	3.7	38
113	Nomenclature of human DNA repair genes. Mutation Research DNA Repair, 1994, 315, 41-42.	3.7	35
114	Elevation of XPA protein level in testis tumor cells without increasing resistance to cisplatin or UV radiation. Molecular Carcinogenesis, 2008, 47, 580-586.	2.7	33
115	Defining the mutation signatures of DNA polymerase Î, in cancer genomes. NAR Cancer, 2020, 2, zcaa017.	3.1	33
116	Effect of photoreactivation on mutagenesis of lambda phage by ultraviolet light. Journal of Molecular Biology, 1988, 202, 593-601.	4.2	31
117	Repair of damaged DNA by extracts from a xeroderma pigmentosum complementation group A revertant and expression of a protein absent in its parental cell line. Nucleic Acids Research, 1992, 20, 991-995.	14.5	31
118	DNA excision repair in mammalian cell extracts. BioEssays, 1991, 13, 447-453.	2.5	30
119	Ultraviolet light-induced mutagenesis in the Escherichia coli chromosome. Journal of Molecular Biology, 1987, 193, 637-641.	4.2	29
120	Seven genes for three diseases. Nature, 1991, 350, 190-190.	27.8	29
121	An XPG DNA repair defect causing mutagen hypersensitivity in mouse leukemia L1210 cells. Molecular and Cellular Biology, 1995, 15, 290-297.	2.3	28
122	The Polymerase Activity of Mammalian DNA Pol ζ Is Specifically Required for Cell and Embryonic Viability. PLoS Genetics, 2016, 12, e1005759.	3.5	28
123	Evolutionary conservation of residues in vertebrate DNA polymerase N conferring low fidelity and bypass activity. Nucleic Acids Research, 2010, 38, 3233-3244.	14.5	25
124	Human DNA polymerase Î, harbors DNA end-trimming activity critical for DNA repair. Molecular Cell, 2021, 81, 1534-1547.e4.	9.7	25
125	Increased Susceptibility to Skin Carcinogenesis Associated with a Spontaneous Mouse Mutation in the Palmitoyl Transferase Zdhhc13 Gene. Journal of Investigative Dermatology, 2015, 135, 3133-3143.	0.7	22
126	DNA polymerase ζ limits chromosomal damage and promotes cell survival following aflatoxin exposure. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13774-13779.	7.1	22

#	Article	IF	CITATIONS
127	Histone H3K4 methylation regulates deactivation of the spindle assembly checkpoint through direct binding of Mad2. Genes and Development, 2016, 30, 1187-1197.	5.9	21
128	RuvAB-mediated branch migration does not involve extensive DNA opening within the RuvB hexamer. Current Biology, 2000, 10, 103-106.	3.9	19
129	Assaying for the Dual Incisions of Nucleotide Excision Repair Using DNA with a Lesion at a Specific Site. Methods in Molecular Biology, 2006, 314, 435-456.	0.9	19
130	Transcriptional consequences of XPA disruption in human cell lines. DNA Repair, 2017, 57, 76-90.	2.8	19
131	DNA repair: Knockouts still mutating after first round. Current Biology, 1998, 8, R757-R760.	3.9	18
132	New Insights into the Combined Cockayne/Xeroderma Pigmentosum Complex: Human XPG Protein Can Function in Transcription Factor Stability. Molecular Cell, 2007, 26, 162-164.	9.7	17
133	Electron Microscopy of DNA Excision Repair Patches Produced by Human Cell Extracts. Journal of Molecular Biology, 1993, 231, 251-260.	4.2	16
134	The Human Gene for Xeroderma Pigmentosum Complementation Group G (XPG) Maps to 13q33 by Fluorescence in Situ Hybridization. Genomics, 1994, 21, 283-285.	2.9	16
135	Assay for Nucleotide Excision Repair Protein Activity Using Fractionated Cell Extracts and UV-Damaged Plasmid DNA. , 1999, 113, 357-372.		16
136	Nucleotide Excision Repair of DNA by Mammalian Cell Extracts and Purified Proteins. Cold Spring Harbor Symposia on Quantitative Biology, 1993, 58, 625-632.	1.1	16
137	POSTIRRADIATION PROPERTIES OF A UV-SENSITIVE VARIANT OF CHO. Photochemistry and Photobiology, 1982, 36, 169-174.	2.5	15
138	Replication of the 2,6-Diamino-4-hydroxy- <i>N</i> ⁵ -(methyl)-formamidopyrimidine (MeFapy-dGuo) Adduct by Eukaryotic DNA Polymerases. Chemical Research in Toxicology, 2012, 25, 1652-1661.	3.3	15
139	Variants on a theme. Nature, 1999, 399, 639-640.	27.8	14
140	Molecular aspects of mutagenesis. Mutagenesis, 1986, 1, 399-405.	2.6	13
141	A thermostable endonuclease III homolog from the archaeon Pyrobaculum aerophilum. Nucleic Acids Research, 2001, 29, 604-613.	14.5	13
142	Bypass specialists operate together. EMBO Journal, 2009, 28, 313-314.	7.8	13
143	Expression and Structural Analyses of Human DNA Polymerase Î, (POLQ). Methods in Enzymology, 2017, 592, 103-121.	1.0	13
144	DNA polymerase Î ¹ compensates for Fanconi anemia pathway deficiency by countering DNA replication stress. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33436-33445.	7.1	13

