Sanjay Gupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6937411/publications.pdf Version: 2024-02-01

		15504	23533
171	13,148	65	111
papers	citations	h-index	g-index
170	1=0	1-0	1.404.4
1/3	1/3	1/3	14864
all docs	docs citations	times ranked	citing authors
all docs	173 docs citations	173 times ranked	14864 citing authors

SANIAV CUDTA

#	Article	IF	CITATIONS
1	Apigenin: A Promising Molecule for Cancer Prevention. Pharmaceutical Research, 2010, 27, 962-978.	3.5	642
2	Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma. Prostate, 2000, 42, 73-78.	2.3	465
3	Green Tea Polyphenol Epigallocatechin-3-Gallate Differentially Modulates Nuclear Factor κB in Cancer Cells versus Normal Cells. Archives of Biochemistry and Biophysics, 2000, 376, 338-346.	3.0	423
4	Chamomile: A herbal medicine of the past with a bright future (Review). Molecular Medicine Reports, 2010, 3, 895-901.	2.4	343
5	Role of p53 and NF-κB in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells. Oncogene, 2003, 22, 4851-4859.	5.9	321
6	Activation of PI3K-Akt signaling pathway promotes prostate cancer cell invasion. International Journal of Cancer, 2007, 121, 1424-1432.	5.1	304
7	Oral Consumption of Green Tea Polyphenols Inhibits Insulin-Like Growth Factor-I–Induced Signaling in an Autochthonous Mouse Model of Prostate Cancer. Cancer Research, 2004, 64, 8715-8722.	0.9	281
8	Involvement of nuclear factor-kappa B, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells. Oncogene, 2002, 21, 3727-3738.	5.9	272
9	Molecular pathway for (â~')-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells. Archives of Biochemistry and Biophysics, 2003, 410, 177-185.	3.0	271
10	Growth Inhibition, Cell-Cycle Dysregulation, and Induction of Apoptosis by Green Tea Constituent (-)-Epigallocatechin-3-gallate in Androgen-Sensitive and Androgen-Insensitive Human Prostate Carcinoma Cells. Toxicology and Applied Pharmacology, 2000, 164, 82-90.	2.8	268
11	Selective Growth-Inhibitory, Cell-Cycle Deregulatory and Apoptotic Response of Apigenin in Normal versus Human Prostate Carcinoma Cells. Biochemical and Biophysical Research Communications, 2001, 287, 914-920.	2.1	247
12	Cyclooxygenase-2 and prostate carcinogenesis. Cancer Letters, 2003, 191, 125-135.	7.2	222
13	Essential role of caspases in epigallocatechin-3-gallate-mediated inhibition of nuclear factor kappaB and induction of apoptosis. Oncogene, 2004, 23, 2507-2522.	5.9	221
14	Nuclear Factor-κB/p65 (Rel A) Is Constitutively Activated in Human Prostate Adenocarcinoma and Correlates with Disease Progression. Neoplasia, 2004, 6, 390-400.	5.3	209
15	Cancer Epigenetics: An Introduction. Methods in Molecular Biology, 2015, 1238, 3-25.	0.9	195
16	Lipoxygenase-5 is overexpressed in prostate adenocarcinoma. Cancer, 2001, 91, 737-743.	4.1	191
17	PIK3CA/PTEN Mutations and Akt Activation As Markers of Sensitivity to Allosteric mTOR Inhibitors. Clinical Cancer Research, 2012, 18, 1777-1789.	7.0	191
18	Promoter demethylation and chromatin remodeling by green tea polyphenols leads to reâ€expression of GSTP1 in human prostate cancer cells. International Journal of Cancer, 2010, 126, 2520-2533.	5.1	181

#	Article	IF	CITATIONS
19	Green tea constituent epigallocatechin-3-gallate selectively inhibits COX-2 without affecting COX-1 expression in human prostate carcinoma cells. International Journal of Cancer, 2005, 113, 660-669.	5.1	170
