John A Hamilton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6938162/publications.pdf

Version: 2024-02-01

224 papers

19,022 citations

18482 62 h-index 129 g-index

224 all docs

224 docs citations

times ranked

224

26054 citing authors

#	Article	IF	CITATIONS
1	Type I interferon antagonism of the JMJD3-IRF4 pathway modulates macrophage activation and polarization. Cell Reports, 2022, 39, 110719.	6.4	13
2	The role of interleukin (IL)-23 in regulating pain in arthritis. Arthritis Research and Therapy, 2022, 24, 89.	3.5	1
3	Targeting GM-CSF in inflammatory and autoimmune disorders. Seminars in Immunology, 2021, 54, 101523.	5.6	24
4	Introduction to the Special Issue: The regulation of the immune system by colony stimulating factors (CSFs) in the steady state and pathology. Seminars in Immunology, 2021, 54, 101543.	5.6	1
5	GM-CSF in inflammation. Journal of Experimental Medicine, 2020, 217, .	8.5	172
6	Inhibition of purinergic P2X receptor 7 (P2X7R) decreases granulocyte-macrophage colony-stimulating factor (GM-CSF) expression in U251 glioblastoma cells. Scientific Reports, 2020, 10, 14844.	3.3	11
7	<p>GM-CSF: A Promising Target in Inflammation and Autoimmunity</p> . ImmunoTargets and Therapy, 2020, Volume 9, 225-240.	5.8	59
8	IL-23 in arthritic and inflammatory pain development in mice. Arthritis Research and Therapy, 2020, 22, 123.	3.5	10
9	CCL17 in Inflammation and Pain. Journal of Immunology, 2020, 205, 213-222.	0.8	21
10	GM-CSF-based treatments in COVID-19: reconciling opposing therapeutic approaches. Nature Reviews Immunology, 2020, 20, 507-514.	22.7	174
11	Granulocyte-Macrophage Colony Stimulating Factor As an Indirect Mediator of Nociceptor Activation and Pain. Journal of Neuroscience, 2020, 40, 2189-2199.	3.6	22
12	Microglial polarization in posttraumatic epilepsy: Potential mechanism and treatment opportunity. Epilepsia, 2020, 61, 203-215.	5.1	29
13	Interleukin-17A Serves a Priming Role in Autoimmunity by Recruiting IL-1Î ² -Producing Myeloid Cells that Promote Pathogenic T Cells. Immunity, 2020, 52, 342-356.e6.	14.3	157
14	Glycolysis Is Required for LPS-Induced Activation and Adhesion of Human CD14+CD16a [^] Monocytes. Frontiers in Immunology, 2019, 10, 2054.	4.8	45
15	Macrophage spatial heterogeneity in gastric cancer defined by multiplex immunohistochemistry. Nature Communications, 2019, 10, 3928.	12.8	210
16	GM-CSF-Dependent Inflammatory Pathways. Frontiers in Immunology, 2019, 10, 2055.	4.8	109
17	Therapeutic options for targeting inflammatory osteoarthritis pain. Nature Reviews Rheumatology, 2019, 15, 355-363.	8.0	227
18	GM-CSF– and IRF4-Dependent Signaling Can Regulate Myeloid Cell Numbers and the Macrophage Phenotype during Inflammation. Journal of Immunology, 2019, 202, 3033-3040.	0.8	28

#	Article	IF	CITATIONS
19	A Functional Immune System Is Required for the Systemic Genotoxic Effects of Localized Irradiation. International Journal of Radiation Oncology Biology Physics, 2019, 103, 1184-1193.	0.8	19
20	Autocrine IFN-I inhibits isocitrate dehydrogenase in the TCA cycle of LPS-stimulated macrophages. Journal of Clinical Investigation, 2019, 129, 4239-4244.	8.2	45
21	Glucocorticoids promote apoptosis of proinflammatory monocytes by inhibiting ERK activity. Cell Death and Disease, 2018, 9, 267.	6.3	50
22	Investigational therapies targeting the granulocyte macrophage colony-stimulating factor receptor- $\hat{l}\pm$ in rheumatoid arthritis: focus on mavrilimumab. Therapeutic Advances in Musculoskeletal Disease, 2018, 10, 29-38.	2.7	25
23	Immune Cytokines and Their Receptors in Inflammatory Pain. Trends in Immunology, 2018, 39, 240-255.	6.8	165
24	Neutrophils, Gâ€ <scp>CSF</scp> and their contribution to breast cancer metastasis. FEBS Journal, 2018, 285, 665-679.	4.7	110
25	Cytokine-Induced Acute Inflammatory Monoarticular Arthritis. Methods in Molecular Biology, 2018, 1784, 215-223.	0.9	1
26	The dark side of granulocyte-colony stimulating factor: a supportive therapy with potential to promote tumour progression. Clinical and Experimental Metastasis, 2018, 35, 255-267.	3.3	26
27	CCL17 blockade as a therapy for osteoarthritis pain and disease. Arthritis Research and Therapy, 2018, 20, 62.	3.5	71
28	CSF-1 in Inflammatory and Arthritic Pain Development. Journal of Immunology, 2018, 201, 2042-2053.	0.8	22
29	Epigenetic and transcriptional regulation of IL4-induced CCL17 production in human monocytes and murine macrophages. Journal of Biological Chemistry, 2018, 293, 11415-11423.	3.4	44
30	TNF and granulocyte macrophage-colony stimulating factor interdependence mediates inflammation via CCL17. JCI Insight, 2018, 3, .	5.0	36
31	G-CSF Receptor Blockade Ameliorates Arthritic Pain and Disease. Journal of Immunology, 2017, 198, 3565-3575.	0.8	28
32	Anti-colony-stimulating factor therapies for inflammatory and autoimmune diseases. Nature Reviews Drug Discovery, 2017, 16, 53-70.	46.4	137
33	Metabolic Remodeling, Inflammasome Activation, and Pyroptosis in Macrophages Stimulated by Porphyromonas gingivalis and Its Outer Membrane Vesicles. Frontiers in Cellular and Infection Microbiology, 2017, 7, 351.	3.9	138
34	K/BxN Serum-Transfer Arthritis as a Model for Human Inflammatory Arthritis. Frontiers in Immunology, 2016, 7, 213.	4.8	107
35	Granulocyte macrophage colony-stimulating factor receptor $\hat{l}\pm$ expression and its targeting in antigen-induced arthritis and inflammation. Arthritis Research and Therapy, 2016, 18, 287.	3.5	38
36	Colony Stimulating Factors (CSFs). , 2016, , 586-596.		1