#	Article	IF	CITATIONS
145	Disruption of DNA polymerase ζ engages an innate immune response. Cell Reports, 2021, 34, 108775.	6.4	13
146	Inhibition of in vitro SV40 DNA replication by ultraviolet light. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1989, 227, 193-197.	1.1	12
147	Analysis of DNA polymerase ν function in meiotic recombination, immunoglobulin class-switching, and DNA damage tolerance. PLoS Genetics, 2017, 13, e1006818.	3.5	12
148	DNA polymerase zeta contributes to heterochromatin replication to prevent genome instability. EMBO Journal, 2021, 40, e104543.	7.8	12
149	Differential expression of DNA polymerase ε in resting and activated B lymphocytes is consistent with an in vivo role in replication and not repair. Molecular Immunology, 2000, 37, 125-131.	2.2	11
150	Dual-Incision Assays for Nucleotide Excision Repair Using DNA with a Lesion at a Specific Site. , 1999, , 373-392.		11
151	Radiation-induced Lethality and Mutation in a Repair-deficient CHO Cell Line. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 1983, 43, 207-213.	1.0	10
152	DNA repair replication by soluble extracts from human lymphoid cell lines. Genome, 1989, 31, 601-604.	2.0	10
153	A gene for tumour prevention. Nature, 1990, 348, 13-14.	27.8	10
154	Mutation and expression of theXPA gene in revertants and hybrids of a xeroderma pigmentosum cell line. Somatic Cell and Molecular Genetics, 1994, 20, 327-337.	0.7	10
155	DNA polymerase ζ deficiency causes impaired wound healing and stress-induced skin pigmentation. Life Science Alliance, 2018, 1, e201800048.	2.8	10
156	Role of the RecF gene product in UV mutagenesis of lambda phage. Molecular Genetics and Genomics, 1986, 204, 82-84.	2.4	9
157	DNA repair and recombination. Current Opinion in Cell Biology, 1989, 1, 475-480.	5.4	9
158	Repair Synthesis Assay for Nucleotide Excision Repair Activity Using Fractionated Cell Extracts and UV-Damaged Plasmid DNA. Methods in Molecular Biology, 2006, 314, 417-434.	0.9	9
159	Conserved Overlapping Gene Arrangement, Restricted Expression, and Biochemical Activities of DNA Polymerase ν (POLN). Journal of Biological Chemistry, 2015, 290, 24278-24293.	3.4	9
160	CNDAC-Induced DNA Double-Strand Breaks Cause Aberrant Mitosis Prior to Cell Death. Molecular Cancer Therapeutics, 2019, 18, 2283-2295.	4.1	8
161	When DNA Polymerases Multitask: Functions Beyond Nucleotidyl Transfer. Frontiers in Molecular Biosciences, 2021, 8, 815845.	3.5	8
162	Fifty years since DNA repair was linked to cancer. Nature, 2018, 557, 648-649.	27.8	6