20	Suppression of Prostate Carcinogenesis by Dietary Supplementation of Celecoxib in Transgenic Adenocarcinoma of the Mouse Prostate Model. Cancer Research, 2004, 64, 3334-3343.	0.9	169
21	Antiproliferative and Apoptotic Effects of Chamomile Extract in Various Human Cancer Cells. Journal of Agricultural and Food Chemistry, 2007, 55, 9470-9478.	5.2	167
22	Plant flavone apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: In vitro and in vivo study. Molecular Carcinogenesis, 2012, 51, 952-962.	2.7	167
23	Therapeutic effects of EGCG: a patent review. Expert Opinion on Therapeutic Patents, 2016, 26, 907-916.	5.0	167
24	Apigenin-induced Cell Cycle Arrest is Mediated by Modulation of MAPK, PI3K-Akt, and Loss of Cyclin D1 Associated Retinoblastoma Dephosphorylation in Human Prostate Cancer Cells. Cell Cycle, 2007, 6, 1102-1114.	2.6	161
25	Apigenin and cancer chemoprevention: progress, potential and promise (review). International Journal of Oncology, 2007, 30, 233-45.	3.3	159
26	Tocotrienol-rich fraction of palm oil induces cell cycle arrest and apoptosis selectively in human prostate cancer cells. Biochemical and Biophysical Research Communications, 2006, 346, 447-453.	2.1	157
27	The multifaceted role of glutathione S-transferases in cancer. Cancer Letters, 2018, 433, 33-42.	7.2	150
28	Apigenin inhibits prostate cancer progression in TRAMP mice via targeting PI3K/Akt/FoxO pathway. Carcinogenesis, 2014, 35, 452-460.	2.8	149
29	Suppression of Constitutive and Tumor Necrosis Factor α-Induced Nuclear Factor (NF)-κB Activation and Induction of Apoptosis by Apigenin in Human Prostate Carcinoma PC-3 Cells: Correlation with Down-Regulation of NF-κB-Responsive Genes. Clinical Cancer Research, 2004, 10, 3169-3178.	7.0	148
30	Chamomile, a novel and selective COX-2 inhibitor with anti-inflammatory activity. Life Sciences, 2009, 85, 663-669.	4.3	146
31	The Influence of Chronic Inflammation in Prostatic Carcinogenesis: A 5-Year Followup Study. Journal of Urology, 2006, 176, 1012-1016.	0.4	143
32	Apigenin and cancer chemoprevention: Progress, potential and promise (Review). International Journal of Oncology, 2007, 30, 233.	3.3	138
33	Green tea polyphenols causes cell cycle arrest and apoptosis in prostate cancer cells by suppressing class I histone deacetylases. Carcinogenesis, 2012, 33, 377-384.	2.8	137
34	Apigenin-induced prostate cancer cell death is initiated by reactive oxygen species and p53 activation. Free Radical Biology and Medicine, 2008, 44, 1833-1845.	2.9	135
35	The role of histone deacetylases in prostate cancer. Epigenetics, 2008, 3, 300-309.	2.7	130
36	Identification of potential natural inhibitors of SARS-CoV2 main protease by molecular docking and simulation studies. Journal of Biomolecular Structure and Dynamics, 2021, 39, 4334-4345.	3.5	129

#	Article	IF	CITATIONS
37	Constitutive activation of PI3K-Akt and NF-κB during prostate cancer progression in autochthonous transgenic mouse model. Prostate, 2005, 64, 224-239.	2.3	128
38	Plant Phytochemicals as Epigenetic Modulators: Role in Cancer Chemoprevention. AAPS Journal, 2014, 16, 151-163.	4.4	122
39	Differential Expression of S100A2 and S100A4 During Progression of Human Prostate Adenocarcinoma. Journal of Clinical Oncology, 2003, 21, 106-112.	1.6	120
40	Blockade of β-Catenin Signaling by Plant Flavonoid Apigenin Suppresses Prostate Carcinogenesis in TRAMP Mice. Cancer Research, 2007, 67, 6925-6935.	0.9	117