#	Article	IF	CITATIONS
37	OSCARâ€collagen signaling in monocytes plays a proinflammatory role and may contribute to the pathogenesis of rheumatoid arthritis. European Journal of Immunology, 2016, 46, 952-963.	2.9	19
38	Granulocyte colonyâ€stimulating factor (Gâ€CSF) plays an important role in immune complexâ€mediated arthritis. European Journal of Immunology, 2016, 46, 1235-1245.	2.9	21
39	IRF6 Regulates the Expression of IL- $36\hat{1}^3$ by Human Oral Epithelial Cells in Response to <i>Porphyromonas gingivalis</i> . Journal of Immunology, 2016, 196, 2230-2238.	0.8	42
40	Granulocyte macrophage colony-stimulating factor induces CCL17 production via IRF4 to mediate inflammation. Journal of Clinical Investigation, 2016, 126, 3453-3466.	8.2	129
41	Collagen Induces Maturation of Human Monocyte-Derived Dendritic Cells by Signaling through Osteoclast-Associated Receptor. Journal of Immunology, 2015, 194, 3169-3179.	0.8	26
42	GM-CSF as a target in inflammatory/autoimmune disease: current evidence and future therapeutic potential. Expert Review of Clinical Immunology, 2015, 11, 457-465.	3.0	81
43	Specific Contributions of CSF-1 and GM-CSF to the Dynamics of the Mononuclear Phagocyte System. Journal of Immunology, 2015, 195, 134-144.	0.8	70
44	High numbers of circulating pigmented polymorphonuclear neutrophils as a prognostic marker for decreased birth weight during malaria in pregnancy. International Journal for Parasitology, 2015, 45, 107-111.	3.1	12
45	Disease-associated mutations in IRF6 and RIPK4 dysregulate their signalling functions. Cellular Signalling, 2015, 27, 1509-1516.	3.6	24
46	The interface between cholinergic pathways and the immune system and its relevance to arthritis. Arthritis Research and Therapy, 2015, 17, 87.	3.5	29
47	Tibial Fracture Exacerbates Traumatic Brain Injury Outcomes and Neuroinflammation in a Novel Mouse Model of Multitrauma. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1339-1347.	4.3	64
48	Neutrophils: important contributors to tumor progression and metastasis. Cancer and Metastasis Reviews, 2015, 34, 735-751.	5.9	185
49	Porphyromonas gingivalis-derived RgpA-Kgp Complex Activates the Macrophage Urokinase Plasminogen Activator System. Journal of Biological Chemistry, 2015, 290, 16031-16042.	3.4	21
50	GMâ€CSF and uPA are required for Porphyromonas gingivalis â€induced alveolar bone loss in a mouse periodontitis model. Immunology and Cell Biology, 2015, 93, 705-715.	2.3	19
51	TLR3 drives IRF6â€dependent ILâ€23p19 expression and p19/EBI3 heterodimer formation in keratinocytes. Immunology and Cell Biology, 2015, 93, 771-779.	2.3	49
52	SAA drives proinflammatory heterotypic macrophage differentiation in the lung <i>via</i> CSFâ€1Râ€dependent signaling. FASEB Journal, 2014, 28, 3867-3877.	0.5	42
53	Brief Report: Granulocyte–Macrophage Colony‧timulating Factor Drives Monosodium Urate Monohydrate Crystal–Induced Inflammatory Macrophage Differentiation and NLRP3 Inflammasome Upâ€Regulation in an In Vivo Mouse Model. Arthritis and Rheumatology, 2014, 66, 2423-2428.	5.6	25
54	Granulocyte-Macrophage Colony-Stimulating Factor Is Neuroprotective in Experimental Traumatic Brain Injury. Journal of Neurotrauma, 2014, 31, 976-983.	3.4	63

