
Tomohiro Yano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6936462/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determination of tissue-specific interaction between vitamin C and vitamin E <i>in vivo</i> using senescence marker protein-30 knockout mice as a vitamin C synthesis deficiency model. British Journal of Nutrition, 2022, 128, 993-1003.	2.3	6
2	A Redox-Silent Analogue of Tocotrienol May Break the Homeostasis of Proteasomes in Human Malignant Mesothelioma Cells by Inhibiting STAT3 and NRF1. International Journal of Molecular Sciences, 2022, 23, 2655.	4.1	3
3	Dietary variety is associated with sleep efficiency in urban-dwelling older adults: A longitudinal study. Clinical Nutrition ESPEN, 2021, 41, 391-397.	1.2	2
4	Effects of Alpha-Connexin Carboxyl-Terminal Peptide (aCT1) and Bowman-Birk Protease Inhibitor (BBI) on Canine Oral Mucosal Melanoma (OMM) Cells. Frontiers in Veterinary Science, 2021, 8, 670451.	2.2	3
5	NK Cells Can Preferentially Target Prostate Cancer Stem-like Cells via the TRAIL/DR5 Signaling Pathway. Biomolecules, 2021, 11, 1702.	4.0	8
6	Tocotrienol-rich fraction from annatto ameliorates expression of lysyl oxidase in human osteoblastic MG-63 cells. Bioscience, Biotechnology and Biochemistry, 2020, 84, 526-535.	1.3	1
7	The Effect of Bowman-Birk Inhibitor from Soybeans on the Sensitivity of Prostate Cancer Stem-like Cells to Anti-androgen Agent. Food Science and Technology Research, 2020, 26, 553-559.	0.6	1
8	Combination Effect of Bowman-Birk Inhibitor and α-Tocopheryl Succinate on Prostate Cancer Stem-Like Cells. Journal of Nutritional Science and Vitaminology, 2019, 65, 272-277.	0.6	4
9	A Redox-Inactive Derivative of Tocotrienol Suppresses Tumor Growth of Mesothelioma Cells in a Xenograft Model. Biological and Pharmaceutical Bulletin, 2019, 42, 1034-1037.	1.4	5
10	Inhibition of NF-kappaB transcriptional activity enhances fucoxanthinol-induced apoptosis in colorectal cancer cells. Genes and Environment, 2019, 41, 1.	2.1	15
11	Salt Restriction Affects the Excretions of Minerals (Na, K, Ca, Mg, P and Zn) in the Second Voided Fasting Early Morning Urine. Journal of Nutritional Science and Vitaminology, 2019, 65, 142-147.	0.6	2
12	Preparation and functional analysis of gossypols having two carbohydrate appendages with enaminooxy linkages. Carbohydrate Research, 2018, 458-459, 67-76.	2.3	2
13	Association between Adherence to the Japanese Food Guide Spinning Top and Sleep Quality in College Students. Nutrients, 2018, 10, 1996.	4.1	17
14	A Succinate Ether Derivative of Tocotrienol Enhances Dickkopf-1 Gene Expression through Epigenetic Alterations in Malignant Mesothelioma Cells. Pharmacology, 2018, 102, 26-36.	2.2	8
15	Suppressive Effect of Delta-Tocotrienol on Hypoxia Adaptation of Prostate Cancer Stem-like Cells. Anticancer Research, 2018, 38, 1391-1399.	1.1	19
16	Inhibitory effect of a redox-silent analogue of tocotrienol on hypoxia adaptation in prostate cancer cells. Anti-Cancer Drugs, 2017, 28, 289-297.	1.4	10
17	Combination Effect of δ-Tocotrienol and γ-Tocopherol on Prostate Cancer Cell Growth. Journal of Nutritional Science and Vitaminology, 2017, 63, 349-354.	0.6	29
18	Cytotoxicity Induced by a Redox-silent Analog of Tocotrienol in Human Mesothelioma H2452 Cell Line via Suppression of Cap-dependent Protein Translation. Anticancer Research, 2016, 36, 1527-33.	1.1	4

#	Article	IF	CITATIONS
19	Annatto Tocotrienol Induces a Cytotoxic Effect on Human Prostate Cancer PC3 Cells via the Simultaneous Inhibition of Src and Stat3. Journal of Nutritional Science and Vitaminology, 2015, 61, 497-501.	0.6	20