41	Dietary phytochemicals as epigenetic modifiers in cancer: Promise and challenges. Seminars in Cancer Biology, 2016, 40-41, 82-99.	9.6	117
42	Plant Flavone Apigenin: an Emerging Anticancer Agent. Current Pharmacology Reports, 2017, 3, 423-446.	3.0	117
43	Inhibition of the Wnt/β-Catenin Pathway Overcomes Resistance to Enzalutamide in Castration-Resistant Prostate Cancer. Cancer Research, 2018, 78, 3147-3162.	0.9	116
44	Molecular targets for apigenin-induced cell cycle arrest and apoptosis in prostate cancer cell xenograft. Molecular Cancer Therapeutics, 2006, 5, 843-852.	4.1	114
45	MicroRNAs in prostate cancer: Functional role as biomarkers. Cancer Letters, 2017, 407, 9-20.	7.2	114
46	Molecular mechanisms for apigeninâ€induced cellâ€cycle arrest and apoptosis of hormone refractory human prostate carcinoma DU145 cells. Molecular Carcinogenesis, 2004, 39, 114-126.	2.7	112
47	Tocotrienol-Rich Fraction of Palm Oil Activates p53, Modulates Bax/Bcl2 Ratio and Induces Apoptosis Independent of Cell Cycle Association. Cell Cycle, 2004, 3, 200-199.	2.6	110
48	Epigenetics and cancer. Journal of Applied Physiology, 2010, 109, 598-605.	2.5	106
49	Green Tea Constituent (â^)-Epigallocatechin-3-gallate Inhibits Topoisomerase I Activity in Human Colon Carcinoma Cells. Biochemical and Biophysical Research Communications, 2001, 288, 101-105.	2.1	98
50	Epigenetic induction of tissue inhibitor of matrix metalloproteinase-3 by green tea polyphenols in breast cancer cells. Molecular Carcinogenesis, 2015, 54, 485-499.	2.7	97
51	Extraction, Characterization, Stability and Biological Activity of Flavonoids Isolated from Chamomile Flowers. Molecular and Cellular Pharmacology, 2009, 1, 138-147.	1.7	93
52	EZH2: Not EZHY (Easy) to Deal. Molecular Cancer Research, 2014, 12, 639-653.	3.4	92
53	Apigenin induces apoptosis by targeting inhibitor of apoptosis proteins and Ku70–Bax interaction in prostate cancer. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 883-894.	4.9	90
54	Dietary Agents in the Chemoprevention of Prostate Cancer. Nutrition and Cancer, 2005, 53, 18-32.	2.0	89

#	Article	IF	CITATIONS
55	Suppression of NF-κB and NF-κB-Regulated Gene Expression by Apigenin through lκBα and IKK Pathway in TRAMP Mice. PLoS ONE, 2015, 10, e0138710.	2.5	86
56	Upâ€regulation of insulinâ€like growth factor binding proteinâ€3 by apigenin leads to growth inhibition and apoptosis of 22Rv1 xenograft in athymic nude mice. FASEB Journal, 2005, 19, 2042-2044.	0.5	83
5 7	Involvement of Bcl-2 and Bax in Photodynamic Therapy-mediated Apoptosis. Journal of Biological Chemistry, 2001, 276, 15481-15488.	3.4	82
58	Plant flavonoid apigenin inactivates Akt to trigger apoptosis in human prostate cancer: an in vitro and in vivo study. Carcinogenesis, 2008, 29, 2210-2217.	2.8	80
59	Apigenin blocks IKKα activation and suppresses prostate cancer progression. Oncotarget, 2015, 6, 31216-31232.	1.8	78
60	Role of the Retinoblastoma (pRb)–E2F/DP Pathway in Cancer Chemopreventive Effects of Green Tea Polyphenol Epigallocatechin-3-gallate. Archives of Biochemistry and Biophysics, 2002, 398, 125-131.	3.0	75
61	Highâ€fat diet increases NFâ€ÎºB signaling in the prostate of reporter mice. Prostate, 2011, 71, 147-156.	2.3	73