#	Article	IF	Citations
55	Interferon Regulatory Factor 6 Differentially Regulates Toll-like Receptor 2-dependent Chemokine Gene Expression in Epithelial Cells. Journal of Biological Chemistry, 2014, 289, 19758-19768.	3.4	33
56	Receptor-interacting Protein Kinase 4 and Interferon Regulatory Factor 6 Function as a Signaling Axis to Regulate Keratinocyte Differentiation. Journal of Biological Chemistry, 2014, 289, 31077-31087.	3.4	51
57	Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity, 2014, 41, 14-20.	14.3	4,638
58	Urokinase Plasminogen Activator Is a Central Regulator of Macrophage Three-Dimensional Invasion, Matrix Degradation, and Adhesion. Journal of Immunology, 2014, 192, 3540-3547.	0.8	51
59	The Promotion of Breast Cancer Metastasis Caused by Inhibition of CSF-1R/CSF-1 Signaling Is Blocked by Targeting the G-CSF Receptor. Cancer Immunology Research, 2014, 2, 765-776.	3.4	97
60	Therapeutic potential of targeting inflammation. Inflammation Research, 2013, 62, 653-657.	4.0	2
61	Monocytes and macrophages in malaria: protection or pathology?. Trends in Parasitology, 2013, 29, 26-34.	3.3	124
62	Colony stimulating factors and myeloid cell biology in health and disease. Trends in Immunology, 2013, 34, 81-89.	6.8	241
63	The development of macrophages from human CD34+ haematopoietic stem cells in serum-free cultures is optimized by IL-3 and SCF. Cytokine, 2013, 61, 33-37.	3.2	12
64	N2 Neutrophils, Novel Players in Brain Inflammation After Stroke. Stroke, 2013, 44, 3498-3508.	2.0	284
65	Granulocyte-macrophage colony-stimulating factor is a key mediator in inflammatory and arthritic pain. Annals of the Rheumatic Diseases, 2013, 72, 265-270.	0.9	82
66	Characterization of pathogenic human monoclonal autoantibodies against GM-CSF. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7832-7837.	7.1	39
67	Soluble CD163, a Product of Monocyte/Macrophage Activation, Is Inversely Associated with Haemoglobin Levels in Placental Malaria. PLoS ONE, 2013, 8, e64127.	2.5	11
68	Rosiglitazone-induced CD36 up-regulation resolves inflammation by PPARÎ ³ and 5-LO-dependent pathways. Journal of Leukocyte Biology, 2013, 95, 587-598.	3.3	66
69	Control of macrophage lineage populations by CSFâ€1 receptor and GMâ€CSF in homeostasis and inflammation. Immunology and Cell Biology, 2012, 90, 429-440.	2.3	107
70	GM-CSF is not essential for optimal fertility or for weight control. Cytokine, 2012, 57, 30-31.	3.2	6
71	HUVEC co-culture and haematopoietic growth factors modulate human proliferative monocyte activity. Cytokine, 2012, 59, 31-34.	3.2	3
72	Granulocyte-macrophage colony-stimulating factor is a key mediator in experimental osteoarthritis pain and disease development. Arthritis Research and Therapy, 2012, 14, R199.	3.5	96

#	Article	IF	CITATIONS
73	Tissue plasminogen activator does not alter development of acquired epilepsy. Epilepsia, 2012, 53, 1998-2004.	5.1	39
74	Hypoxia Enhances the Proliferative Response of Macrophages to CSF-1 and Their Pro-Survival Response to TNF. PLoS ONE, 2012, 7, e45853.	2.5	12
75	Defining GM-CSF– and Macrophage-CSF–Dependent Macrophage Responses by In Vitro Models. Journal of Immunology, 2012, 188, 5752-5765.	0.8	429
76	CSF-1 receptor signalling from endosomes mediates the sustained activation of Erk1/2 and Akt in macrophages. Cellular Signalling, 2012, 24, 1753-1761.	3.6	30
77	Proliferative monocyte frequency is associated with circulating monocyte prevalence. Leukemia Research, 2012, 36, e175-e177.	0.8	5
78	Macrophage Activation and Differentiation Signals Regulate Schlafen-4 Gene Expression: Evidence for Schlafen-4 as a Modulator of Myelopoiesis. PLoS ONE, 2011, 6, e15723.	2.5	67
79	Extracellular proteomes of Mâ€CSF (CSFâ€1) and GMâ€CSFâ€dependent macrophages. Immunology and Cell Biology, 2011, 89, 283-293.	2.3	20
80	Regulation of systemic and local myeloid cell subpopulations by bone marrow cell–derived granulocyte–macrophage colonyâ€stimulating factor in experimental inflammatory arthritis. Arthritis and Rheumatism, 2011, 63, 2340-2351.	6.7	59
81	The TGF- \hat{l}^2 superfamily cytokine, MIC-1/GDF15: A pleotrophic cytokine with roles in inflammation, cancer and metabolism. Growth Factors, 2011, 29, 187-195.	1.7	214
82	Colony stimulating factors and macrophage heterogeneity. Inflammation and Regeneration, 2011, 31, 228-236.	3.7	2
83	Neutralizing Granulocyte/Macrophage Colony–Stimulating Factor Inhibits Cigarette Smoke–induced Lung Inflammation. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 34-40.	5.6	99
84	Urokinase-type plasminogen activator and arthritis progression: contrasting roles in systemic and monoarticular arthritis models. Arthritis Research and Therapy, 2010, 12, R199.	3.5	19
85	Urokinase-type plasminogen activator and arthritis progression: role in systemic disease with immune complex involvement. Arthritis Research and Therapy, 2010, 12, R37.	3.5	31
86	Hypoxia Prolongs Monocyte/Macrophage Survival and Enhanced Glycolysis Is Associated with Their Maturation under Aerobic Conditions. Journal of Immunology, 2009, 182, 7974-7981.	0.8	139
87	Signaling Crosstalk during Sequential TLR4 and TLR9 Activation Amplifies the Inflammatory Response of Mouse Macrophages. Journal of Immunology, 2009, 183, 8110-8118.	0.8	94
88	Glucose Metabolism Is Required for Oxidized LDL–Induced Macrophage Survival. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1283-1289.	2.4	17
89	Glycolytic control of adjuvant-induced macrophage survival: role of PI3K, MEK1/2, and Bcl-2. Journal of Leukocyte Biology, 2009, 85, 947-956.	3.3	16
90	The generation and properties of human macrophage populations from hemopoietic stem cells. Journal of Leukocyte Biology, 2009, 85, 766-778.	3.3	42

