Kiyotomi Kaneda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6936863/publications.pdf Version: 2024-02-01

	14644	22808
13,914	66	112
citations	h-index	g-index
212	212	10183
docs citations	times ranked	citing authors
	citations 212	13,914 66 citations h-index 212 212

#	Article	IF	CITATIONS
1	Hydroxyapatite-Supported Palladium Nanoclusters:Â A Highly Active Heterogeneous Catalyst for Selective Oxidation of Alcohols by Use of Molecular Oxygen. Journal of the American Chemical Society, 2004, 126, 10657-10666.	6.6	904
2	Mgâ^'Al Mixed Oxides as Highly Active Acidâ^'Base Catalysts for Cycloaddition of Carbon Dioxide to Epoxides. Journal of the American Chemical Society, 1999, 121, 4526-4527.	6.6	674
3	Creation of a Monomeric Ru Species on the Surface of Hydroxyapatite as an Efficient Heterogeneous Catalyst for Aerobic Alcohol Oxidation. Journal of the American Chemical Society, 2000, 122, 7144-7145.	6.6	436
4	Controlled Synthesis of Hydroxyapatite-Supported Palladium Complexes as Highly Efficient Heterogeneous Catalysts. Journal of the American Chemical Society, 2002, 124, 11572-11573.	6.6	390
5	Oxidantâ€Free Alcohol Dehydrogenation Using a Reusable Hydrotalciteâ€Supported Silver Nanoparticle Catalyst. Angewandte Chemie - International Edition, 2008, 47, 138-141.	7.2	274
6	Gold nanoparticle catalysts for selective hydrogenations. Green Chemistry, 2013, 15, 2636.	4.6	267
7	Design of a Silver–Cerium Dioxide Core–Shell Nanocomposite Catalyst for Chemoselective Reduction Reactions. Angewandte Chemie - International Edition, 2012, 51, 136-139.	7.2	258
8	Vanadium-catalyzed epoxidation of cyclic allylic alcohols. Stereoselectivity and stereocontrol mechanism. Journal of the American Chemical Society, 1979, 101, 159-169.	6.6	255
9	A Ruthenium-Grafted Hydrotalcite as a Multifunctional Catalyst for Direct α-Alkylation of Nitriles with Primary Alcohols. Journal of the American Chemical Society, 2004, 126, 5662-5663.	6.6	248
10	Convenient and Efficient Pd-Catalyzed Regioselective Oxyfunctionalization of Terminal Olefins by Using Molecular Oxygen as Sole Reoxidant. Angewandte Chemie - International Edition, 2006, 45, 481-485.	7.2	241
11	Catalysis of a hydroxyapatite-bound Ru complex: efficient heterogeneous oxidation of primary amines to nitriles in the presence of molecular oxygen. Chemical Communications, 2001, , 461-462.	2.2	212
12	Heterogeneous Oxidation of Allylic and Benzylic Alcohols Catalyzed by Ruâ^'Alâ^'Mg Hydrotalcites in the Presence of Molecular Oxygen. Journal of Organic Chemistry, 1998, 63, 1750-1751.	1.7	198
13	Nucleophilic Substitution Reactions of Alcohols with Use of Montmorillonite Catalysts as Solid BrĀ,nsted Acids. Journal of Organic Chemistry, 2007, 72, 6006-6015.	1.7	198
14	Efficient Aerobic Oxidation of Alcohols using a Hydrotalcite‣upported Gold Nanoparticle Catalyst. Advanced Synthesis and Catalysis, 2009, 351, 1890-1896.	2.1	188
15	One-step Synthesis of Core-Gold/Shell-Ceria Nanomaterial and Its Catalysis for Highly Selective Semihydrogenation of Alkynes. Journal of the American Chemical Society, 2015, 137, 13452-13455.	6.6	185
16	An Acidic Layered Clay Is Combined with A Basic Layered Clay for One-Pot Sequential Reactions. Journal of the American Chemical Society, 2005, 127, 9674-9675.	6.6	182
17	Copper nanoparticles on hydrotalcite as a heterogeneous catalyst for oxidant-free dehydrogenation of alcohols. Chemical Communications, 2008, , 4804.	2.2	180
18	Supported Silverâ€Nanoparticle atalyzed Highly Efficient Aqueous Oxidation of Phenylsilanes to Silanols. Angewandte Chemie - International Edition, 2008, 47, 7938-7940.	7.2	177

#	Article	IF	CITATIONS
19	Supported silver nanoparticle catalyst for selective hydration of nitriles to amides in water. Chemical Communications, 2009, , 3258.	2.2	164