62	Chamomile: An anti-inflammatory agent inhibits inducible nitric oxide synthase expression by blocking RelA/p65 activity. International Journal of Molecular Medicine, 2010, 26, 935-40.	4.0	71
63	Protection against oxidative DNA damage and stress in human prostate by glutathione <i>S</i> â€ŧransferase P1. Molecular Carcinogenesis, 2014, 53, 8-18.	2.7	70
64	Betulinic acid suppresses constitutive and TNFαâ€induced NFâ€iºB activation and induces apoptosis in human prostate carcinoma PCâ€3 cells. Molecular Carcinogenesis, 2008, 47, 964-973.	2.7	69
65	Multifaceted role of EZH2 in breast and prostate tumorigenesis. Epigenetics, 2013, 8, 464-476.	2.7	69
66	Green tea polyphenols increase p53 transcriptional activity and acetylation by suppressing classÃ ⁻ Â;½I histone deacetylases. International Journal of Oncology, 2012, 41, 353-61.	3.3	67
67	Betulinic Acid-Mediated Apoptosis in Human Prostate Cancer Cells Involves p53 and Nuclear Factor-Kappa B (NF-IºB) Pathways. Molecules, 2017, 22, 264.	3.8	66
68	Deregulation of FoxO3a accelerates prostate cancer progression in TRAMP mice. Prostate, 2013, 73, 1507-1517.	2.3	62
69	Plant Flavone Apigenin Binds to Nucleic Acid Bases and Reduces Oxidative DNA Damage in Prostate Epithelial Cells. PLoS ONE, 2014, 9, e91588.	2.5	61
70	Synergistic Simvastatin and Metformin Combination Chemotherapy for Osseous Metastatic Castration-Resistant Prostate Cancer. Molecular Cancer Therapeutics, 2014, 13, 2288-2302.	4.1	60
71	Solanum nigrum: current perspectives on therapeutic properties. Alternative Medicine Review, 2011, 16, 78-85.	3.3	59
72	Chemoprevention of skin cancer: current status and future prospects. Cancer and Metastasis Reviews, 2002, 21, 363-380.	5.9	55

Sanjay Gupta

#	Article	IF	CITATIONS
73	Deregulation of FOXO3A during prostate cancer progression. International Journal of Oncology, 2009, 34, 1613-20.	3.3	55
74	The Chemopreventive and Chemotherapeutic Potentials of Tea Polyphenols. Current Pharmaceutical Biotechnology, 2012, 13, 191-199.	1.6	55
75	Highâ€fat diet activates proâ€inflammatory response in the prostate through association of Statâ€3 and NFâ€ÎºB. Prostate, 2012, 72, 233-243.	2.3	54
76	Chemokines and B cells in renal inflammation and allograft rejection. Frontiers in Bioscience - Scholar, 2009, S1, 13-22.	2.1	52
77	Prognostic significance of metastasis-associated protein S100A4 (Mts1) in prostate cancer progression and chemoprevention regimens in an autochthonous mouse model. Clinical Cancer Research, 2005, 11, 147-53.	7.0	51
78	Involvement of Fas (APO-1/CD-95) during Photodynamic-Therapy-Mediated Apoptosis in Human Epidermoid Carcinoma A431 Cells. Journal of Investigative Dermatology, 2000, 115, 1041-1046.	0.7	49
79	Green tea polyphenols-induced apoptosis in human osteosarcoma SAOS-2 cells involves a caspase-dependent mechanism with downregulation of nuclear factor-κB. Toxicology and Applied Pharmacology, 2006, 216, 11-19.	2.8	48
80	Apigenin suppresses insulinâ€like growth factor I receptor signaling in human prostate cancer: An in vitro and in vivo study. Molecular Carcinogenesis, 2009, 48, 243-252.	2.7	48
81	Cadmium-mediated induction of cellular defence mechanism: a novel example for the development of adaptive response against a toxicant Industrial Health, 1991, 29, 1-9.	1.0	47
82	Upregulation of SATB1 Is Associated with Prostate Cancer Aggressiveness and Disease Progression. PLoS ONE, 2013, 8, e53527.	2.5	46
