
Olaf Kniemeyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6938032/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature, 2009, 460, 1117-1121.	13.7	666
2	Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature, 2016, 532, 64-68.	13.7	628
3	Production of Extracellular Traps against Aspergillus fumigatus In Vitro and in Infected Lung Tissue Is Dependent on Invading Neutrophils and Influenced by Hydrophobin RodA. PLoS Pathogens, 2010, 6, e1000873.	2.1	362
4	Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature, 2007, 449, 898-901.	13.7	349
5	Human Anti-fungal Th17 Immunity and Pathology Rely on Cross-Reactivity against Candida albicans. Cell, 2019, 176, 1340-1355.e15.	13.5	321
6	Regulatory T Cell Specificity Directs Tolerance versus Allergy against Aeroantigens in Humans. Cell, 2016, 167, 1067-1078.e16.	13.5	253
7	Interaction of HapX with the CCAAT-binding complex—a novel mechanism of gene regulation by iron. EMBO Journal, 2007, 26, 3157-3168.	3.5	209
8	The Aspergillus fumigatus Transcriptional Regulator AfYap1 Represents the Major Regulator for Defense against Reactive Oxygen Intermediates but Is Dispensable for Pathogenicity in an Intranasal Mouse Infection Model. Eukaryotic Cell, 2007, 6, 2290-2302.	3.4	203
9	Production of Pyomelanin, a Second Type of Melanin, via the Tyrosine Degradation Pathway in <i>Aspergillus fumigatus</i> . Applied and Environmental Microbiology, 2009, 75, 493-503.	1.4	201
10	Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi. Genome Biology, 2011, 12, R7.	13.9	181
11	Anaerobic Degradation of Ethylbenzene by a New Type of Marine Sulfate-Reducing Bacterium. Applied and Environmental Microbiology, 2003, 69, 760-768.	1.4	176
12	Ethylbenzene Dehydrogenase, a Novel Hydrocarbon-oxidizing Molybdenum/Iron-Sulfur/Heme Enzyme. Journal of Biological Chemistry, 2001, 276, 21381-21386.	1.6	174
13	Antigen-Reactive T Cell Enrichment for Direct, High-Resolution Analysis of the Human Naive and Memory Th Cell Repertoire. Journal of Immunology, 2013, 190, 3967-3976.	0.4	158
14	Analysis of the <i>Aspergillus fumigatus</i> Proteome Reveals Metabolic Changes and the Activation of the Pseurotin A Biosynthesis Gene Cluster in Response to Hypoxia. Journal of Proteome Research, 2011, 10, 2508-2524.	1.8	135
15	Transcriptomic and proteomic analyses of the Aspergillus fumigatus hypoxia response using an oxygen-controlled fermenter. BMC Genomics, 2012, 13, 62.	1.2	115
16	Surface Structure Characterization of Aspergillus fumigatus Conidia Mutated in the Melanin Synthesis Pathway and Their Human Cellular Immune Response. Infection and Immunity, 2014, 82, 3141-3153.	1.0	113
17	Interference of Aspergillus fumigatus with the immune response. Seminars in Immunopathology, 2015, 37, 141-152.	2.8	112
18	Deletion of the α-(1,3)-Glucan Synthase Genes Induces a Restructuring of the Conidial Cell Wall Responsible for the Avirulence of Aspergillus fumigatus. PLoS Pathogens, 2013, 9, e1003716.	2.1	110

#	Article	IF	CITATIONS
19	Antigen-specific expansion of human regulatory T cells as a major tolerance mechanism against mucosal fungi. Mucosal Immunology, 2014, 7, 916-928.	2.7	110
20	Optimisation of a 2-D gel electrophoresis protocol for the human-pathogenic fungus Aspergillus fumigatus. Current Genetics, 2006, 49, 178-189.	0.8	104