#	Article	IF	Citations
91	GM-CSF- and M-CSF-dependent macrophage phenotypes display differential dependence on Type I interferon signaling. Journal of Leukocyte Biology, 2009, 86, 411-421.	3.3	240
92	Down-regulation of IRAK-4 is a component of LPS- and CpG DNA-induced tolerance in macrophages. Cellular Signalling, 2009, 21, 246-252.	3.6	34
93	Regulation of IRAK-1 activation by its C-terminal domain. Cellular Signalling, 2009, 21, 719-726.	3.6	12
94	Phosphatidylinostitol-3 kinase and phospholipase C enhance CSF-1-dependent macrophage survival by controlling glucose uptake. Cellular Signalling, 2009, 21, 1361-1369.	3.6	29
95	Low dose metal particles can induce monocyte/macrophage survival. Journal of Orthopaedic Research, 2009, 27, 1481-1486.	2.3	12
96	The dynamics of macrophage lineage populations in inflammatory and autoimmune diseases. Arthritis and Rheumatism, 2009, 60, 1210-1221.	6.7	188
97	The proliferative human monocyte subpopulation contains osteoclast precursors. Arthritis Research and Therapy, 2009, 11, R23.	3.5	40
98	Plasminogen activator/plasmin system in arthritis and inflammation: Friend or foe?. Arthritis and Rheumatism, 2008, 58, 645-648.	6.7	17
99	Colony-stimulating factors in inflammation and autoimmunity. Nature Reviews Immunology, 2008, 8, 533-544.	22.7	1,111
100	The Critical Role of the Colony-Stimulating Factor-1 Receptor in the Differentiation of Myeloblastic Leukemia Cells. Molecular Cancer Research, 2008, 6, 458-467.	3.4	14
101	Regulation of WAVE1 expression in macrophages at multiple levels. Journal of Leukocyte Biology, 2008, 84, 1483-1491.	3.3	4
102	The role of the RgpA–Kgp proteinase–adhesin complexes in the adherence of Porphyromonas gingivalis to fibroblasts. Microbiology (United Kingdom), 2008, 154, 2904-2911.	1.8	14
103	Regulation of the Endosomal SNARE Protein Syntaxin 7 by Colony-Stimulating Factor 1 in Macrophages. Molecular and Cellular Biology, 2008, 28, 6149-6159.	2.3	23
104	Flow Cytometric Analysis of Adherence of Porphyromonas gingivalis to Oral Epithelial Cells. Infection and Immunity, 2007, 75, 2484-2492.	2.2	33
105	Mouse neutrophilic granulocytes express mRNA encoding the macrophage colony-stimulating factor receptor (CSF-1R) as well as many other macrophage-specific transcripts and can transdifferentiate into macrophages in vitro in response to CSF-1. Journal of Leukocyte Biology, 2007, 82, 111-123.	3.3	155
106	Macrophage lineage phenotypes and osteoclastogenesisâ€"Complexity in the control by GM-CSF and TGF-β. Bone, 2007, 40, 323-336.	2.9	78
107	Granulocyte-Macrophage Colony-Stimulating Factor (CSF) and Macrophage CSF-Dependent Macrophage Phenotypes Display Differences in Cytokine Profiles and Transcription Factor Activities: Implications for CSF Blockade in Inflammation. Journal of Immunology, 2007, 178, 5245-5252.	0.8	514
108	Importance of the C-Terminal Domain of Harc for Binding to Hsp70 and Hop as Well as Its Response to Heat Shock. Biochemistry, 2007, 46, 15144-15152.	2.5	2

#	Article	lF	Citations
109	M-CSF induces the stable interaction of cFms with $\hat{l}\pm V\hat{l}^23$ integrin in osteoclasts. International Journal of Biochemistry and Cell Biology, 2006, 38, 1518-1529.	2.8	27
110	A potential role for the Src-like adapter protein SLAP-2 in signaling by the colony stimulating factor-1 receptor. FEBS Journal, 2006, 273, 1791-1804.	4.7	15
111	CpG DNA enhances macrophage cell spreading by promoting the Src-family kinase-mediated phosphorylation of paxillin. Cellular Signalling, 2006, 18, 2252-2261.	3.6	18
112	Detection and properties of the human proliferative monocyte subpopulation. Journal of Leukocyte Biology, 2006, 79, 757-766.	3.3	55
113	The effect of tissue type-plasminogen activator deletion and associated fibrin(ogen) deposition on macrophage localization in peritoneal inflammation. Thrombosis and Haemostasis, 2006, 95, 659-667.	3.4	12
114	The effect of tissue type-plasminogen activator deletion and associated fibrin(ogen) deposition on macrophage localization in peritoneal inflammation. Thrombosis and Haemostasis, 2006, 95, 659-67.	3.4	8
115	cAMP inhibits CSF-1-stimulated tyrosine phosphorylation but augments CSF-1R-mediated macrophage differentiation and ERK activation. FEBS Journal, 2005, 272, 4141-4152.	4.7	10
116	A proteomics strategy for the enrichment of receptor-associated complexes. Proteomics, 2005, 5, 4754-4763.	2.2	16
117	A Central Role for the Hsp90·Cdc37 Molecular Chaperone Module in Interleukin-1 Receptor-associated-kinase-dependent Signaling by Toll-like Receptors. Journal of Biological Chemistry, 2005, 280, 9813-9822.	3.4	48
118	S100A8 Chemotactic Protein Is Abundantly Increased, but Only a Minor Contributor to LPS-Induced, Steroid Resistant Neutrophilic Lung Inflammation in Vivo. Journal of Proteome Research, 2005, 4, 136-145.	3.7	50
119	Functions of Granulocyte-Macrophage Colony-Stimulating Factor. Critical Reviews in Immunology, 2005, 25, 405-428.	0.5	179
120	Stimulus-Dependent Requirement for Granulocyte-Macrophage Colony-Stimulating Factor in Inflammation. Journal of Immunology, 2004, 173, 4643-4651.	0.8	60
121	Innate immune responses to LPS in mouse lung are suppressed and reversed by neutralization of GM-CSF via repression of TLR-4. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 286, L877-L885.	2.9	96
122	Mini ReviewGM-CSF Biology. Growth Factors, 2004, 22, 225-231.	1.7	197
123	A novel 110 kDa form of myosin XVIIIA (MysPDZ) is tyrosine-phosphorylated after colony-stimulating factor-1 receptor signalling. Biochemical Journal, 2004, 380, 243-253.	3.7	16
124	The interferon in TLR signaling: more than just antiviral. Trends in Immunology, 2003, 24, 534-539.	6.8	181
125	Peripheral blood mononuclear cell expression of toll-like receptors and relation to cytokine levels in cirrhosis. Hepatology, 2003, 37, 1154-1164.	7.3	147
126	The Phenotype of Inflammatory Macrophages Is Stimulus Dependent: Implications for the Nature of the Inflammatory Response. Journal of Immunology, 2003, 171, 4816-4823.	0.8	89