83	Apigenin Attenuates Insulin-Like Growth Factor-I Signaling in an Autochthonous Mouse Prostate Cancer Model. Pharmaceutical Research, 2012, 29, 1506-1517.	3.5	45
84	Green tea–induced epigenetic reactivation of tissue inhibitor of matrix metalloproteinaseâ€3 suppresses prostate cancer progression through histoneâ€modifying enzymes. Molecular Carcinogenesis, 2019, 58, 1194-1207.	2.7	45
85	Green Tea Polyphenols Induce p53-Dependent and p53-Independent Apoptosis in Prostate Cancer Cells through Two Distinct Mechanisms. PLoS ONE, 2012, 7, e52572.	2.5	45
86	Dietary Flavones as Dual Inhibitors of DNA Methyltransferases and Histone Methyltransferases. PLoS ONE, 2016, 11, e0162956.	2.5	44
87	Simultaneous Detection of Oral Pathogens in Subgingival Plaque and Prostatic Fluid of Men With Periodontal and Prostatic Diseases. Journal of Periodontology, 2017, 88, 823-829.	3.4	44
88	Acquisition of tumorigenic potential and therapeutic resistance in CD133+ subpopulation of prostate cancer cells exhibiting stem-cell like characteristics. Cancer Letters, 2018, 430, 25-33.	7.2	42
89	Prostate cancer chemoprevention: Current status and future prospects. Toxicology and Applied Pharmacology, 2007, 224, 369-376.	2.8	41
90	Duloxetine: Review of Its Pharmacology, and Therapeutic Use in Depression and Other Psychiatric Disorders. Annals of Clinical Psychiatry, 2007, 19, 125-132.	0.6	40

#	Article	IF	CITATIONS
91	Cotargeting HSP90 and Its Client Proteins for Treatment of Prostate Cancer. Molecular Cancer Therapeutics, 2016, 15, 2107-2118.	4.1	39
92	Oxidative Stress and Antioxidant Status in High-Risk Prostate Cancer Subjects. Diagnostics, 2020, 10, 126.	2.6	38
93	IL-17 Expression by macrophages is associated with proliferative inflammatory atrophy lesions in prostate cancer patients. International Journal of Clinical and Experimental Pathology, 2011, 4, 552-65.	0.5	38
94	Involvement of retinoblastoma (Rb) and E2F transcription factors during photodynamic therapy of human epidermoid carcinoma cells A431. Oncogene, 1999, 18, 1891-1896.	5.9	37
95	Identification of FDA approved drugs and nucleoside analogues as potential SARS-CoV-2 A1pp domain inhibitor: An in silico study. Computers in Biology and Medicine, 2021, 130, 104185.	7.0	36
96	Emerging role of ZBTB7A as an oncogenic driver and transcriptional repressor. Cancer Letters, 2020, 483, 22-34.	7.2	33
97	Phytochemicals present in Indian ginseng possess potential to inhibit SARS-CoV-2 virulence: A molecular docking and MD simulation study. Microbial Pathogenesis, 2021, 157, 104954.	2.9	33
98	Induction of heme oxygenase-1 by chamomile protects murine macrophages against oxidative stress. Life Sciences, 2012, 90, 1027-1033.	4.3	30
99	Dietary terpenoids and prostate cancer chemoprevention. Frontiers in Bioscience - Landmark, 2008, Volume, 3457.	3.0	29
100	Selective cell cycle arrest and induction of apoptosis in human prostate cancer cells by a polyphenol-rich extract of Solanum nigrum. International Journal of Molecular Medicine, 2012, 29, 277-84.	4.0	28
101	Molecular imaging of NFâ€kappaB in prostate tissue after systemic administration of ILâ€1β. Prostate, 2008, 68, 34-41.	2.3	27
102	Stable and discriminating features are predictive of cancer presence and Gleason grade in radical prostatectomy specimens: a multi-site study. Scientific Reports, 2018, 8, 14918.	3.3	27
103	Complex Systems Biology Approach in Connecting PI3K-Akt and NF-κB Pathways in Prostate Cancer. Cells, 2019, 8, 201.	4.1	27