21	Proteome Profiling and Functional Classification of Intracellular Proteins from Conidia of the Human-Pathogenic Mold <i>Aspergillus fumigatus</i> . Journal of Proteome Research, 2010, 9, 3427-3442.	1.8	86
22	Induction of Mitochondrial Reactive Oxygen Species Production by Itraconazole, Terbinafine, and Amphotericin B as a Mode of Action against Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	83
23	Functional genomic profiling of <i>Aspergillus fumigatus</i> biofilm reveals enhanced production of the mycotoxin gliotoxin. Proteomics, 2010, 10, 3097-3107.	1.3	82
24	Members of protein Oâ€mannosyltransferase family in <i>Aspergillus fumigatus</i> differentially affect growth, morphogenesis and viability. Molecular Microbiology, 2010, 76, 1205-1221.	1.2	81
25	Integrative analysis of the heat shock response in Aspergillus fumigatus. BMC Genomics, 2010, 11, 32.	1.2	80
26	Secretome analysis of Aspergillus fumigatus reveals Asp-hemolysin as a major secreted protein. International Journal of Medical Microbiology, 2011, 301, 602-611.	1.5	80
27	Network Modeling Reveals Cross Talk of MAP Kinases during Adaptation to Caspofungin Stress in Aspergillus fumigatus. PLoS ONE, 2015, 10, e0136932.	1.1	78
28	Protein Kinase A Regulates Growth, Sporulation, and Pigment Formation in <i>Aspergillus fumigatus</i> . Applied and Environmental Microbiology, 2008, 74, 4923-4933.	1.4	76
29	Processing of <i>Candida albicans</i> Ece1p Is Critical for Candidalysin Maturation and Fungal Virulence. MBio, 2018, 9, .	1.8	72
30	(S)-1-Phenylethanol dehydrogenase of Azoarcus sp. strain EbN1, an enzyme of anaerobic ethylbenzene catabolism. Archives of Microbiology, 2001, 176, 129-135.	1.0	71
31	Twoâ€dimensional proteome reference maps for the human pathogenic filamentous fungus <i>Aspergillus fumigatus</i> . Proteomics, 2009, 9, 1407-1415.	1.3	70
32	Systems Biology of Fungal Infection. Frontiers in Microbiology, 2012, 3, 108.	1.5	69
33	Comparative proteomics of a <i>tor</i> inducible <i>Aspergillus fumigatus</i> mutant reveals involvement of the Tor kinase in iron regulation. Proteomics, 2015, 15, 2230-2243.	1.3	68
34	Extrinsic extracellular DNA leads to biofilm formation and colocalizes with matrix polysaccharides in the human pathogenic fungus Aspergillus fumigatus. Frontiers in Microbiology, 2013, 4, 141.	1.5	60
35	Identification of Immunogenic Antigens from <i>Aspergillus fumigatus</i> by Direct Multiparameter Characterization of Specific Conventional and Regulatory CD4+ T Cells. Journal of Immunology, 2014, 193, 3332-3343.	0.4	58
36	Missing values in gelâ€based proteomics. Proteomics, 2010, 10, 1202-1211.	1.3	57

#	Article	IF	CITATIONS
37	Hitting the Caspofungin Salvage Pathway of Human-Pathogenic Fungi with the Novel Lasso Peptide Humidimycin (MDN-0010). Antimicrobial Agents and Chemotherapy, 2015, 59, 5145-5153.	1.4	54
38	Proteome Analysis Reveals the Conidial Surface Protein CcpA Essential for Virulence of the Pathogenic Fungus <i>Aspergillus fumigatus</i> . MBio, 2018, 9, .	1.8	53
39	Human Neutrophils Produce Antifungal Extracellular Vesicles against Aspergillus fumigatus. MBio, 2020, 11, .	1.8	50
40	Stress-Induced Changes in the Lipid Microenvironment of β-(1,3)- <scp>d</scp> -Glucan Synthase Cause Clinically Important Echinocandin Resistance in Aspergillus fumigatus. MBio, 2019, 10, .	1.8	48
41	Investigation of Aspergillus fumigatus biofilm formation by various "omics―approaches. Frontiers in Microbiology, 2013, 4, 13.	1.5	47