#	Article	IF	CITATIONS
127	Nondisposable materials, chronic inflammation, and adjuvant action. Journal of Leukocyte Biology, 2003, 73, 702-712.	3.3	54
128	Granulocyte/Macrophage-Colony-stimulating Factor (GM-CSF) Regulates Lung Innate Immunity to Lipopolysaccharide through Akt/Erk Activation of NFÎB and AP-1 in Vivo. Journal of Biological Chemistry, 2002, 277, 42808-42814.	3.4	154
129	Differing Roles for Urokinase and Tissue-Type Plasminogen Activator in Collagen-Induced Arthritis. American Journal of Pathology, 2002, 160, 917-926.	3.8	53
130	GM-CSF in inflammation and autoimmunity. Trends in Immunology, 2002, 23, 403-408.	6.8	307
131	Alzheimer's disease amyloid beta and prion protein amyloidogenic peptides promote macrophage survival, DNA synthesis and enhanced proliferative response to CSF-1 (M-CSF). Brain Research, 2002, 940, 49-54.	2.2	17
132	Extravascular coagulation and the plasminogen activator/plasmin system in rheumatoid arthritis. Arthritis and Rheumatism, 2002, 46, 2268-2279.	6.7	102
133	Blockade of collagen-induced arthritis post-onset by antibody to granulocyte-macrophage colony-stimulating factor (GM-CSF): requirement for GM-CSF in the effector phase of disease. Arthritis Research, 2001, 3, 293.	2.0	165
134	Inflammatory microcrystals induce murine macrophage survival and DNA synthesis. Arthritis Research, 2001, 3, 242.	2.0	26
135	Comparison of macrophage responses to oxidized low-density lipoprotein and macrophage colony-stimulating factor (M-CSF or CSF-1). Biochemical Journal, 2001, 354, 179.	3.7	9
136	Enhancement of macrophage survival and DNA synthesis by oxidized-low-density-lipoprotein (LDL)-derived lipids and by aggregates of lightly oxidized LDL. Biochemical Journal, 2001, 355, 207.	3.7	8
137	Comparison of macrophage responses to oxidized low-density lipoprotein and macrophage colony-stimulating factor (M-CSF or CSF-1). Biochemical Journal, 2001, 354, 179-187.	3.7	16
138	Enhancement of macrophage survival and DNA synthesis by oxidized-low-density-lipoprotein (LDL)-derived lipids and by aggregates of lightly oxidized LDL. Biochemical Journal, 2001, 355, 207-214.	3.7	11
139	Colony-stimulating factor-1 (CSF-1) receptor-mediated macrophage differentiation in myeloid cells: a role for tyrosine 559-dependent protein phosphatase 2A (PP2A) activity. Biochemical Journal, 2001, 358, 431-436.	3.7	18
140	Colony-stimulating factor-1 (CSF-1) receptor-mediated macrophage differentiation in myeloid cells: a role for tyrosine 559-dependent protein phosphatase 2A (PP2A) activity. Biochemical Journal, 2001, 358, 431.	3.7	13
141	Dependence of interleukin-1-induced arthritis on granulocyte-macrophage colony-stimulating factor. Arthritis and Rheumatism, 2001, 44, 111-119.	6.7	69
142	Copper/zinc superoxide dismutase is phosphorylated and modulated specifically by granulocyte-colony stimulating factor in myeloid cells. Proteomics, 2001, 1, 435-443.	2.2	26
143	Granulocyte Macrophage Colony-Stimulating Factor. Journal of Experimental Medicine, 2001, 194, 873-882.	8.5	390
144	Tissue-Type Plasminogen Activator Deficiency Exacerbates Arthritis. Journal of Immunology, 2001, 167, 1047-1052.	0.8	57