20	Highly Selective Hydrogenolysis of Glycerol to 1,3â€Propanediol over a Boehmiteâ€Supported Platinum/Tungsten Catalyst. ChemSusChem, 2013, 6, 1345-1347.	3.6	155
21	Highly efficient oxidation of alcohols and aromatic compounds catalysed by the Ru-Co-Al hydrotalcite in the presence of molecular oxygen. Chemical Communications, 1999, , 265-266.	2.2	152
22	Reconstructed Hydrotalcite as a Highly Active Heterogeneous Base Catalyst for Carbonâ^'Carbon Bond Formations in the Presence of Water. Journal of Organic Chemistry, 2006, 71, 5440-5447.	1.7	147
23	Design of High-Performance Heterogeneous Metal Catalysts for Green and Sustainable Chemistry. Bulletin of the Chemical Society of Japan, 2006, 79, 981-1016.	2.0	141
24	Metal–Ligand Core–Shell Nanocomposite Catalysts for the Selective Semihydrogenation of Alkynes. Angewandte Chemie - International Edition, 2013, 52, 1481-1485.	7.2	140
25	Development of Rutheniumâ^'Hydroxyapatite-Encapsulated Superparamagnetic γ-Fe2O3Nanocrystallites as an Efficient Oxidation Catalyst by Molecular Oxygen. Chemistry of Materials, 2007, 19, 1249-1256.	3.2	139
26	Supported gold nanoparticle catalyst for the selective oxidation of silanes to silanols in water. Chemical Communications, 2009, , 5302.	2.2	139
27	Design of Core-Pd/Shell-Ag Nanocomposite Catalyst for Selective Semihydrogenation of Alkynes. ACS Catalysis, 2016, 6, 666-670.	5.5	138
28	BrÃ,nsted Acid Mediated Heterogeneous Addition Reaction of 1,3-Dicarbonyl Compounds to Alkenes and Alcohols. Angewandte Chemie - International Edition, 2006, 45, 2605-2609.	7.2	136
29	Hydroxyapatite-Bound Cationic Ruthenium Complexes as Novel Heterogeneous Lewis Acid Catalysts for Dielsâ^'Alder and Aldol Reactions. Journal of the American Chemical Society, 2003, 125, 11460-11461.	6.6	131
30	Direct Transformation of Furfural to 1,2-Pentanediol Using a Hydrotalcite-Supported Platinum Nanoparticle Catalyst. ACS Sustainable Chemistry and Engineering, 2014, 2, 2243-2247.	3.2	131
31	Dendritic Nanoreactors Encapsulating Pd Particles for Substrate-Specific Hydrogenation of Olefins. Nano Letters, 2002, 2, 999-1002.	4.5	130
32	Magnetically recoverable heterogeneous catalyst: Palladium nanocluster supported on hydroxyapatite-encapsulated γ-Fe2O3 nanocrystallites for highly efficient dehalogenation with molecular hydrogen. Green Chemistry, 2007, 9, 1246.	4.6	126
33	Selective Deoxygenation of Epoxides to Alkenes with Molecular Hydrogen Using a Hydrotalciteâ€Supported Gold Catalyst: A Concerted Effect between Gold Nanoparticles and Basic Sites on a Support. Angewandte Chemie - International Edition, 2011, 50, 2986-2989.	7.2	124
34	Supported gold nanoparticles as a reusable catalyst for synthesis of lactones from diols using molecular oxygen as an oxidant under mild conditions. Green Chemistry, 2009, 11, 793.	4.6	121
35	Epoxidation of α,β-Unsaturated Ketones Using Hydrogen Peroxide in the Presence of Basic Hydrotalcite Catalysts. Journal of Organic Chemistry, 2000, 65, 6897-6903.	1.7	120
36	Highly efficient oxidation of alcohols to carbonyl compounds in the presence of molecular oxygen using a novel heterogeneous ruthenium catalyst. Tetrahedron Letters, 2002, 43, 7179-7183.	0.7	118

#	Article	IF	CITATIONS
37	Multifunctional catalysis of a ruthenium-grafted hydrotalcite: one-pot synthesis of quinolines from 2-aminobenzyl alcohol and various carbonyl compounds via aerobic oxidation and aldol reaction. Tetrahedron Letters, 2004, 45, 6029-6032.	0.7	118
38	Supramolecular Catalysts by Encapsulating Palladium Complexes within Dendrimers. Journal of the American Chemical Society, 2004, 126, 1604-1605.	6.6	118
39	Environmentally Friendly One-Pot Synthesis of α-Alkylated Nitriles Using Hydrotalcite-Supported Metal Species as Multifunctional Solid Catalysts. Chemistry - A European Journal, 2006, 12, 8228-8239.	1.7	118