42	Fungus-Specific CD4 ⁺ T Cells for Rapid Identification of Invasive Pulmonary Mold Infection. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 348-352.	2.5	47
43	Proteomics of eukaryotic microorganisms: The medically and biotechnologically important fungal genus <i>Aspergillus</i> . Proteomics, 2011, 11, 3232-3243.	1.3	43
44	Elucidating the fungal stress response by proteomics. Journal of Proteomics, 2014, 97, 151-163.	1.2	41
45	Additional oxidative stress reroutes the global response of Aspergillus fumigatus to iron depletion. BMC Genomics, 2018, 19, 357.	1.2	41
46	Carbon Catabolite Repression in Filamentous Fungi Is Regulated by Phosphorylation of the Transcription Factor CreA. MBio, 2021, 12, .	1.8	41
47	Insights into the cellular responses to hypoxia in filamentous fungi. Current Genetics, 2015, 61, 441-455.	0.8	40
48	Identification of Hypoxia-Inducible Target Genes of Aspergillus fumigatus by Transcriptome Analysis Reveals Cellular Respiration as an Important Contributor to Hypoxic Survival. Eukaryotic Cell, 2014, 13, 1241-1253.	3.4	38
49	The Arthroderma benhamiae Hydrophobin HypA Mediates Hydrophobicity and Influences Recognition by Human Immune Effector Cells. Eukaryotic Cell, 2012, 11, 673-682.	3.4	36
50	Proteomics of Aspergillus fumigatus Conidia-containing Phagolysosomes Identifies Processes Governing Immune Evasion. Molecular and Cellular Proteomics, 2018, 17, 1084-1096.	2.5	36
51	The monothiol glutaredoxin GrxD is essential for sensing iron starvation in Aspergillus fumigatus. PLoS Genetics, 2019, 15, e1008379.	1.5	36
52	Comparison of transcriptome technologies in the pathogenic fungus Aspergillus fumigatus reveals novel insights into the genome and MpkA dependent gene expression. BMC Genomics, 2012, 13, 519.	1.2	35
53	Phenotypic and Proteomic Analysis of the Aspergillus fumigatus ΔPrtT, ΔXprG and ΔXprG/ΔPrtT Protease-Deficient Mutants. Frontiers in Microbiology, 2017, 8, 2490.	1.5	35
54	ATP Content and Cell Viability as Indicators for Cryostress Across the Diversity of Life. Frontiers in Physiology, 2018, 9, 921.	1.3	35

#	Article	IF	CITATIONS
55	Anaerobic Mineralization of Quaternary Carbon Atoms: Isolation of Denitrifying Bacteria on Dimethylmalonate. Applied and Environmental Microbiology, 1999, 65, 3319-3324.	1.4	35
56	Characterization of the Aspergillus fumigatus detoxification systems for reactive nitrogen intermediates and their impact on virulence. Frontiers in Microbiology, 2014, 5, 469.	1.5	34
57	Identification of Proteomic Markers in Head and Neck Cancer Using MALDI–MS Imaging, LC–MS/MS, and Immunohistochemistry. Proteomics - Clinical Applications, 2019, 13, e1700173.	0.8	34
58	Immune modulation by complement receptor 3-dependent human monocyte TGF-β1-transporting vesicles. Nature Communications, 2020, 11, 2331.	5.8	34
59	Identification of virulence determinants of the human pathogenic fungi Aspergillus fumigatus and Candida albicans by proteomics. International Journal of Medical Microbiology, 2011, 301, 368-377.	1.5	33
60	Identification and Characterization of a Novel Aspergillus fumigatus Rhomboid Family Putative Protease, RbdA, Involved in Hypoxia Sensing and Virulence. Infection and Immunity, 2016, 84, 1866-1878.	1.0	33
61	Candidalysin delivery to the invasion pocket is critical for host epithelial damage induced by <i>Candida albicans</i> . Cellular Microbiology, 2021, 23, e13378.	1.1	33