#	Article	IF	CITATIONS
145	Proteomic Analysis of Macrophage Differentiation. Journal of Biological Chemistry, 2001, 276, 26211-26217.	3.4	27
146	Copper/zinc superoxide dismutase is phosphorylated and modulated specifically by granulocyte-colony stimulating factor in myeloid cells. Proteomics, 2001, 1, 435-443.	2.2	1
147	Regulation of urokinase plasminogen activator gene transcription in the RAW264 murine macrophage cell line by macrophage colony-stimulating factor (CSF-1) is dependent upon the level of cell-surface receptor. Biochemical Journal, 2000, 347, 313.	3.7	3
148	Regulation of urokinase plasminogen activator gene transcription in the RAW264 murine macrophage cell line by macrophage colony-stimulating factor (CSF-1) is dependent upon the level of cell-surface receptor. Biochemical Journal, 2000, 347, 313-320.	3.7	18
149	Particulate adjuvants can induce macrophage survival, DNA synthesis, and a synergistic proliferative response to GM-CSF and CSF-1. Journal of Leukocyte Biology, 2000, 67, 226-232.	3.3	55
150	Collagen-induced arthritis in C57BL/6 (H-2b) mice: new insights into an important disease model of rheumatoid arthritis. European Journal of Immunology, 2000, 30, 1568-1575.	2.9	203
151	Oxidized LDL Can Promote Human Monocyte Survival. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 2329-2331.	2.4	14
152	ROLE OF TYPE I INTERFERONS DURING MACROPHAGE ACTIVATION BY LIPOPOLYSACCHARIDE. Cytokine, 2000, 12, 1639-1646.	3.2	52
153	Proliferation of a Subpopulation of Human Peripheral Blood Monocytes in the Presence of Colony Stimulating Factors may Contribute to the Inflammatory Process in Diseases such as Rheumatoid Arthritis. Immunobiology, 2000, 202, 18-25.	1.9	30
154	Type I Interferons Mediate the Lipopolysaccharide Induction of Macrophage Cyclin D2. Journal of Interferon and Cytokine Research, 2000, 20, 355-359.	1.2	11
155	Direct Comparison of the Effects of CSF-1 (M-CSF) and GM-CSF on Human Monocyte DNA Synthesis and CSF Receptor Expression. Journal of Interferon and Cytokine Research, 1999, 19, 417-423.	1.2	13
156	Oxidized LDL Can Induce Macrophage Survival, DNA Synthesis, and Enhanced Proliferative Response to CSF-1 and GM-CSF. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 98-105.	2.4	139
157	Roles of the Mitogen-activated Protein Kinase Family in Macrophage Responses to Colony Stimulating Factor-1 Addition and Withdrawal. Journal of Biological Chemistry, 1999, 274, 15127-15133.	3.4	60
158	Expression of a Y559F Mutant CSF-1 Receptor in M1 Myeloid Cells: A Role for Src Kinases in CSF-1 Receptor-Mediated Differentiation. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 1999, 1, 144-152.	1.6	33
159	Protein phosphatase 2A is expressed in response to colony-stimulating factor 1 in macrophages and is required for cell cycle progression independently of extracellular signal-regulated protein kinase activity. Biochemical Journal, 1999, 339, 517-524.	3.7	17
160	Protein phosphatase 2A is expressed in response to colony-stimulating factor 1 in macrophages and is required for cell cycle progression independently of extracellular signal-regulated protein kinase activity. Biochemical Journal, 1999, 339, 517.	3.7	5
161	Characterization of a CSF-induced proliferating subpopulation of human peripheral blood monocytes by surface marker expression and cytokine production. Journal of Leukocyte Biology, 1999, 66, 953-960.	3.3	34
162	Direct binding of Shc, Grb2, SHP-2 and p40 to the murine granulocyte colony-stimulating factor receptor. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1448, 70-76.	4.1	29

#	Article	IF	CITATIONS
163	Effects of wortmannin and rapamycin on CSF-1-mediated responses in macrophages. International Journal of Biochemistry and Cell Biology, 1998, 30, 271-283.	2.8	14
164	cAMP Enhances CSF-1-Induced ERK Activity and c-fosmRNA Expression via a MEK-Dependent and Ras-Independent Mechanism in Macrophages. Biochemical and Biophysical Research Communications, 1998, 244, 475-480.	2.1	21
165	Proliferation-independent Induction of Macrophage Cyclin D2, and Repression of Cyclin D1, by Lipopolysaccharide. Journal of Biological Chemistry, 1998, 273, 23104-23109.	3.4	19
166	Macrophage Lineage Cells in Inflammation: Characterization by Colony-Stimulating Factor-1 (CSF-1) Receptor (c-Fms), ER-MP58, and ER-MP20 (Ly-6C) Expression. Blood, 1998, 92, 1423-1431.	1.4	61
167	CSF-1 signal transduction. Journal of Leukocyte Biology, 1997, 62, 145-155.	3.3	185
168	cAMP suppresses p21ras and Raf-1 responses but not the Erk-1 response to granulocyte-colony-stimulating factor: possible Raf-1-independent activation of Erk-1. Biochemical Journal, 1997, 322, 79-87.	3.7	29
169	Identification of Phosphoproteins Specific to Granulocyte Colony-Stimulating Factor-Mediated Signaling Using 2D-SDS-PAGE. Journal of Interferon and Cytokine Research, 1997, 17, 77-86.	1.2	7
170	G1 phase arrest of human smooth muscle cells by heparin, IL-4 and cAMP is linked to repression of cyclin D1 and cdk2. Atherosclerosis, 1997, 133, 61-69.	0.8	55
171	CSF-1 and cell cycle control in macrophages. Molecular Reproduction and Development, 1997, 46, 19-23.	2.0	20
172	CSF-I signal transaction: what is of functional significance?. Trends in Immunology, 1997, 18, 313-317.	7. 5	30
173	Cyclic AMP Inhibits Expression of D-Type Cyclins and cdk4 and Induces p27Kip1in G-CSF-Treated NFS-60 Cells. Biochemical and Biophysical Research Communications, 1996, 224, 10-16.	2.1	25
174	Association between phosphatidylinositol-3 kinase, Cbl and other tyrosine phosphorylated proteins in colony-stimulating factor-1-stimulated macrophages. Biochemical Journal, 1996, 320, 69-77.	3.7	38
175	Differences in the kinetics of activation of protein kinases and extracellular signal-related protein kinase 1 in colony-stimulating factor 1-stimulated and lipopolysaccharide-stimulated macrophages. Biochemical Journal, 1996, 320, 1011-1016.	3.7	31
176	Extracellular Mutations of Non-obese Diabetic Mouse $Fc\hat{l}^3RI$ Modify Surface Expression and Ligand Binding. Journal of Biological Chemistry, 1996, 271, 17091-17099.	3.4	13
177	Granulocyte Colony-Stimulating Factor-Stimulated Proliferation of Myeloid Cells: Mode of Cell Cycle Control by a Range of Inhibitors. Journal of Interferon and Cytokine Research, 1996, 16, 869-877.	1.2	6
178	Bone marrow transplantation in auto-immune disease. Bailliere's Clinical Rheumatology, 1995, 9, 673-687.	1.0	6
179	Cytokine modulation of plasminogen activator inhibitor-1 (PAI-1) production by human articular cartilage and chondrocytes. Down-regulation by tumor necrosis factor α and up-regulation by transforming growth factor-β and basic fibroblast growth factor. Biochimica Et Biophysica Acta - Molecular Basis of Disease. 1994. 1226. 277-285.	3.8	27
180	Haematopoietic Colony Stimulating Factors CSF-1 and GM-CSF Increase Phosphatidylinositol 3-Kinase Activity in Murine Bone Marrow-Derived Macrophages. Growth Factors, 1994, 10, 181-192.	1.7	18