20	Suppression of intestinal carcinogenesis in <i>Apc</i> -mutant mice by limonin. Journal of Clinical Biochemistry and Nutrition, 2015, 57, 39-43.	1.4	33
21	Involvement of NADPH oxidases in suppression of cyclooxygenase-2 promoter-dependent transcriptional activities by sesamol. Journal of Clinical Biochemistry and Nutrition, 2015, 56, 118-122.	1.4	10
22	Sesamol suppresses cyclooxygenase-2 transcriptional activity in colon cancer cells and modifies intestinal polyp development in ApcMin/+ mice. Journal of Clinical Biochemistry and Nutrition, 2014, 54, 95-101.	1.4	37
23	A Redox-Silent Analogue of Tocotrienol Inhibits Cobalt(II) Chloride-Induced VEGF Expression <i>via</i> Yes Signaling in Mesothelioma Cells. Biological and Pharmaceutical Bulletin, 2014, 37, 865-870.	1.4	8
24	Synergistic effect of combined treatment with gamma-tocotrienol and statin on human malignant mesothelioma cells. Cancer Letters, 2013, 339, 116-127.	7.2	15
25	Induction of the Connexin 32 Gene by Epigallocatechin-3-Gallate Potentiates Vinblastine-Induced Cytotoxicity in Human Renal Carcinoma Cells. Chemotherapy, 2013, 59, 192-199.	1.6	12
26	Redox-inactive Analogue of Tocotrienol as a Potential Anti-cancer Agent. Anti-Cancer Agents in Medicinal Chemistry, 2013, 13, 496-501.	1.7	5
27	Redox-inactive Analogue of Tocotrienol as a Potential Anti-cancer Agent. Anti-Cancer Agents in Medicinal Chemistry, 2013, 13, 496-501.	1.7	2
28	Redox-inactive analogue of tocotrienol as a potential anti-cancer agent. Anti-Cancer Agents in Medicinal Chemistry, 2013, 13, 496-501.	1.7	4
29	New 2-Aryl-1,4-naphthoquinone-1-oxime Methyl Ether Compound Induces Microtubule Depolymerization and Subsequent Apoptosis. Journal of Pharmacological Sciences, 2012, 118, 467-478.	2.5	7
30	Yes is a central mediator of cell growth in malignant mesothelioma cells. Oncology Reports, 2012, 28, 1889-1893.	2.6	25
31	Bowman-Birk protease inhibitor from soybeans enhances cisplatin-induced cytotoxicity in human mesothelioma cells. Experimental and Therapeutic Medicine, 2011, 2, 719-724.	1.8	5
32	The enhancement of the oral bioavailability of γ-tocotrienol in mice by γ-cyclodextrin inclusion. Journal of Nutritional Biochemistry, 2011, 22, 1121-1126.	4.2	25
33	A demethylating agent enhances chemosensitivity to vinblastine in a xenograft model of renal cell carcinoma. International Journal of Oncology, 2011, 38, 1653-61.	3.3	12
34	Sensitive quantitative assay for point mutations in the rat H-ras gene based on single nucleotide primer extension. Experimental and Therapeutic Medicine, 2010, 1, 657-661.	1.8	5
35	The tocotrienolâ€rich fraction from rice bran enhances cisplatinâ€induced cytotoxicity in human mesothelioma H28 cells. Phytotherapy Research, 2010, 24, 1317-1321.	5.8	25
36	Complexation of Tocotrienol with Î ³ -Cyclodextrin Enhances Intestinal Absorption of Tocotrienol in Rats. Bioscience, Biotechnology and Biochemistry, 2010, 74, 1452-1457.	1.3	24

#	Article	IF	CITATIONS
37	A redox-silent analogue of tocotrienol acts as a potential cytotoxic agent against human mesothelioma cells. Life Sciences, 2009, 84, 650-656.	4.3	30
38	Enhanced Effect of Connexin 43 on Cisplatin-Induced Cytotoxicity in Mesothelioma Cells. Journal of Pharmacological Sciences, 2009, 110, 466-475.	2.5	28
39	The inhibitory effect of connexin 32 gene on metastasis in renal cell carcinoma. Molecular Carcinogenesis, 2008, 47, 403-409.	2.7	15