104	llâ€l βâ€induced postâ€transition effect of NFâ€kappaB provides timeâ€dependent wave of signals for initial pha of intrapostatic inflammation. Prostate, 2009, 69, 633-643.	se 2.3	26
105	Obesityâ€initiated metabolic syndrome promotes urinary voiding dysfunction in a mouse model. Prostate, 2016, 76, 964-976.	2.3	26
106	Emerging Role of Migration and Invasion Enhancer 1 (MIEN1) in Cancer Progression and Metastasis. Frontiers in Oncology, 2019, 9, 868.	2.8	26
107	3-O-(E)-p-Coumaroyl betulinic acid possess anticancer activity and inhibit Notch signaling pathway in breast cancer cells and mammosphere. Chemico-Biological Interactions, 2020, 328, 109200.	4.0	26
108	Androgen Deprivation Induces Transcriptional Reprogramming in Prostate Cancer Cells to Develop Stem Cell-Like Characteristics. International Journal of Molecular Sciences, 2020, 21, 9568.	4.1	26

#	Article	IF	CITATIONS
109	Emerging targets in cancer drug resistance. Cancer Drug Resistance (Alhambra, Calif), 2019, 2, 161-177.	2.1	25
110	Green tea and prostate cancer. Urologic Clinics of North America, 2002, 29, 49-57.	1.8	23
111	Final results of a dose escalation protocol of stereotactic body radiotherapy for poor surgical candidates with localized renal cell carcinoma. Radiotherapy and Oncology, 2021, 155, 138-143.	0.6	23
112	Neuroendocrine differentiation in prostate cancer: key epigenetic players. Translational Cancer Research, 2017, 6, S104-S108.	1.0	23
113	Chemoprevention of Skin Cancer through Natural Agents. Skin Pharmacology and Physiology, 2001, 14, 373-385.	2.5	22
114	Metabolic Reprogramming and Predominance of Solute Carrier Genes during Acquired Enzalutamide Resistance in Prostate Cancer. Cells, 2020, 9, 2535.	4.1	22
115	Dual targeting of EZH2 and androgen receptor as a novel therapy for castration-resistant prostate cancer. Toxicology and Applied Pharmacology, 2020, 404, 115200.	2.8	20
116	Chamomile Confers Protection against Hydrogen Peroxideâ€Induced Toxicity through Activation of Nrf2â€Mediated Defense Response. Phytotherapy Research, 2013, 27, 118-125.	5.8	17
117	MicroRNA Regulating Glutathione S-Transferase P1 in Prostate Cancer. Current Pharmacology Reports, 2015, 1, 79-88.	3.0	16
118	Role of ZBTB7A zinc finger in tumorigenesis and metastasis. Molecular Biology Reports, 2021, 48, 4703-4719.	2.3	16
119	Inflammatory Signaling Involved in High-Fat Diet Induced Prostate Diseases. , 2015, 2, .		16
120	Tissue Specific Dysregulated Protein Subnetworks in Type 2 Diabetic Bladder Urothelium and Detrusor Muscle. Molecular and Cellular Proteomics, 2015, 14, 635-645.	3.8	15
121	Influence of chronic inflammation on Bcl-2 and PCNA expression in prostate needle biopsy specimens. Oncology Letters, 2017, 14, 3927-3934.	1.8	15
122	Role of class I histone deacetylases in the regulation of maspin expression in prostate cancer. Molecular Carcinogenesis, 2020, 59, 955-966.	2.7	15
123	Computationally Derived Cribriform Area Index from Prostate Cancer Hematoxylin and Eosin Images Is Associated with Biochemical Recurrence Following Radical Prostatectomy and Is Most Prognostic in Gleason Grade Group 2. European Urology Focus, 2021, 7, 722-732.	3.1	15
124	Differentially Expressed Genes and Molecular Pathways in an Autochthonous Mouse Prostate Cancer Model. Frontiers in Genetics, 2019, 10, 235.	2.3	14