62	Proteome analysis of the farnesol-induced stress response in Aspergillus nidulans—The role of a putative dehydrin. Journal of Proteomics, 2012, 75, 4038-4049.	1.2	30
63	Clinical-scale isolation of the total Aspergillus fumigatus–reactive T–helper cell repertoire for adoptive transfer. Cytotherapy, 2015, 17, 1396-1405.	0.3	30
64	Proteome analysis for pathogenicity and new diagnostic markers forAspergillus fumigatus. Medical Mycology, 2009, 47, S248-S254.	0.3	29
65	A phosphorylation code of the <i>Aspergillus nidulans</i> global regulator VelvetA (VeA) determines specific functions. Molecular Microbiology, 2016, 99, 909-924.	1.2	28
66	Role of High-Mobility Group Box 1 Protein and Poly(ADP-Ribose) Polymerase 1 Degradation in <i>Chlamydia trachomatis</i> -Induced Cytopathicity. Infection and Immunity, 2010, 78, 3288-3297.	1.0	26
67	Quantitative Analysis of Proteome Modulations in Alveolar Epithelial Type II Cells in Response to Pulmonary Aspergillus fumigatus Infection. Molecular and Cellular Proteomics, 2017, 16, 2184-2198.	2.5	26
68	The hypoxiaâ€induced dehydrogenase HorA is required for coenzyme Q10 biosynthesis, azole sensitivity and virulence of <i>Aspergillus fumigatus</i> . Molecular Microbiology, 2016, 101, 92-108.	1.2	24
69	Ahr1 and Tup1 Contribute to the Transcriptional Control of Virulence-Associated Genes in Candida albicans. MBio, 2020, 11, .	1.8	24
70	Immunoproteomics of <i>Aspergillus</i> for the development of biomarkers and immunotherapies. Proteomics - Clinical Applications, 2016, 10, 910-921.	0.8	22
71	UV-Raman Spectroscopic Identification of Fungal Spores Important for Respiratory Diseases. Analytical Chemistry, 2018, 90, 8912-8918.	3.2	22
72	Conidial surface proteins at the interface of fungal infections. PLoS Pathogens, 2019, 15, e1007939.	2.1	22

#	Article	IF	CITATIONS
73	The novel globin protein fungoglobin is involved in low oxygen adaptation of <scp><i>A</i></scp> <i>spergillus fumigatus</i> . Molecular Microbiology, 2014, 93, 539-553.	1.2	21
74	Smelling the difference: Transcriptome, proteome and volatilome changes after mating. Fungal Genetics and Biology, 2018, 112, 2-11.	0.9	21
75	Lipid Signaling via Pkh1/2 Regulates Fungal CO ₂ Sensing through the Kinase Sch9. MBio, 2017, 8, .	1.8	17
76	Arabidopsis thaliana responds to colonisation of Piriformospora indica by secretion of symbiosis-specific proteins. PLoS ONE, 2018, 13, e0209658.	1.1	17
77	The transcriptional regulators SteA and StuA contribute to keratin degradation and sexual reproduction of the dermatophyte Arthroderma benhamiae. Current Genetics, 2017, 63, 103-116.	0.8	16
78	The Termite Fungal Cultivar <i>Termitomyces</i> Combines Diverse Enzymes and Oxidative Reactions for Plant Biomass Conversion. MBio, 2021, 12, e0355120.	1.8	16
79	<i>Tricholoma vaccinum</i> host communication during ectomycorrhiza formation. FEMS Microbiology Ecology, 2015, 91, fiv120.	1.3	15
80	Integration of Transcriptome and Proteome Data from Human-Pathogenic Fungi by Using a Data Warehouse. Journal of Integrative Bioinformatics, 2007, 4, 51-63.	1.0	14
81	Immunoproteomic Analysis of Antibody Responses to Extracellular Proteins of <i>Candida albicans</i> Revealing the Importance of Glycosylation for Antigen Recognition. Journal of Proteome Research, 2016, 15, 2394-2406.	1.8	14
82	Urine protein profiling identified alpha-1-microglobulin and haptoglobin as biomarkers for early diagnosis of acute allograft rejection following kidney transplantation. World Journal of Urology, 2014, 32, 1619-1624.	1.2	13