40	A redox-silent analogue of tocotrienol inhibits hypoxic adaptation of lung cancer cells. Biochemical and Biophysical Research Communications, 2008, 365, 875-881.	2.1	32
41	Connexin 43-dependent tumor-suppressing effect of the Bowman-Birk protease inhibitor on M5076 ovarian sarcoma-bearing mice. Molecular Medicine Reports, 2008, 1, 689-93.	2.4	1
42	Effects of a single-dose administration of Bowman-Birk inhibitor concentrate on anti-proliferation and inhabitation of metastasis in M5076 ovarian sarcoma-bearing mice. Molecular Medicine Reports, 2008, 1, 903-7.	2.4	5
43	Anticancer Effects of Tocotrienols and Tocopherols Irrespective of Antioxidative Properties. , 2008, , 171-183.		1
44	Connexin Genes as Promising Therapeutic Targets in Cancers. Current Pharmacogenomics and Personalized Medicine: the International Journal for Expert Reviews in Pharmacogenomics, 2007, 5, 314-318.	0.3	0
45	Negative growth control of osteosarcoma cell by Bowman–Birk protease inhibitor from soybean; involvement of connexin 43. Cancer Letters, 2007, 253, 249-257.	7.2	44
46	Connexin 32 potentiates vinblastine-induced cytotoxicity in renal cell carcinoma cells. Molecular Carcinogenesis, 2007, 46, 215-224.	2.7	27
47	Enhancing effect of connexin 32 gene on vinorelbine-induced cytotoxicity in A549 lung adenocarcinoma cells. Cancer Chemotherapy and Pharmacology, 2007, 60, 449-457.	2.3	27
48	Connexin 32 down-regulates the fibrinolytic factors in metastatic renal cell carcinoma cells. Life Sciences, 2006, 78, 2249-2254.	4.3	16
49	Connexin 32 expression reduces malignant phenotype in human A549 adenocarcinoma cells: Implication of Src involvement. Oncology Reports, 2006, 16, 1149.	2.6	3
50	Inhibition of Src activity enhances the tumor-suppressive effect of the connexin 32 gene in Caki-1 renal cancer cells. Oncology Reports, 2006, 15, 1359.	2.6	1
51	Connexin 32 as an Anti-invasive and Anti-metastatic Gene in Renal Cell Carcinoma. Biological and Pharmaceutical Bulletin, 2006, 29, 1991-1994.	1.4	19
52	Expression patterns of connexin 26 and connexin 43 mRNA in canine benign and malignant mammary tumours. Veterinary Journal, 2006, 172, 178-180.	1.7	5
53	Inhibition of Src activity enhances the tumor-suppressive effect of the connexin 32 gene in Caki-1 renal cancer cells. Oncology Reports, 2006, 15, 1359-65.	2.6	11
54	High Oleic Peanut Oil Modulates Promotion Stage in Lung Tumorigenesis of Mice Treated with Methyl Nitrosourea. Food Science and Technology Research, 2005, 11, 231-235.	0.6	32

Τομομικό Υανό

#	Article	IF	CITATIONS
55	Cytotoxic Effect of the Her-2/Her-1 Inhibitor PKI-166 on Renal Cancer Cells Expressing the Connexin 32 Gene. Journal of Pharmacological Sciences, 2005, 97, 294-298.	2.5	11
56	Connexin32 as a tumor suppressor gene in a metastatic renal cell carcinoma cell line. Oncogene, 2005, 24, 3684-3690.	5.9	50
57	Induction of cytotoxicity in human lung adenocarcinoma cells by 6-O-carboxypropyl-α-tocotrienol, a redox-silent derivative of α-tocotrienol. International Journal of Cancer, 2005, 115, 839-846.	5.1	43
58	Contribution of the Src family of kinases to the appearance of malignant phenotypes in renal cancer cells. Molecular Carcinogenesis, 2005, 43, 188-197.	2.7	32
59	A Src family inhibitor (PP1) potentiates tumor-suppressive effect of connexin 32 gene in renal cancer cells. Life Sciences, 2005, 76, 2711-2720.	4.3	18
60	Peroxisome proliferator-activated receptor δas a molecular target to regulate lung cancer cell growth. FEBS Letters, 2005, 579, 3829-3836.	2.8	63
