Takumitsu Kida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6938342/publications.pdf Version: 2024-02-01

Τλεμμιτου Κισλ

#	Article	IF	CITATIONS
1	Deformation mechanism of high-density polyethylene probed by inÂsitu Raman spectroscopy. Polymer, 2015, 58, 88-95.	3.8	55
2	Raman Spectroscopic Study of High-density Polyethylene during Tensile Deformation. International Journal of Experimental Spectroscopic Techniques, 2016, 1, 1-6.	0.3	50
3	Microscopic structural changes during photodegradation of low-density polyethylene detected by Raman spectroscopy. Polymer Degradation and Stability, 2018, 150, 67-72.	5.8	47
4	Improving the strength of polyethylene solids by simple controlling of the molecular weight distribution. Polymer, 2021, 218, 123526.	3.8	28
5	Molecular orientation behavior of isotactic polypropylene under uniaxial stretching by rheo-Raman spectroscopy. EXPRESS Polymer Letters, 2016, 10, 701-709.	2.1	27
6	Rheo-Raman Spectroscopic Study on Uniaxial Deformation Behavior of High-Density Polyethylene Solids with Various Molecular Weight Distributions. Macromolecules, 2019, 52, 4590-4600.	4.8	24
7	Synthesis and Properties of Gradient Copolymers Composed of Norbornene and Higher α-Olefins Using an <i>ansa</i> -Fluorenylamidodimethyltitanium-[Ph ₃ C][B(C ₆ F ₅) _{4Catalyst System, Macromolecules, 2020, 53, 4323-4329.}	b≯] ⁸	21
8	Microstructural Interpretation of Influences of Molecular Weight on the Tensile Properties of High-Density Polyethylene Solids Using Rheo-Raman Spectroscopy. Macromolecules, 2021, 54, 225-234.	4.8	20
9	Rheo-optical Raman study of microscopic deformation in high-density polyethylene under hot drawing. Polymer Testing, 2015, 44, 30-36.	4.8	18
10	Effect of Ultra-High-Molecular-Weight Molecular Chains on the Morphology, Crystallization, and Mechanical Properties of Polypropylene. Polymers, 2021, 13, 4222.	4.5	16
11	Crystallization behavior of isotactic polypropylene containing a fibrous nucleating agent in a flow field. Polymer Journal, 2022, 54, 367-375.	2.7	14
12	Rheo-Raman spectroscopic study of plasticity and elasticity transformation in poly(ether-block-amide) thermoplastic elastomers. Polymer, 2020, 189, 122128.	3.8	13
13	Rheoâ€Raman spectroscopic study of microscopic deformation behavior for ultraâ€lowâ€density polyethylene. Polymer International, 2018, 67, 1335-1340.	3.1	9
14	Synthesis and properties of biodegradable thermoplastic elastomers using 2-Methyl-1,3-propanediol, succinic acid and lactide. Polymer Degradation and Stability, 2020, 181, 109353.	5.8	8
15	Synthesis and properties of block copolymers composed of norbornene/higher α-olefin gradient segments using <i>ansa</i> -fluorenylamidodimethyltitanium-[Ph ₃ C][B(C ₆ F ₅) _{4catalyst system_Polymer Chemistry, 2021, 12, 189-195}	3.9 >>]	8
16	Effect of the number of arms on the mechanical properties of a star-shaped cyclic olefin copolymer. Polymer Chemistry, 2019, 10, 5578-5583.	3.9	7
17	Cyclic Olefin Copolymer Bearing Pendant Fluorenyl Groups with High Refractive Index and Low Chromatic Dispersion. Macromolecules, 2022, 55, 125-132.	4.8	7
18	Evaluation of microscopic structural changes during strain hardening of polyethylene solids using In situ Raman, SAXS, and WAXD measurements under step-cycle test. Polymer, 2022, 250, 124869.	3.8	7