#	Article	IF	CITATIONS
163	Influence of RNA synthesis on DNA-repair replication in human cell extracts. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1990, 244, 287-293.	1.1	5
164	Studying Nucleotide Excision Repair of Mammalian DNA in a Cell-Free System. Annals of the New York Academy of Sciences, 1994, 726, 274-280.	3.8	5
165	Assay for Nucleotide Excision Repair Protein Activity Using Fractionated Cell Extracts and UV-Damaged Plasmid DNA. , 1999, , 357-372.		5
166	Analysis of cells harboring a putative DNA repair gene reveals a lack of evidence for a second independent xeroderma pigmentosum group A correcting gene. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1994, 324, 159-164.	1.1	4
167	Breakthrough for a DNA break-preventer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2864-2865.	7.1	3
168	Response to "XPA is primarily cytoplasmic but is transported into the nucleus upon UV damage― DNA Repair, 2018, 62, 30-31.	2.8	3
169	Abstract 5183: Loss of WWOX induces ANGPTL4 and ROS production in breast cells , 2013, , .		3
170	Cells Lacking the PolQ Polymerase Are Moderately Sensitive to Ionizing Radiation and the Oxidant Induced Toxicity of Paraquat and Bleomycin Blood, 2007, 110, 4037-4037.	1.4	3
171	Regulating Polî, in Breast Cancer. Cancer Research, 2021, 81, 1441-1442.	0.9	2
172	Probing the structure and function of polymerase \hat{I}_s helicase-like domain. DNA Repair, 2022, 116, 103358.	2.8	2
173	No hedging on DNA repair. Trends in Genetics, 1998, 14, 433-434.	6.7	1
174	Validation of ERCC1-XPF Immunodetection – Response. Cancer Research, 2010, 70, 3852-3852.	0.9	1
175	The SOS Responses of Prokaryotes to DNA Damage. , 2014, , 463-508.		1
176	Mechanisms of Mutagenesis of E. Coli by Ultraviolet Light. , 1986, 38, 377-383.		1
177	Base Excision Repair. , 0, , 169-226.		1
178	Parallels Between Nucleotide Excision Repair in Human Cells and E. Coli. , 1989, , 483-488.		1
179	DNA damage tolerance and a web of connections with DNA repair at Yale. Yale Journal of Biology and Medicine, 2013, 86, 507-16.	0.2	1
180	DNA Damage Tolerance and Mutagenesis in Eukaryotic Cells. , 0, , 613-661.		0

#	Article	IF	CITATIONS
181	Managing DNA Strand Breaks in Eukaryotic Cells. , 2014, , 663-710.		0
182	Cell Cycle Checkpoints. , 2014, , 779-815.		0
183	Other Diseases Associated with Defects in Nucleotide Excision Repair of DNA. , 0, , 895-918.		0
184	Diseases Associated with Disordered DNA Helicase Function. , 0, , 947-978.		0
185	Hereditary Diseases That Implicate Defective Responses to DNA Damage. , 2014, , 1001-1047.		0
186	Nucleotide Excision Repair in Eukaryotes. , 2014, , 267-315.		0
187	DNA Damage. , 2014, , 9-69.		0
188	Mutagenesis and Translesion Synthesis in Prokaryotes. , 0, , 509-568.		0
189	Mismatch Repair. , 0, , 389-447.		0
190	Repair of Damaged DNA In Vitro by Extracts from Human Cell Lines. , 1991, , 221-229.		0
191	Proteins that participate in nucleotide excision repair of DNA in mammalian cells. , 1995, , 65-70.		0
192	Hypersensitivity to Cisplatin in Mouse Leukemia L1210/0 Cells: An XPG DNA Repair Defect. , 1996, , 317-326.		0
193	Mechanism of Nucleotide Excision Repair in Eukaryotes. , 0, , 317-350.		0

194 Introduction to Mutagenesis. , 0, , 71-106.

0