#	Article	IF	Citations
181	Expression of p47- <i>phox</i> and p67- <i>phox</i> proteins in murine bone marrow–derived macrophages: Enhancement by lipopolysaccharide and tumor necrosis factor <i>α</i> but not colony stimulating factor 1. Journal of Leukocyte Biology, 1994, 55, 530-535.	3.3	27
182	Production of leukemia inhibitory factor by human articular chondrocytes and cartilage in response to interleukin-1 and tumor necrosis factor \hat{l}_{\pm} . Arthritis and Rheumatism, 1993, 36, 790-794.	6.7	39
183	Colony stimulating factors, cytokines and monocyte-macrophages-some controversies. Trends in Immunology, 1993, 14, 18-24.	7.5	113
184	Regulation of Plasminogen Activator Inhibitor-1 Levels in Human Monocytes. Cellular Immunology, 1993, 152, 7-17.	3.0	37
185	Cytokine regulation of granulocyte-macrophage colony stimulating factor and macrophage colony-stimulating factor production in human arterial smooth muscle cells. Atherosclerosis, 1993, 99, 241-252.	0.8	80
186	Production of macrophage colony-stimulating factor (M-CSF) by human articular cartilage and chondrocytes. Modulation by interleukin-1 and tumor necrosis factor \hat{l}_{\pm} . Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1993, 1182, 57-63.	3.8	43
187	Effects of macrophage-colony stimulating factor on human monocytes: Induction of expression of urokinase-type plasminogen activator, but not of secreted prostaglandin E2, interleukin-6, interleukin-1, or tumor necrosis factor-a. Journal of Leukocyte Biology, 1993, 53, 707-714.	3.3	27
188	A Colony-Stimulating Factor Network Involving Mononuclear Phagocytes and Other Cells. , 1993, , 29-35.		4
189	Macrophages and Prostaglandins. Blood Cell Biochemistry, 1993, , 149-159.	0.3	1
190	Thrombin Stimulates Expression of Tissue-Type Plasminogen Activator and Plasminogen Activator Inhibitor Type 1 in Cultured Human Vascular Smooth Muscle Cells. Thrombosis and Haemostasis, 1993, 70, 469-474.	3.4	65
191	Cytokine Regulation of the Synthesis of Plasminogen Activator Inhibitor-2 by Human Vascular Endothelial Cells. Thrombosis and Haemostasis, 1993, 69, 135-140.	3.4	28
192	Regulation of pinocytosis in murine macrophages by colony-stimulating factors and other agents. Journal of Leukocyte Biology, 1992, 51, 350-359.	3.3	22
193	Plasminogen Activators and Their Inhibitors in Arthritic Disease. Annals of the New York Academy of Sciences, 1992, 667, 87-100.	3.8	28
194	The effect of interleukin-4 on the macrophage respiratory burst is species dependent. Biochemical and Biophysical Research Communications, 1992, 182, 727-732.	2.1	12
195	\hat{l}^3 -Interferon counteracts interleukin- $1\hat{l}\pm$ stimulated expression of urokinase-type plasminogen activator in human endothelial cells in vitro. Biochemical and Biophysical Research Communications, 1992, 188, 463-469.	2.1	27
196	Independent regulation of plasminogen activator inhibitor 2 and plasminogen activator inhibitor 1 in human synovial fibroblasts. Arthritis and Rheumatism, 1992 , 35 , 1526 - 1534 .	6.7	26
197	Biochemical events accompanying macrophage activation and the inhibition of colony-stimulating factor-1-induced macrophage proliferation by tumor necrosis factor-?, interferon-?, and lipopolysaccharide. Journal of Cellular Physiology, 1992, 151, 630-641.	4.1	56
198	Protein kinase C has both stimulatory and suppressive effects on macrophage superoxide production. Journal of Cellular Physiology, 1992, 152, 64-70.	4.1	10