83	HapX Mediates Iron Homeostasis in the Pathogenic Dermatophyte Arthroderma benhamiae but Is Dispensable for Virulence. PLoS ONE, 2016, 11, e0150701.	1.1	13
84	Proteomic Profiling of Serological Responses to <i>Aspergillus fumigatus</i> Antigens in Patients with Invasive Aspergillosis. Journal of Proteome Research, 2016, 15, 1580-1591.	1.8	13
85	Proteomic profiling of the antifungal drug response of Aspergillus fumigatus to voriconazole. International Journal of Medical Microbiology, 2017, 307, 398-408.	1.5	12
86	Identification of Proteins Interacting with Cytoplasmic High-Mobility Group Box 1 during the Hepatocellular Response to Ischemia Reperfusion Injury. International Journal of Molecular Sciences, 2017, 18, 167.	1.8	11
87	Module-detection approaches for the integration of multilevel omics data highlight the comprehensive response of Aspergillus fumigatus to caspofungin. BMC Systems Biology, 2018, 12, 88.	3.0	11
88	Dynamic Surface Proteomes of Allergenic Fungal Conidia. Journal of Proteome Research, 2020, 19, 2092-2104.	1.8	11
89	On the way toward systems biology of Aspergillus fumigatus infection. International Journal of Medical Microbiology, 2011, 301, 453-459.	1.5	10
90	Identification of PARP-1, Histone H1 and SIRT-1 as New Regulators of Breast Cancer-Related Aromatase Promoter I.3/II. Cells, 2020, 9, 427.	1.8	10

#	Article	IF	CITATIONS
91	The bZIP Transcription Factor HapX Is Post-Translationally Regulated to Control Iron Homeostasis in Aspergillus fumigatus. International Journal of Molecular Sciences, 2021, 22, 7739.	1.8	10
92	Influence of zygomyceteâ€derived <scp>D</scp> 'orenone on <scp>IAA</scp> signalling in <scp><i>T</i></scp> <i>richoloma</i> â€spruce ectomycorrhiza. Environmental Microbiology, 2016, 18, 2470-2480.	1.8	9
93	The regulator of Gâ€protein signalling Thn1 links pheromone response to volatile production in <i>Schizophyllum commune</i> . Environmental Microbiology, 2018, 20, 3684-3699.	1.8	9
94	The Role of RodA-Conserved Cysteine Residues in the Aspergillus fumigatus Conidial Surface Organization. Journal of Fungi (Basel, Switzerland), 2020, 6, 151.	1.5	9
95	Development of a Simple and Robust Whole Blood Assay with Dual Co-Stimulation to Quantify the Release of T-Cellular Signature Cytokines in Response to Aspergillus fumigatus Antigens. Journal of Fungi (Basel, Switzerland), 2021, 7, 462.	1.5	9
96	Functionality of the human antibody response to <i>Candida albicans</i> . Virulence, 2021, 12, 3137-3148.	1.8	9
97	Crosstalk between Ras and inositol phosphate signaling revealed by lithium action on inositol monophosphatase in Schizophyllum commune. Advances in Biological Regulation, 2019, 72, 78-88.	1.4	8
98	Biotinylated Surfome Profiling Identifies Potential Biomarkers for Diagnosis and Therapy of Aspergillus fumigatus Infection. MSphere, 2020, 5, .	1.3	8
99	Inositol Signaling in the Basidiomycete Fungus Schizophyllum commune. Journal of Fungi (Basel,) Tj ETQq1 1 0.7	84314 rgE 1.5	BT {Overlock
100	Challenges and Strategies for Proteome Analysis of the Interaction of Human Pathogenic Fungi with Host Immune Cells. Proteomes, 2015, 3, 467-495.	1.7	7
101	Discovery of fungal surface NADases predominantly present in pathogenic species. Nature Communications, 2021, 12, 1631.	5.8	6