40	Supported Gold and Silver Nanoparticles for Catalytic Deoxygenation of Epoxides into Alkenes. Angewandte Chemie - International Edition, 2010, 49, 5545-5548.	7.2	117
41	Efficient Câ~N Bond Formations Catalyzed by a Proton-Exchanged Montmorillonite as a Heterogeneous BrÃ,nsted Acid. Organic Letters, 2006, 8, 4617-4620.	2.4	111
42	Efficient heterogeneous oxidation of organosilanes to silanols catalysed by a hydroxyapatite-bound Ru complex in the presence of water and molecular oxygen. New Journal of Chemistry, 2002, 26, 1536-1538.	1.4	110
43	Development of concerto metal catalysts using apatite compounds for green organic syntheses. Energy and Environmental Science, 2009, 2, 655.	15.6	107
44	Heterotrimetallic RuMnMn Species on a Hydrotalcite Surface as Highly Efficient Heterogeneous Catalysts for Liquid-Phase Oxidation of Alcohols with Molecular Oxygen. Angewandte Chemie - International Edition, 2005, 44, 3423-3426.	7.2	101
45	Highly efficient dehydrogenation of indolines to indoles using hydroxyapatite-bound Pd catalyst. Tetrahedron Letters, 2003, 44, 6207-6210.	0.7	99
46	Wackerâ€Type Oxidation of Internal Olefins Using a PdCl ₂ / <i>N</i> , <i>N</i> â€Dimethylacetamide Catalyst System under Copperâ€Free Reaction Conditions. Angewandte Chemie - International Edition, 2010, 49, 1238-1240.	7.2	99
47	Highly Efficient Câ^'C Bond-Forming Reactions in Aqueous Media Catalyzed by Monomeric Vanadate Species in an Apatite Framework. Journal of Organic Chemistry, 2006, 71, 7455-7462.	1.7	98
48	Highly Efficient Gold Nanoparticle Catalyzed Deoxygenation of Amides, Sulfoxides, and Pyridine <i>N</i> â€Oxides. Chemistry - A European Journal, 2011, 17, 1768-1772.	1.7	97
49	Hydrotalcite catalysis: heterogeneous epoxidation of olefins using hydrogen peroxide in the presence of nitriles. Chemical Communications, 1998, , 295-296.	2.2	96
50	Highly Selective Oxidation of Allylic Alcohols to α,β-Unsaturated Aldehydes Using Pd Cluster Catalysts in the Presence of Molecular Oxygen. Journal of Organic Chemistry, 1996, 61, 4502-4503.	1.7	94
51	A single-site hydroxyapatite-bound zinc catalyst for highly efficient chemical fixation of carbon dioxide with epoxides. Chemical Communications, 2005, , 3331.	2.2	92
52	Hydrotalcite-Catalyzed Epoxidation of Olefins Using Hydrogen Peroxide and Amide Compounds. Journal of Organic Chemistry, 1999, 64, 2966-2968.	1.7	91
53	A Novel Montmorillonite-Enwrapped Scandium as a Heterogeneous Catalyst for Michael Reaction. Journal of the American Chemical Society, 2003, 125, 10486-10487.	6.6	89
54	Highly efficient esterification of carboxylic acids with alcohols by montmorillonite-enwrapped titanium as a heterogeneous acid catalyst. Tetrahedron Letters, 2003, 44, 9205-9208.	0.7	80

#	Article	IF	CITATIONS
55	Catalysis of giant palladium cluster complexes. Highly selective oxidations of primary allylic alcohols to α,l²-unsaturated aldehydes in the presence of molecular oxygen. Tetrahedron Letters, 1997, 38, 9023-9026.	0.7	79
56	Catalysis of transition metal-functionalized hydrotalcites for the Baeyer-Villiger oxidation of ketones in the presence of molecular oxygen and benzaldehyde. Journal of Molecular Catalysis A, 1995, 102, 135-138.	4.8	78
57	Montmorillonite-Entrapped Sub-nanoordered Pd Clusters as a Heterogeneous Catalyst for Allylic Substitution Reactions. Angewandte Chemie - International Edition, 2007, 46, 3288-3290.	7.2	77
58	Highly efficient heterogeneous acetalization of carbonyl compounds catalyzed by a titanium cation-exchanged montmorillonite. Tetrahedron Letters, 2001, 42, 8329-8332.	0.7	75
59	Highly active trimetallic Ru/CeO2/CoO(OH) catalyst for oxidation of alcohols in the presence of molecular oxygen. Journal of Molecular Catalysis A, 2004, 212, 161-170.	4.8	74
60	Mild Hydrogenation of Amides to Amines over a Platinumâ€Vanadium Bimetallic Catalyst. Angewandte Chemie - International Edition, 2017, 56, 9381-9385.	7.2	73