125	Integrated analysis of miRNA landscape and cellular networking pathways in stage-specific prostate cancer. PLoS ONE, 2019, 14, e0224071.	2.5	14
126	Drug Resistance Mechanism of M46I-Mutation-Induced Saquinavir Resistance in HIV-1 Protease Using Molecular Dynamics Simulation and Binding Energy Calculation. Viruses, 2022, 14, 697.	3.3	14

#	Article	IF	CITATIONS
127	MicroRNA Targeting Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Cancer. Antioxidants and Redox Signaling, 2020, 32, 267-284.	5.4	13
128	Computer extracted gland features from H&E predicts prostate cancer recurrence comparably to a genomic companion diagnostic test: a large multi-site study. Npj Precision Oncology, 2021, 5, 35.	5.4	13
129	Nuclear Factor-κB/p65 (Rel A) Is Constitutively Activated in Human Prostate Adenocarcinoma and Correlates with Disease Progression. Neoplasia, 2004, 6, 390-400.	5.3	13
130	Resistance to second generation antiandrogens in prostate cancer: pathways and mechanisms. , 2020, 3, 742-761.		13
131	Targeting Breast Cancer-Derived Stem Cells by Dietary Phytochemicals: A Strategy for Cancer Prevention and Treatment. Cancers, 2022, 14, 2864.	3.7	13
132	Waist circumference and risk of lower urinary tract symptoms: a meta-analysis. Aging Male, 2014, 17, 223-229.	1.9	11
133	In silico study of chikungunya polymerase, a potential target for inhibitors. VirusDisease, 2019, 30, 394-402.	2.0	11
134	Health Promoting Benefits of Chamomile in the Elderly Population. , 2009, , 135-158.		9
135	Apigenin and Cancer Chemoprevention. , 2010, , 663-689.		9
136	Novel approach to therapeutic targeting of castration-resistant prostate cancer. Medical Hypotheses, 2020, 140, 109639.	1.5	9
137	A candidate triple-negative breast cancer vaccine design by targeting clinically relevant cell surface markers: an integrated immuno and bio-informatics approach. 3 Biotech, 2022, 12, 72.	2.2	9
138	Role of solute carrier transporters SLC25A17 and SLC27A6 in acquired resistance to enzalutamide in castrationâ€resistant prostate cancer. Molecular Carcinogenesis, 2022, 61, 397-407.	2.7	8
139	Molecular Imaging of Nuclear Factor-ήB in Bladder as a Primary Regulator of Inflammatory Response. Journal of Urology, 2012, 187, 330-337.	0.4	7
140	Presence of Specific Periodontal Pathogens in Prostate Gland Diagnosed With Chronic Inflammation and Adenocarcinoma. Cureus, 2021, 13, e17742.	0.5	7
141	Dietary phytochemicals and their role in cancer chemoprevention. , 2021, 7, .		7
142	Association between oral pathogens and prostate cancer: building the relationship. American Journal of Clinical and Experimental Urology, 2019, 7, 1-10.	0.4	7
143	Efficacy of Liposome Encapsulated Triethylenetetraamine Hexaacetic Acid (TTHA) against Cadmium Intoxication: Role of Lipid Composition Industrial Health, 1995, 33, 83-88.	1.0	6
144	Effect of intratracheal injection of zinc oxide dust in guinea pigs. Toxicology, 1986, 38, 197-202.	4.2	5

Sanjay Gupta

#	Article	IF	CITATIONS
145	Mobilization of cadmium by liposome-encapsulated meso-2,3-dimercaptosuccinic acid in pre-exposed mice. Toxicology Letters, 1991, 59, 125-131.	0.8	5
146	Deep sequencing of small RNA libraries from human prostate epithelial and stromal cells reveal distinct pattern of microRNAs primarily predicted to target growth factors. Cancer Letters, 2016, 371, 262-273.	7.2	5
