## Qing-Fang Guan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6937135/publications.pdf Version: 2024-02-01



OINC-FANC CHAN

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Edible, Ultrastrong, and Microplasticâ€Free Bacterial Celluloseâ€Based Straws by Biosynthesis. Advanced<br>Functional Materials, 2022, 32, .                                                         | 14.9 | 42        |
| 2  | Sustainable Multiscale High-Haze Transparent Cellulose Fiber Film via a Biomimetic Approach. , 2022, 4,<br>87-92.                                                                                    |      | 32        |
| 3  | Nacreâ€Inspired Nanocomposite Films with Enhanced Mechanical and Barrier Properties by Selfâ€Assembly<br>of Poly(Lactic Acid) Coated Mica Nanosheets. Advanced Functional Materials, 2022, 32, .     | 14.9 | 48        |
| 4  | Growing Bacterial Cellulose-Based Sustainable Functional Bulk Nanocomposites by Biosynthesis:<br>Recent Advances and Perspectives. Accounts of Materials Research, 2022, 3, 608-619.                 | 11.7 | 7         |
| 5  | Emerging Bioinspired Artificial Woods. Advanced Materials, 2021, 33, e2001086.                                                                                                                       | 21.0 | 54        |
| 6  | Regenerated isotropic wood. National Science Review, 2021, 8, nwaa230.                                                                                                                               | 9.5  | 55        |
| 7  | Nacre-Inspired Sustainable Coatings with Remarkable Fire-Retardant and Energy-Saving Cooling Performance. , 2021, 3, 243-248.                                                                        |      | 33        |
| 8  | Bio-Inspired Lotus-Fiber-like Spiral Hydrogel Bacterial Cellulose Fibers. Nano Letters, 2021, 21, 952-958.                                                                                           | 9.1  | 97        |
| 9  | Sustainable Double-Network Structural Materials for Electromagnetic Shielding. Nano Letters, 2021, 21, 2532-2537.                                                                                    | 9.1  | 83        |
| 10 | Sustainable Cellulose-Nanofiber-Based Hydrogels. ACS Nano, 2021, 15, 7889-7898.                                                                                                                      | 14.6 | 84        |
| 11 | Microplastics release from victuals packaging materials during daily usage. EcoMat, 2021, 3, e12107.                                                                                                 | 11.9 | 31        |
| 12 | Biomimetic Design and Mass Production of Sustainable Multiscale Cellulose Fibersâ€Based Hierarchical<br>Filter Materials for Protective Clothing. Advanced Materials Technologies, 2021, 6, 2100193. | 5.8  | 15        |
| 13 | Sustainable 3D Structural Binder for Highâ€Performance Supercapacitor by Biosynthesis Process.<br>Advanced Functional Materials, 2021, 31, 2105070.                                                  | 14.9 | 32        |
| 14 | Strengthening and Toughening Hierarchical Nanocellulose <i>via</i> Humidity-Mediated Interface.<br>ACS Nano, 2021, 15, 1310-1320.                                                                    | 14.6 | 85        |
| 15 | Plant Cellulose Nanofiber-Derived Structural Material with High-Density Reversible Interaction Networks for Plastic Substitute. Nano Letters, 2021, 21, 8999-9004.                                   | 9.1  | 32        |
| 16 | Ultra-Strong, Ultra-Tough, Transparent, and Sustainable Nanocomposite Films for Plastic Substitute.<br>Matter, 2020, 3, 1308-1317.                                                                   | 10.0 | 91        |
| 17 | An all-natural bioinspired structural material for plastic replacement. Nature Communications, 2020, 11, 5401.                                                                                       | 12.8 | 155       |
| 18 | Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient. Science Advances, 2020, 6, eaaz1114.                               | 10.3 | 196       |

QING-FANG GUAN

| #  | Article                                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Sustainable Wood-Based Hierarchical Solar Steam Generator: A Biomimetic Design with Reduced<br>Vaporization Enthalpy of Water. Nano Letters, 2020, 20, 5699-5704.                                                                                                                | 9.1  | 162       |
| 20 | A superspreading layering process enabled high performance layered nanocomposites. Science China<br>Chemistry, 2020, 63, 873-874.                                                                                                                                                | 8.2  | 3         |
| 21 | A general aerosol-assisted biosynthesis of functional bulk nanocomposites. National Science Review, 2019, 6, 64-73.                                                                                                                                                              | 9.5  | 44        |
| 22 | Coupling Microbial Growth with Nanoparticles: A Universal Strategy To Produce Functional Fungal<br>Hyphae Macrospheres. ACS Applied Materials & Interfaces, 2016, 8, 12693-12701.                                                                                                | 8.0  | 36        |
| 23 | Supercapacitors: Bacterialâ€Celluloseâ€Derived Carbon Nanofiber@MnO <sub>2</sub> and Nitrogenâ€Doped<br>Carbon Nanofiber Electrode Materials: An Asymmetric Supercapacitor with High Energy and Power<br>Density (Adv. Mater. 34/2013). Advanced Materials, 2013, 25, 4816-4816. | 21.0 | 3         |
| 24 | Bacterialâ€Celluloseâ€Derived Carbon Nanofiber@MnO <sub>2</sub> and Nitrogenâ€Doped Carbon<br>Nanofiber Electrode Materials: An Asymmetric Supercapacitor with High Energy and Power Density.<br>Advanced Materials, 2013, 25, 4746-4752.                                        | 21.0 | 590       |
| 25 | Highly conductive and stretchable conductors fabricated from bacterial cellulose. NPG Asia<br>Materials, 2012, 4, e19-e19.                                                                                                                                                       | 7.9  | 217       |
| 26 | Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for<br>Supercapacitors. ACS Nano, 2012, 6, 7092-7102.                                                                                                                                    | 14.6 | 1,572     |
| 27 | Macroscopicâ€Scale Template Synthesis of Robust Carbonaceous Nanofiber Hydrogels and Aerogels and Their Applications. Angewandte Chemie - International Edition, 2012, 51, 5101-5105.                                                                                            | 13.8 | 609       |
| 28 | Highly Active Carbonaceous Nanofibers: A Versatile Scaffold for Constructing Multifunctional<br>Free-Standing Membranes. ACS Nano, 2011, 5, 8148-8161.                                                                                                                           | 14.6 | 117       |