61	One-Pot Transformation of Levulinic Acid to 2-Methyltetrahydrofuran Catalyzed by Pt–Mo/H-β in Water. ACS Sustainable Chemistry and Engineering, 2016, 4, 682-685.	3.2	71
62	Highly selective oxidation of allylic alcohols catalysed by monodispersed 8-shell Pd nanoclusters in the presence of molecular oxygen. New Journal of Chemistry, 2003, 27, 324-328.	1.4	70
63	Cation-Exchanged Montmorillonites as Solid Acid Catalysts for Organic Synthesis. Synlett, 2007, 2007, 0999-1015.	1.0	68
64	Monomeric Metal Aqua Complexes in the Interlayer Space of Montmorillonites as Strong Lewis Acid Catalysts for Heterogeneous Carbon-Carbon Bond-Forming Reactions. Chemistry - A European Journal, 2005, 11, 288-297.	1.7	64
65	Heterogeneous Baeyer–Villiger oxidation of ketones using an oxidant consisting of molecular oxygen and aldehydes in the presence of hydrotalcite catalysts. Journal of the Chemical Society Chemical Communications, 1994, , 797-798.	2.0	63
66	Environmentally friendly alcohol oxidation using heterogeneous catalyst in the presence of air at room temperature. Catalysis Communications, 2002, 3, 511-517.	1.6	63
67	Design of high-performance heterogeneous catalysts using hydrotalcite for selective organic transformations. Green Chemistry, 2019, 21, 1361-1389.	4.6	61
68	Highly efficient dehalogenation using hydroxyapatite-supported palladium nanocluster catalyst with molecular hydrogen. Green Chemistry, 2004, 6, 507.	4.6	60
69	PAMAM dendron-stabilised palladium nanoparticles: effect of generation and peripheral groups on particle size and hydrogenation activity. Chemical Communications, 2008, , 241-243.	2.2	60
70	Core–Shell AgNP@CeO ₂ Nanocomposite Catalyst for Highly Chemoselective Reductions of Unsaturated Aldehydes. Chemistry - A European Journal, 2013, 19, 5255-5258.	1.7	60
71	Supported monomeric vanadium catalyst for dehydration of amides to form nitriles. Chemical Communications, 2010, 46, 8243.	2.2	58
72	Simple and clean synthesis of 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene from the aromatic alkylation of phenoxyethanol with fluoren-9-one catalysed by titanium cation-exchanged montmorillonite. Green Chemistry, 2000, 2, 157-160.	4.6	56

#	Article	IF	CITATIONS
73	One-pot synthesis of α-alkylated nitriles with carbonyl compounds through consecutive aldol reaction/hydrogenation using a hydrotalcite-supported palladium nanoparticle as a multifunctional heterogeneous catalyst. Tetrahedron Letters, 2005, 46, 5507-5510.	0.7	56
74	Selective Hydrogenolysis of Glycerol to 1,3-Propanediol Catalyzed by Pt Nanoparticles–AlO <i>x</i> /WO3. Chemistry Letters, 2012, 41, 1720-1722.	0.7	56
75	Hydrogenation of Sulfoxides to Sulfides under Mild Conditions Using Ruthenium Nanoparticle Catalysts. Angewandte Chemie - International Edition, 2014, 53, 8348-8351.	7.2	54
76	Highly efficient epoxidation of α,β-unsaturated ketones by hydrogen peroxide with a base hydrotalcite catalyst prepared from metal oxides. Tetrahedron Letters, 2002, 43, 6229-6232.	0.7	53
77	A Titanium Dioxide Supported Gold Nanoparticle Catalyst for the Selective Nâ€Formylation of Functionalized Amines with Carbon Dioxide and Hydrogen. ChemCatChem, 2017, 9, 3632-3636.	1.8	53
78	Creation of monomeric La complexes on apatite surfaces and their application as heterogeneous catalysts for Michael reactions. New Journal of Chemistry, 2006, 30, 44-52.	1.4	52
79	Catalyst design of hydrotalcite compounds for efficient oxidations. Catalysis Surveys From Asia, 2000, 4, 31-38.	1.2	51
80	Roomâ€Temperature Deoxygenation of Epoxides with CO Catalyzed by Hydrotalciteâ€Supported Gold Nanoparticles in Water. Chemistry - A European Journal, 2010, 16, 11818-11821.	1.7	51
81	Highly Efficient Pd/SiO2–Dimethyl Sulfoxide Catalyst System for Selective Semihydrogenation of Alkynes. Chemistry Letters, 2011, 40, 405-407.	0.7	51
