Tymoteusz Ciuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6937759/publications.pdf

Version: 2024-02-01

414414 516710 1,029 41 16 32 citations h-index g-index papers 41 41 41 1673 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	4.4	333
2	Properties of Chemical Vapor Deposition Graphene Transferred by High-Speed Electrochemical Delamination. Journal of Physical Chemistry C, 2013, 117, 20833-20837.	3.1	72
3	Negative Kerr Nonlinearity of Graphene as seen via Chirped-Pulse-Pumped Self-Phase Modulation. Physical Review Applied, 2016, 6, .	3.8	68
4	Graphene's nonlinear-optical physics revealed through exponentially growing self-phase modulation. Nature Communications, 2018, 9, 2675.	12.8	67
5	Sensitivity and Offset Voltage Testing in the Hall-Effect Sensors Made of Graphene. Advances in Intelligent Systems and Computing, 2014, , 631-640.	0.6	62
6	Fabrication and applications of multi-layer graphene stack on transparent polymer. Applied Physics Letters, 2017, 110, .	3.3	46
7	Growing graphene on polycrystalline copper foils by ultra-high vacuum chemical vapor deposition. Carbon, 2014, 78, 347-355.	10.3	41
8	Statistics of epitaxial graphene for Hall effect sensors. Carbon, 2015, 93, 1042-1049.	10.3	34
9	A W-band MMIC Resistive Mixer Based on Epitaxial Graphene FET. IEEE Microwave and Wireless Components Letters, 2017, 27, 168-170.	3.2	33
10	Graphene FET Gigabit ON–OFF Keying Demodulator at 96 GHz. IEEE Electron Device Letters, 2016, 37, 333-336.	3.9	29
11	Charge carrier concentration and offset voltage in quasi-free-standing monolayer chemical vapor deposition graphene on SiC. Carbon, 2016, 101, 431-438.	10.3	28
12	Step-edge-induced resistance anisotropy in quasi-free-standing bilayer chemical vapor deposition graphene on SiC. Journal of Applied Physics, 2014, 116, .	2.5	27
13	Laser ablation- and plasma etching-based patterning of graphene on silicon-on-insulator waveguides. Optics Express, 2015, 23, 26639.	3.4	23
14	High-Temperature Hall Effect Sensor Based on Epitaxial Graphene on High-Purity Semiinsulating 4H-SiC. IEEE Transactions on Electron Devices, 2019, 66, 3134-3138.	3.0	22
15	Low-noise epitaxial graphene on SiC Hall effect element for commercial applications. Applied Physics Letters, 2016, 108, .	3.3	21
16	Thermally activated double-carrier transport in epitaxial graphene on vanadium-compensated 6H-SiC as revealed by Hall effect measurements. Carbon, 2018, 139, 776-781.	10.3	16
17	Graphene on SiC as a promising platform for magnetic field detection under neutron irradiation. Applied Surface Science, 2022, 590, 152992.	6.1	13
18	Complex Conductivity of YBCO Films in Normal and Superconducting States Probed by Microwave Measurements. IEEE Transactions on Applied Superconductivity, 2013, 23, 1501011-1501011.	1.7	12

#	Article	lF	Citations
19	Optical-quality controllable wet-chemical doping of graphene through a uniform, transparent and low-roughness F4-TCNQ/MEK layer. RSC Advances, 2016, 6, 104491-104501.	3.6	10
20	The impact of partial H intercalation on the quasi-free-standing properties of graphene on SiC(0001). Applied Surface Science, 2021, 541, 148668.	6.1	10
21	Enhancement of graphene-related and substrate-related Raman modes through dielectric layer deposition. Applied Physics Letters, 2022, 120, .	3.3	9
22	Microwave complex conductivity of the YBCO thin films as a function of static external magnetic field. Applied Physics Letters, 2014, 104, .	3.3	8
23	Effect of oxidation temperature on the inhomogeneity of chemical composition and density in nanometric SiO ₂ films grown on 4H-SiC. Journal of Materials Chemistry C, 2021, 9, 4393-4404.	5.5	7
24	Determining the number of graphene layers based on Raman response of the SiC substrate. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134, 114853.	2.7	6
25	Quasi-Free-Standing Bilayer Graphene Hall-Effect Sensor. IEEE Transactions on Magnetics, 2019, 55, 1-4.	2.1	5
26	Enhanced Raman spectra of hydrogen-intercalated quasi-free-standing monolayer graphene on 4H-SiC(0001). Physica E: Low-Dimensional Systems and Nanostructures, 2020, 117, 113746.	2.7	5
27	Highly-doped p-type few-layer graphene on UID off-axis homoepitaxial 4H–SiC. Current Applied Physics, 2021, 27, 17-24.	2.4	5
28	Contamination-induced inhomogeneity of noise sources distribution in Al2O3-passivated quasi-free-standing graphene on 4H-SiC(0001). Physica E: Low-Dimensional Systems and Nanostructures, 2022, 142, 115264.	2.7	5
29	The Comparison of InSb-Based Thin Films and Graphene on SiC for Magnetic Diagnostics under Extreme Conditions. Sensors, 2022, 22, 5258.	3.8	4
30	Localized optical-quality doping of graphene on silicon waveguides through a TFSA-containing polymer matrix. Journal of Materials Chemistry C, 2018, 6, 10739-10750.	5.5	2
31	Functional Properties of Monolayer and Bilayer Graphene Hall-Effect Sensors. Acta Physica Polonica A, 2017, 131, 1250-1254.	0.5	2
32	Graphene Based Flow Sensors. Acta Physica Polonica A, 2014, 126, 1209-1212.	0.5	1
33	Direct graphene growth on GaN and Au materials using the PECVD method. AIP Conference Proceedings, 2021, , .	0.4	1
34	Temperature Dependence of Functional Properties of Graphene Hall-Effect Sensors Grown on Si Face and C Face of 4H-SiC Substrate. Advances in Intelligent Systems and Computing, 2015, , 111-120.	0.6	1
35	Influence of Protective Layer on the Functional Properties of Monolayer and Bilayer Graphene Hall-Effect Sensors. Advances in Intelligent Systems and Computing, 2015, , 101-109.	0.6	1
36	Patterning of graphene on silicon-on-insulator waveguides through laser ablation and plasma etching. , $2016, , .$		0

3

Tymoteusz Ciuk

#	Article	IF	CITATIONS
37	Extra-ordinary nonlinear-optical behavior in silica-core waveguides covered with graphene. , 2018, , .		O
38	Magnetophonon resonance on the phonon frequency difference in quasi-free-standing graphene. Physical Review B, 2021, 103, .	3.2	0
39	Measuring of Electric Parameters of Graphene in Presence of Temperature Gradient. Acta Physica Polonica A, 2015, 128, 166-169.	0.5	O
40	Demystifying the Nonlinear-Optical Physics of Graphene. , 2019, , .		0
41	Homoepitaksja wÄ™glika krzemu dla przyrzÄ…dów mocy w Sieci Badawczej Åukasiewicz - ITME. Przeglad Elektrotechniczny, 2019, 1, 156-158.	0.2	0