102	Chronic Occupational Mold Exposure Drives Expansion of Aspergillus-Reactive Type 1 and Type 2 T-Helper Cell Responses. Journal of Fungi (Basel, Switzerland), 2021, 7, 698.	1.5	6
103	The fungivorous amoeba <i>Protostelium aurantium</i> targets redox homeostasis and cell wall integrity during intracellular killing of <i>Candida parapsilosis</i> . Cellular Microbiology, 2021, 23, e13389.	1.1	6
104	PLB-985 Neutrophil-Like Cells as a Model To Study Aspergillus fumigatus Pathogenesis. MSphere, 2022, 7, e0094021.	1.3	6
105	The domestic pig as humanâ€relevant large animal model to study adaptive antifungal immune responses against airborne <i>Aspergillus fumigatus</i> . European Journal of Immunology, 2020, 50, 1712-1728.	1.6	5
106	Functional surface proteomic profiling reveals the host heatâ€shock protein <scp>A8</scp> as a mediator of <i>Lichtheimia corymbifera</i> recognition by murine alveolar macrophages. Environmental Microbiology, 2020, 22, 3722-3740.	1.8	5
107	Proteomic Differences between Azole-Susceptible and -Resistant <i>Aspergillus fumigatus</i> Strains. Advances in Microbiology, 2018, 08, 77-99.	0.3	5
108	Redox Proteomic Analysis Reveals Oxidative Modifications of Proteins by Increased Levels of Intracellular Reactive Oxygen Species during Hypoxia Adaptation of <i>Aspergillus fumigatus</i> . Proteomics, 2019, 19, e1800339.	1.3	4

#	Article	IF	CITATIONS
109	Comparative Secretome Analyses of Trichoderma/Arabidopsis Co-cultures Identify Proteins for Salt Stress, Plant Growth Promotion, and Root Colonization. Frontiers in Ecology and Evolution, 2022, 9, .	1.1	4
110	Proteomics and its Application to the Human-Pathogenic Fungi Aspergillus fumigatus and Candida albicans. , 2008, , 155-186.		2
111	Serological Proteome Analysis for the Characterization of Secreted Fungal Protein Antigens. Methods in Molecular Biology, 2021, 2260, 15-26.	0.4	2
112	Integration of Transcriptome and Proteome Data from Human-Pathogenic Fungi by Using a Data Warehouse. , 0, .		1
113	PD30-08 URINE PROTEIN PROFILING IDENTIFIED ALPHA-1-MICROGLOBULIN AND HAPTOGLOBIN AS BIOMARKERS FOR EARLY DIAGNOSIS OF ACUTE ALLOGRAFT REJECTION FOLLOWING KIDNEY TRANSPLANTATION. Journal of Urology, 2014, 191, .	0.2	0
114	Back cover: Immunoproteomics of Aspergillus for the development of biomarkers and immunotherapies. Proteomics - Clinical Applications, 2016, 10, NA-NA.	0.8	0
115	Complement receptor 3 directs release of anti-inflammatory microvesicels by monocytes. Molecular Immunology, 2018, 102, 160.	1.0	0
116	Front Cover: Redox Proteomic Analysis Reveals Oxidative Modifications of Proteins by Increased Levels of Intracellular Reactive Oxygen Species during Hypoxia Adaptation of Aspergillus fumigatus. Proteomics, 2019, 19, 1970031.	1.3	0
117	CcpA- and Shm2-Pulsed Myeloid Dendritic Cells Induce T-Cell Activation and Enhance the Neutrophilic Oxidative Burst Response to Aspergillus fumigatus. Frontiers in Immunology, 2021, 12, 659752.	2.2	0
118	Cover Image: Candidalysin delivery to the invasion pocket is critical for host epithelial damage induced by <i>Candida albicans</i> (Cellular Microbiology 10/2021). Cellular Microbiology, 2021, 23, e13393.	1.1	0
119	Cover Image: The fungivorous amoeba <i>Protostelium aurantium</i> targets redox homeostasis and cell wall integrity during intracellular killing of <i>Candida parapsilosis</i> (Cellular Microbiology) Tj ETQq1 1 0.7	784 B 14 rg	BT Øverlock