82	Reusable montmorillonite-entrapped organocatalyst for asymmetric Diels–Alder reaction. Tetrahedron Letters, 2008, 49, 5464-5466.	0.7	50
83	Advanced Core–Shell Nanoparticle Catalysts for Efficient Organic Transformations. ChemCatChem, 2013, 5, 1681-1691.	1.8	50
84	Fine Tuning of Pd0 Nanoparticle Formation on Hydroxyapatite and Its Application for Regioselective Quinoline Hydrogenation. Chemistry Letters, 2010, 39, 832-834.	0.7	49
85	Highly Atomâ€Efficient Oxidation of Electronâ€Deficient Internal Olefins to Ketones Using a Palladium Catalyst. Angewandte Chemie - International Edition, 2013, 52, 5961-5964.	7.2	49
86	Facile reduction of nitrobenzene using carbon monoxide and water catalyzed by rhodium carbonyl cluster-amine systems. Journal of Molecular Catalysis, 1981, 12, 385-387.	1.2	48
87	Catalytic investigations of carbon–carbon bond-forming reactions by a hydroxyapatite-bound palladium complex. New Journal of Chemistry, 2005, 29, 1174.	1.4	46
88	Chemoselective Transfer Hydrogenation of α,β-Unsaturated Aldehydes to Allylic Alcohols Using Formic Acid Catalyzed by Polymer-Bound Rh Carbonyl Clusters. Journal of Organic Chemistry, 1998, 63, 2378-2381.	1.7	45
89	The active sites in the heterogeneous Baeyer-Villiger oxidation of cyclopentanone by hydrotalcite catalysts. Applied Surface Science, 1997, 121-122, 366-371.	3.1	44
90	Highly Chemoselective Reduction of Nitroaromatic Compounds Using a Hydrotalcite-supported Silver-nanoparticle Catalyst under a CO Atmosphere. Chemistry Letters, 2010, 39, 223-225.	0.7	42

#	Article	IF	CITATIONS
91	Selective deoxygenation of styrene oxides under a CO atmosphere using silver nanoparticle catalyst. Tetrahedron Letters, 2010, 51, 5466-5468.	0.7	41
92	Creation of a chain-like cationic iron species in montmorillonite as a highly active heterogeneous catalyst for alkane oxygenations using hydrogen peroxide. Chemical Communications, 2002, , 690-691.	2.2	40
93	Development of Heterogeneous Olympic Medal Metal Nanoparticle Catalysts for Environmentally Benign Molecular Transformations Based on the Surface Properties of Hydrotalcite. Molecules, 2010, 15, 8988-9007.	1.7	40
94	Highly efficient Wacker oxidation catalyzed by heterogeneous Pd montmorillonite under acid-free conditions. Tetrahedron Letters, 2006, 47, 1425-1428.	0.7	37
95	Efficient deprotection of N-benzyloxycarbonyl group from amino acids by hydroxyapatite-bound Pd catalyst in the presence of molecular hydrogen. Tetrahedron Letters, 2003, 44, 4981-4984.	0.7	36
96	Nanoscale Palladium Cluster Immobilized on a TiO2Surface as an Efficient Catalyst for Liquid-phase Wacker Oxidation of Higher Terminal Olefins. Chemistry Letters, 2003, 32, 180-181.	0.7	36
97	Chemoselective reduction of nitro groups in the presence of olefinic, ester, and halogeno functions using a reducing agent of CO and H2O catalyzed by Rh carbonyl clusters. Journal of Molecular Catalysis, 1994, 88, L267-L270.	1.2	34
98	Zr-CATALYZED OXIDATION OF ALCOHOLS TO ALDEHYDES IN THE PRESENCE OFtBuOOH. HIGH REACTIVITY FOR PRIMARY AND ALLYLIC HYDROXYL FUNCTIONS. Chemistry Letters, 1984, 13, 1481-1482.	0.7	33
99	Direct synthesis of unsymmetrical ethers from alcohols catalyzed by titanium cation-exchanged montmorillonite. Green Chemistry, 2012, 14, 610.	4.6	33
100	Simple and clean synthesis of ketones from internal olefins using PdCl2/N,N-dimethylacetamide catalyst system. Tetrahedron Letters, 2013, 54, 1596-1598.	0.7	33
101	Design of High-Performance Heterogeneous Catalysts using Apatite Compounds for Liquid-Phase Organic Syntheses. ACS Catalysis, 2017, 7, 920-935.	5.5	33
102	Highly Efficient Deprotection of Acetals by Titanium Cation-exchanged Montmorillonite as a Strong Solid Acid Catalyst. Chemistry Letters, 2003, 32, 648-649.	0.7	32
103	Design of hydroxyapatite-bound transition metal catalysts for environmentally-benign organic syntheses. Catalysis Surveys From Asia, 2004, 8, 231-239.	1.0	32