#	Article	IF	CITATIONS
199	Oncostatin M stimulates urokinase-type plasminogen activator activity in human synovial fibroblasts. Biochemical and Biophysical Research Communications, 1991, 180, 652-659.	2.1	46
200	Recombinant human inteleukin-1 inhibits plasminogen activator inhibitor-1 (PAI-1) production by human articular cartilage and chondrocytes. Biochemical and Biophysical Research Communications, 1991, 174, 251-257.	2.1	32
201	GM-CSF and IL-3 stimulate diacylglycerol generation in murine bone marrow-derived macrophages. Biochemical and Biophysical Research Communications, 1991, 179, 586-591.	2.1	12
202	Signalling through CSF receptors. Trends in Immunology, 1991, 12, 362-369.	7.5	51
203	Colony stimulating factor-1 stimulates diacylglycerol generation in murine bone marrow-derived macrophages, but not in resident peritoneal macrophages. Journal of Cellular Physiology, 1991, 147, 298-305.	4.1	25
204	Effects of tumor necrosis factor \hat{l}_{\pm} and \hat{l}_{\pm}^2 on resorption of human articular cartilage and production of plasminogen activator by human articular chondrocytes. Arthritis and Rheumatism, 1990, 33, 542-552.	6.7	102
205	Colony stimulating factor-1 Is a negative regulator of the macrophage respiratory burst. Journal of Cellular Physiology, 1990, 144, 190-196.	4.1	18
206	Stimulation of human chondrocyte prostaglandin E2 production by recombinant human interleukin-1 and tumour necrosis factor. Biochimica Et Biophysica Acta - Molecular Cell Research, 1990, 1051, 310-318.	4.1	67
207	Activation and proliferation signals in murine macrophages: Relationships among c-fos and c-myc expression, phosphoinositide hydrolysis, superoxide formation, and DNA synthesis. Journal of Cellular Physiology, 1989, 141, 618-626.	4.1	36
208	Modulation of urokinase-type plasminogen activator messenger rna levels in human synovial fibroblasts by interleukin-1, retinoic acid, and a glucocorticoid. Arthritis and Rheumatism, 1988, 31, 1046-1051.	6.7	37
209	Stimulation of the hyaluronic acid levels of human synovial fibroblasts by recombinant human tumor necrosis factor \hat{l}^2 (lymphotoxin), interleukin- $1\hat{l}^2$, and interleukin- $1\hat{l}^2$. Arthritis and Rheumatism, 1988, 31, 1281-1289.	6.7	69
210	Activation and proliferation signals in murine macrophages: Stimulation of Na+, K+-ATPase activity by hemopoietic growth factors and other agents. Journal of Cellular Physiology, 1988, 134, 13-24.	4.1	85
211	Activation and proliferation signals in murine macrophages: Stimulation of glucose uptake by hemopoietic growth factors and other agents. Journal of Cellular Physiology, 1988, 134, 405-412.	4.1	89
212	Recombinant human interleukin-1 stimulates human articular cartilage to undergo resorption and human chondrocytes to produce both tissue- and urokinase-type plasminogen activator. Biochimica Et Biophysica Acta - General Subjects, 1988, 967, 183-194.	2.4	75
213	Interleukin- $1\hat{l}^2$ and interleukin- $1\hat{l}\pm$ stimulate the plasminogen activator activity and prostaglandin E2 levels of human synovial cells. Arthritis and Rheumatism, 1987, 30, 562-566.	6.7	100
214	CSF-1 stimulates glucose uptake in murine bone marrow-derived macrophages. Biochemical and Biophysical Research Communications, 1986, 138, 445-454.	2.1	38
215	Cyclic AMP-dependent and -independent effects on tissue-type plasminogen activator activity in osteogenic sarcoma cells; evidence from phosphodiesterase inhibition and parathyroid hormone antagonists. Biochimica Et Biophysica Acta - Molecular Cell Research, 1986, 888, 199-207.	4.1	42
216	The stimulation of human synovial fibroblast plasminogen activator activity Involvement of cyclic AMP and cyclooxygenase products. Biochimica Et Biophysica Acta - Molecular Cell Research, 1986, 886, 195-202.	4.1	13

#	Article	IF	CITATION
217	Human synovial fibroblasts produce urokinase-type plasminogen activator. Arthritis and Rheumatism, 1986, 29, 1397-1401.	6.7	41
218	CSF-1 stimulates Na+K+-ATPase mediated 86Rb+ uptake in mouse bone marrow-derived macrophages. Biochemical and Biophysical Research Communications, 1985, 132, 430-437.	2.1	76
219	Differential release of plasminogen activator and latent collagenase from mononuclear cell-stimulated synovial cells. Arthritis and Rheumatism, 1983, 26, 15-21.	6.7	40
220	Glucocorticoids and prostaglandins inhibit the induction of macrophage DNA synthesis by macrophage growth factor and phorbol ester. Journal of Cellular Physiology, 1983, 115, 67-74.	4.1	29
221	Stimulation of the plasminogen activator activity of human synovial fibroblasts by retinoids. Arthritis and Rheumatism, 1982, 25, 432-440.	6.7	35
222	Coagulation of human plasma by asbestos fibers. Environmental Research, 1981, 26, 119-124.	7.5	4
223	Human synovial fibroblast plasminogen activator. modulation of enzyme activity by antiinflammatory steroids. Arthritis and Rheumatism, 1981, 24, 1296-1303.	6.7	44
224	Regulation of the plasminogen activator activity of macrophage tumor cell lines. International Journal of Immunopharmacology, 1980, 2, 353-362.	1.1	9