147	Influence of Size of Liposomes in Potentiating the Efficacy of Encapsulated Triethylenetetramine-hexaacetic Acid(TTHA) Against Cadmium Intoxication Industrial Health, 1993, 31, 29-33.	1.0	5
148	Withania somnifera phytochemicals possess SARS-CoV-2 RdRp and human TMPRSS2 protein binding potential. Vegetos, 2023, 36, 701-720.	1.5	5
149	Effect of liposome encapsulated meso-2,3-dimercaptosuccinic acid (DMSA) on biochemical and trace metal alterations in cadmium exposed rats. Bulletin of Environmental Contamination and Toxicology, 1991, 47, 827-833.	2.7	4
150	Genetic Abnormalities in Prostate Cancer. Current Genomics, 2004, 5, 67-83.	1.6	4
151	Exacerbation of Nickel Induced Oxidative Response by Vitamin E Industrial Health, 1995, 33, 143-152.	1.0	4
152	Chamomile. , 2015, , 171-183.		3
153	Hallmarks of cancer– focus on RNA metabolism and regulatory noncoding RNAs. Cancer Letters, 2018, 420, 208-209.	7.2	3
154	Dietary and Lifestyle Factors in Epigenetic Regulation of Cancer. , 2019, , 361-394.		3
155	The Role of Chronic Inflammation in Prostate Carcinogenesis: A Follow-Up Study. Annals of Urologic Oncology, 2019, , 1-8.	0.1	3
156	Maspin Expression and its Metastasis Suppressing Function in Prostate Cancer. , 2016, , .		2
157	Involvement of nuclear factor-kappa B, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells. , 0, .		2
158	Chapter 5 Green Tea Polyphenols in the Prevention and Therapy of Prostate Cancer. Traditional Herbal Medicines for Modern Times, 2016, , 111-124.	0.1	2
159	Apigenin Modulates Insulin-like Growth Factor Axis: Implications for Prevention and Therapy of Prostate Cancer. Current Drug Targets, 2012, , .	2.1	2
160	Alkaline phosphatase as a model for studying metal-protein interactions in pulmonary toxicity. Environmental Research, 1987, 43, 24-30.	7.5	1
161	Modulation of liposomal lipid peroxidation in presence of nickel by incorporation of a-tocopherol in the bilayer. Journal of Microencapsulation, 1991, 8, 215-220.	2.8	1
162	Serâ€486/491 phosphorylation and inhibition of AMPKα activity is positively associated with Gleason score, metastasis, and castrationâ€resistance in prostate cancer: A retrospective clinical study. Prostate, 2018, 78, 714-723.	2.3	1

#	Article	IF	CITATIONS
163	Abstract 3804: Transcriptional repression of androgen receptor in human prostate cancer cells by plant flavone apigenin. , 2010, , .		1
164	Noncoding RNAs and Its Implication as Biomarkers in Renal Cell Carcinoma: A Systematic Analysis. Annals of Urologic Oncology, 2019, , 1-11.	0.1	1
165	A pilot dynamic analysis of formative factors of nephrolithiasis related to metabolic syndrome: evidence in a rat model. Renal Failure, 2022, 44, 1134-1143.	2.1	1
166	Current Status and Future Prospects of Nutraceuticals in Prostate Cancer. , 2012, , 77-109.		0
167	Nutritional and Lifestyle Impact on Epigenetics and Cancer. Energy Balance and Cancer, 2016, , 75-107.	0.2	0
168	Dietary Phytochemicals as Epigenetic Modulators in Cancer. , 2012, , 493-519.		0
169	Plant Polyphenols as Epigenetic Modulators of Glutathione S-Transferase P1 Activity. , 2013, , 231-250.		0
170	Chemopreventive Action of Green Tea Polyphenols (Molecular-Biological Mechanisms). , 2013, , 83-118.		0
171	Combination of nuclear NF-kB/p65 localization and gland morphological features from surgical specimens appears to be predictive of early biochemical recurrence in prostate cancer patients. , 2018, , .		0