104	Investigation of size-dependent properties of sub-nanometer palladium clusters encapsulated within a polyamine dendrimer. Chemical Communications, 2013, 49, 167-169.	2.2	31
105	Highly Efficient Etherification of Silanes by Using a Gold Nanoparticle Catalyst: Remarkable Effect of O ₂ . Chemistry - A European Journal, 2013, 19, 14398-14402.	1.7	30
106	Michael reaction of 1,3-dicarbonyls with enones catalyzed by a hydroxyapatite-bound La complex. Tetrahedron Letters, 2005, 46, 4283-4286.	0.7	26
107	Creation of a high-valent manganese species on hydrotalcite and its application to the catalytic aerobic oxidation of alcohols. Green Chemistry, 2010, 12, 2142.	4.6	26
108	Unique catalysis of gold nanoparticles in the chemoselective hydrogenolysis with H2: cooperative effect between small gold nanoparticles and a basic support. Chemical Communications, 2012, 48, 6723.	2.2	26

Kiyotomi Kaneda

#	Article	IF	CITATIONS
109	Heterogeneous N-oxidation of pyridines using a combined oxidant of hydrogen peroxide and nitriles catalysed by basic hydrotalcites. New Journal of Chemistry, 1999, 23, 799-801.	1.4	25
110	Metal-Support Cooperative Catalysts for Environmentally Benign Molecular Transformations. Chemical Record, 2017, 17, 4-26.	2.9	25
111	Oxidation of benzyl alcohol aiming at a greener reaction. Reaction Kinetics and Catalysis Letters, 2003, 78, 73-80.	0.6	24
112	Gold nanoparticle-catalyzed cyclocarbonylation of 2-aminophenols. Green Chemistry, 2013, 15, 608.	4.6	24
113	Selective Hydrogenolysis of Glycerol to 1,2-Propanediol Using Heterogeneous Copper Nanoparticle Catalyst Derived from Cu–Al Hydrotalcite. Chemistry Letters, 2013, 42, 729-731.	0.7	24
114	Selective Deoxygenation of Various N–O Bonds Catalyzed by Rhodium Carbonyl Clusters in the Presence of H2O and CO and Their Heterogenization Using Amino-Substituted Polystyrenes. Bulletin of the Chemical Society of Japan, 1991, 64, 602-612.	2.0	23
115	Palladium–Platinum Bimetallic Nanoparticle Catalysts Using Dendron Assembly for Selective Hydrogenation of Dienes and Their Application to Thermomorphic System. Chemistry Letters, 2005, 34, 272-273.	0.7	23
116	Rhodium-grafted hydrotalcite catalyst for heterogeneous 1,4-addition reaction of organoboron reagents to electron deficient olefins. Green Chemistry, 2011, 13, 2416.	4.6	23
117	Selective generation of various rhodium carbonyl cluster anions in aminated polymers and their use as catalysts for the water-gas shift reaction and deoxygenation of various nitrogen-oxygen bonds. Organometallics, 1991, 10, 846-850.	1.1	22
118	A rhodium-grafted hydrotalcite as a highly efficient heterogeneous catalyst for 1,4-addition of organoboron reagents to α,β-unsaturated carbonyl compounds. Tetrahedron Letters, 2006, 47, 5083-5087.	0.7	22
119	Highly Efficient and Selective Transformations of Clycerol Using Reusable Heterogeneous Catalysts. ACS Sustainable Chemistry and Engineering, 2014, 2, 574-578.	3.2	22
120	Development of High Performance Heterogeneous Catalysts for Selective Cleavage of Câ^'O and Câ^'C Bonds of Biomassâ€Đerived Oxygenates. Chemical Record, 2019, 19, 1179-1198.	2.9	22
121	Catalysis by Polymer-Bound Rhodium Carbonyl Clusters. Selective Hydrogenation of $\hat{1}\pm$, $\hat{1}^2$ -Unsaturated Aldehydes to Allylic Alcohols in the Presence of H2and CO. Organometallics, 1996, 15, 3247-3249.	1.1	21
122	Oxidant-Free Lactonization of Diols Using a Hydrotalcite-Supported Copper Catalyst. Heterocycles, 2010, 80, 855.	0.4	21
123	O2-enhanced Catalytic Activity of Gold Nanoparticles in Selective Oxidation of Hydrosilanes to Silanols. Chemistry Letters, 2015, 44, 1062-1064.	0.7	21
124	Liquid-phase Epoxidation of Alkenes Using Molecular Oxygen Catalyzed by Vanadium Cation-exchanged Montmorillonite. Chemistry Letters, 2005, 34, 1626-1627.	0.7	20