Τακυμιτςυ Κιda

#	Article	IF	CITATIONS
19	Role of Rigid–Amorphous chains on mechanical properties of polypropylene solid using DSC, WAXD, SAXS, and Raman spectroscopy. Polymer, 2022, 249, 124834.	3.8	7
20	Viscoelastic Properties of Fully Biomass-Based Transparent Plastic Comprising Cellulose Acetate and Citrate Ester. Materials, 2022, 15, 3038.	2.9	7
21	Rheoâ€Raman Study of Isotactic Polypropylene Under Tensile Deformation. Macromolecular Symposia, 2018, 377, 1700019.	0.7	6
22	Synthesis of thermoplastic elastomers with high biodegradability in seawater. Polymer Degradation and Stability, 2021, 184, 109467.	5.8	6
23	Complicated Structure Change during Capillary Extrusion of Binary Blends of Polycarbonate and Poly(methyl methacrylate). Materials, 2022, 15, 2783.	2.9	6
24	In Situ Monitoring of Orientation Parameters and Orientation Distribution Functions of Polyethylenes during Tensile Tests. Macromolecular Symposia, 2018, 377, 1700020.	0.7	5
25	Incorporation of Boronic Acid Functionality into Isotactic Polypropylene and Its Application as a Cross-Linking Point. Macromolecules, 2021, 54, 1267-1272.	4.8	5
26	Effect of thermal history on the structure and mechanical properties of a thermoplastic polyester elastomer. Polymer, 2022, 238, 124376.	3.8	5
27	Raman Spectroscopic Analyses of Structure–Mechanical Properties Relationship of Crystalline Polyolefin Materials. Nihon Reoroji Gakkaishi, 2022, 50, 21-29.	1.0	5
28	Segregation Behavior of Miscible PC/PMMA Blends during Injection Molding. Materials, 2022, 15, 2994.	2.9	5
29	Rheological properties of linear and short-chain branched polyethylene with nearly monodispersed molecular weight distribution. Rheologica Acta, 2021, 60, 511-519.	2.4	4
30	<i>In situ</i> Raman Spectroscopic Observation of Polymer Chains in Semi-Crystalline Polyethylene Solids. Zeitschrift Fur Physikalische Chemie, 2021, 235, 59-79.	2.8	4
31	Star polymers with norbornene/1-octene gradient copolymer arms synthesized by an ansa-fluorenylamidodimethyltitanium-[Ph3C][B(C6F5)4] catalyst system. Polymer, 2022, 249, 124844.	3.8	4
32	Synthesis, Properties, and Biodegradability of Thermoplastic Elastomers Made from 2-Methyl-1,3-propanediol, Glutaric Acid and Lactide. Life, 2021, 11, 43.	2.4	3
33	Microscopic Origin of Elastic and Plastic Deformation in Poly(Ether-Block-Amide) Elastomers under Various Conditions. Nihon Reoroji Gakkaishi, 2020, 48, 153-160.	1.0	3
34	Impact of Magnesium Salt on the Mechanical and Thermal Properties of Poly(vinyl alcohol). Polymers, 2021, 13, 3760.	4.5	3
35	Radial Distribution Functions of Entanglements in Primitive Chain Network Simulations. Nihon Reoroji Gakkaishi, 2021, 49, 337-345.	1.0	3
36	Effect of Strain Rate on Microscopic Deformation Behavior of High-density Polyethylene under Uniaxial Stretching. MATEC Web of Conferences, 2017, 130, 05001.	0.2	2

#	Article	IF	CITATIONS
37	Crystallinity enhancement of extruded polypropylene containing poly(vinyl alcohol) fibers prepared in situ. Polymer, 2022, 254, 125043.	3.8	2
38	Rheo-Raman Spectroscopic Study of Microscopic Deformation Behavior of Low- and High-Density Polyethylene Solids under Uniaxial Deformation. Nihon Reoroji Gakkaishi, 2022, 50, 287-294.	1.0	1
39	Raman Spectroscopic Study of Microscopic Deformation Behavior of Crystalline Polyolefin Solids. Kobunshi Ronbunshu, 2018, 75, 497-506.	0.2	0
40	ç"ç©¶å®ÿ́1介 åå屋å§å¦ã€€å·¥å¦ç"究科 ãf¬ã,ªãfã,¸ãf¼ç‰©ç†å·¥å¦ç"究室Nihon Reoroji Gakk	aish i,.@ 021	, 49, 49-51.

41	Raman Spectroscopic Studies of Mechanical Properties of Semi-Crystalline Polymeric Solids. Seikei-Kakou, 2021, 33, 148-150.	0.0	0
42	Evaluation of Polymer Material Orientation by Using Polarized Raman Spectroscopy. Seikei-Kakou, 2019, 31, 281-284.	0.0	0
43	Polymerization of Styrene Derivatives Using Anilinonaphthoquinoneâ€Ligated Nickel Complexes and Thermal/Rheological Properties of the Produced Polymers. Macromolecular Chemistry and Physics, 0, , 2100402.	2.2	0