125	Gold Nanoparticle-Catalyzed Environmentally Benign Deoxygenation of Epoxides to Alkenes. Molecules, 2011, 16, 8209-8227.	1.7	20
126	Highly efficient double-carbonylation of amines to oxamides using gold nanoparticle catalysts. Chemical Communications, 2012, 48, 11733.	2.2	20

#	Article	IF	CITATIONS
127	Green, Multiâ€Gram Oneâ€Step Synthesis of Core–Shell Nanocomposites in Water and Their Catalytic Application to Chemoselective Hydrogenations. Chemistry - A European Journal, 2016, 22, 17962-17966.	1.7	20
128	Mild Hydrogenation of Amides to Amines over a Platinumâ€Vanadium Bimetallic Catalyst. Angewandte Chemie, 2017, 129, 9509-9513.	1.6	20
129	Preparation of a zeolite X-encapsulated copper(ii) chloride complex and its catalysis for liquid-phase oxygenation of enamines in the presence of molecular oxygen. Chemical Communications, 2000, , 869-870.	2.2	19
130	Controlled Synthesis of Pd Clusters in Subnanometer Range Using Poly(propylene imine) Dendrimers. Chemistry Letters, 2009, 38, 1118-1119.	0.7	19
131	Creation of a monomeric vanadate species in an apatite framework as an active heterogeneous base catalyst for Michael reactions in water. Catalysis Today, 2010, 152, 93-98.	2.2	19
132	Titanium cation-exchanged montmorillonite as an active heterogeneous catalyst for the Beckmann rearrangement under mild reaction conditions. Tetrahedron Letters, 2012, 53, 5211-5214.	0.7	19
133	Highly Efficient Deoxygenation of Sulfoxides Using Hydroxyapatite-supported Ruthenium Nanoparticles. Chemistry Letters, 2014, 43, 420-422.	0.7	19
134	Highly Efficient Dehydrogenative Coupling of Hydrosilanes with Amines or Amides Using Supported Gold Nanoparticles. Chemistry - A European Journal, 2015, 21, 3202-3205.	1.7	19
135	Dendritic Nanoreactor Encapsulating Rh Complex Catalyst for Hydroformylation. Chemistry Letters, 2005, 34, 286-287.	0.7	17
136	Recyclable indium catalysts for additions of 1,3-dicarbonyl compounds to unactivated alkynes affected by structure and acid strength of solid supports. Green Chemistry, 2008, 10, 1231.	4.6	17
137	Subnanoscale Size Effect of Dendrimer-encapsulated Pd Clusters on Catalytic Hydrogenation of Olefin. Chemistry Letters, 2011, 40, 180-181.	0.7	17
138	Selective synthesis of Rh5 carbonyl clusters within a polyamine dendrimer for chemoselective reduction of nitro aromatics. Chemical Communications, 2014, 50, 6526.	2.2	17
139	Clean Synthesis of 3,3′,5,5′-Tetra-tert-butyl-4,4′-diphenoquinone from the Oxidative Coupling of 2,6-Di-tert-butylphenol Catalyzed by Alkali-promoted Cu–Mg–Al Hydrotalcites in the Presence of Molecular Oxygen. Chemistry Letters, 2003, 32, 58-59.	0.7	16
140	New Routes for Refinery of Biogenic Platform Chemicals Catalyzed by Cerium Oxide-supported Ruthenium Nanoparticles in Water. Scientific Reports, 2017, 7, 14007.	1.6	15
141	Complete Hydrodechlorination of DDT and Its Derivatives Using a Hydroxyapatite-supported Pd Nanoparticle Catalyst. Chemistry Letters, 2010, 39, 49-51.	0.7	14
142	Remarkable Effect of Bases on Core–Shell AgNP@CeO2 Nanocomposite-catalyzed Highly Chemoselective Reduction of Unsaturated Aldehydes. Chemistry Letters, 2013, 42, 660-662.	0.7	14
143	On-demand Hydrogen Production from Organosilanes at Ambient Temperature Using Heterogeneous Gold Catalysts. Scientific Reports, 2016, 6, 37682.	1.6	14
144	Air-stable and reusable cobalt ion-doped titanium oxide catalyst for alkene hydrosilylation. Green Chemistry, 2019, 21, 4566-4570.	4.6	14

Κιύοτομι Κανέδα

#	Article	IF	CITATIONS
145	Development of Hydrotalcite Catalysts in Heterogeneous Baeyer—Villiger Oxidation. ACS Symposium Series, 1996, , 300-318.	0.5	13
146	Highly Efficient Condensation of Glycerol to Cyclic Acetals Catalyzed by Titanium-Exchanged Montmorillonite. Heterocycles, 2012, 84, 371.	0.4	13
147	Highly efficient heterogeneous acylations of aromatic compounds with acid anhydrides and carboxylic acids by montmorillonite-enwrapped titanium as a solid acid catalyst. Research on Chemical Intermediates, 2006, 32, 305-315.	1.3	12
148	Highly atom-efficient and chemoselective reduction of ketones in the presence of aldehydes using heterogeneous catalysts. Green Chemistry, 2013, 15, 2695.	4.6	11
149	Regioselective oxidative coupling of 2,6-dimethylphenol to tetramethyldiphenoquinone using polyamine dendrimer-encapsulated Cu catalysts. RSC Advances, 2013, 3, 9662.	1.7	8
150	Catalysis by polymer-bound Rh6 carbonyl clusters Selective hydrogenation of carbonyl compounds in the presence of CO and H2O. Applied Surface Science, 1997, 121-122, 360-365.	3.1	7
151	Selective C–C Coupling Reaction of Dimethylphenol to Tetramethyldiphenoquinone Using Molecular Oxygen Catalyzed by Cu Complexes Immobilized in Nanospaces of Structurally-Ordered Materials. Molecules, 2015, 20, 3089-3106.	1.7	7
152	Dimethylaminoethylated hydroxypropyl-chitosan: Preparation and application as polymeric ligand to form Rh6 cluster complexes for the reduction of benzaldehyde and nitrobenzene. Journal of Applied Polymer Science, 2001, 80, 447-453.	1.3	6
153	Hydrotalcite-bound ruthenium as a multifunctional heterogeneous catalyst for one-pot synthesis of α-alkylated nitriles and quinolines. Research on Chemical Intermediates, 2008, 34, 475-486.	1.3	5
154	Synthesis of dimethylaminoethyl chitin and applications as a polymeric ligand to form Rh cluster complexes for the reduction of benzaldehyde and nitrobenzene. Macromolecular Chemistry and Physics, 2000, 201, 1431-1435.	1.1	4
155	Design of Well-Defined Active Sites on Crystalline Materials for Liquid-Phase Oxidations. , 0, , 157-183.		4
156	Development of Organic Polymer-bound Metal Complex Catalysts Sekiyu Gakkaishi (Journal of the) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
157	Back Cover: Design of a Silver-Cerium Dioxide Core-Shell Nanocomposite Catalyst for Chemoselective Reduction Reactions (Angew. Chem. Int. Ed. 1/2012). Angewandte Chemie - International Edition, 2012, 51, 278-278.	7.2	2
158	Simple and Efficient 1,3â€Isomerization of Allylic Alcohols using a Supported Monomeric Vanadiumâ€Oxide Catalyst. ChemCatChem, 2013, 5, 2879-2882.	1.8	2
159	Inside Cover: Supported Gold and Silver Nanoparticles for Catalytic Deoxygenation of Epoxides into Alkenes (Angew. Chem. Int. Ed. 32/2010). Angewandte Chemie - International Edition, 2010, 49, 5390-5390.	7.2	1
160	Size Selective Synthesis of Subnano Pd Clusters Using Core [Poly(propylene imine)]–Shell [Poly(benzyl) Tj ETC	2q000 rg	BT 1 Overlock
161	Highly Efficient Dehydrogenation of Indolines to Indoles Using Hydroxyapatite-Bound Pd Catalyst ChemInform, 2003, 34, no.	0.1	0
162	Multifunctional Catalysis of a Ruthenium-Grafted Hydrotalcite: One-Pot Synthesis of Quinolines from 2-Aminobenzyl Alcohol and Various Carbonyl Compounds via Aerobic Oxidation and Aldol Reaction ChemInform, 2004, 35, no.	0.1	0

#	Article	IF	CITATIONS
163	Titelbild: Wacker-Type Oxidation of Internal Olefins Using a PdCl2/N,N-Dimethylacetamide Catalyst System under Copper-Free Reaction Conditions (Angew. Chem. 7/2010). Angewandte Chemie, 2010, 122, 1189-1189.	1.6	ο
164	Innentitelbild: Supported Gold and Silver Nanoparticles for Catalytic Deoxygenation of Epoxides into Alkenes (Angew. Chem. 32/2010). Angewandte Chemie, 2010, 122, 5518-5518.	1.6	0
165	Cover Picture: Wacker-Type Oxidation of Internal Olefins Using a PdCl2/N,N-Dimethylacetamide Catalyst System under Copper-Free Reaction Conditions (Angew. Chem. Int. Ed. 7/2010). Angewandte Chemie - International Edition, 2010, 49, 1169-1169.	7.2	о
166	Development of Environmentally-friendly Molecular Transformation System Based on Cooperative Catalysis between Metal Nanoparticles and Inorganic Metal Oxides. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2014, 72, 268-279.	0.0	0