61	Restoration of connexin 43 by Bowman-Birk protease inhibitor in M5076 bearing mice. Oncology Reports, 2005, 13, 1247-50.	2.6	14
62	Epigenetic inactivation of connexin 32 in renal cell carcinoma from hemodialytic patients. Kidney International, 2004, 65, 1519.	5.2	4
63	Negative growth control of renal cell carcinoma cell by connexin 32: Possible involvement of Her-2. Molecular Carcinogenesis, 2004, 40, 135-142.	2.7	35
64	Hypermethylation of the CpG island of connexin 32, a candiate tumor suppressor gene in renal cell carcinomas from hemodialysis patients. Cancer Letters, 2004, 208, 137-142.	7.2	35
65	Prostaglandin E2 activates Src signaling in lung adenocarcinoma cell via EP3. Cancer Letters, 2004, 214, 115-120.	7.2	36
66	Tumor-suppressive effect of connexin 32 in renal cell carcinoma from maintenance hemodialysis patients. Kidney International, 2003, 63, 381.	5.2	17
67	α-Tocopheryloxybutyric acid enhances necrotic cell death in breast cancer cells treated with chemotherapy agent. Cancer Letters, 2003, 201, 51-56.	7.2	14
68	Down-Regulation of Connexin 32 Gene Expression through DNA Methylation in a Human Renal Cell Carcinoma Cell. American Journal of Nephrology, 2003, 23, 172-177.	3.1	37
69	Induction of Apoptosis in a Human Breast Cancer Cell Overexpressing ErbB-2 Receptor by α-Tocopheryloxybutyric Acid. The Japanese Journal of Pharmacology, 2002, 89, 417-421.	1.2	26
70	Effect of Acerola Cherry Extract on Cell Proliferation and Activation of Ras Signal Pathway at the Promotion Stage of Lung Tumorigenesis in Mice Journal of Nutritional Science and Vitaminology, 2002, 48, 69-72.	0.6	17
71	Prostaglandin E2reinforces the activation of Ras signal pathway in lung adenocarcinoma cells via EP3. FEBS Letters, 2002, 518, 154-158.	2.8	58
72	Effect of the unsaturation degree on browning reactions of peanut oil and other edible oils with proteins under storage and frying conditions. International Congress Series, 2002, 1245, 445-446.	0.2	9

#	Article	IF	CITATIONS
73	High oleic acid oil suppresses lung tumorigenesis in mice through the modulation of extracellular signal-regulated kinase cascade. Lipids, 2002, 37, 783-788.	1.7	18
74	Inhibition of Expression of Ornithine Decarboxylase by c-myc Antisense Oligonucleotide at the Promotion Stage of Lung Tumorigenesis in Mice. The Japanese Journal of Pharmacology, 2001, 87, 90-92.	1.2	4
75	Regulation of cellular invasion and matrix metalloproteinase activity in HepG2 cell by connexin 26 transfection. Molecular Carcinogenesis, 2001, 31, 101-109.	2.7	30
76	The suppression of ornithine decarboxylase expression and cell proliferation at the promotion stage of lung tumorigenesis in mice by α-tocopheryloxybutyric acid. Biochemical Pharmacology, 2001, 61, 1177-1181.	4.4	13
77	Reduction of malignant phenotype of HEPG2 cell is associated with the expression of connexin 26 but not connexin 32. Carcinogenesis, 2001, 22, 1593-1600.	2.8	74
78	Vitamin E inhibits cell proliferation and the activation of extracellular signal-regulated kinase during the promotion phase of lung tumorigenesis irrespective of antioxidative effect. Carcinogenesis, 2000, 21, 2129-2133.	2.8	34
79	The effect of 6-methylthiohexyl isothiocyanate isolated from Wasabia japonica (wasabi) on 4-(methylnitrosamino)-1-(3-pyridyl)-1-buatnone-induced lung tumorigenesis in mice. Cancer Letters, 2000, 155, 115-120.	7.2	38
80	Regulation of methionine adenosyltransferase activity by the glutathione level in rat liver during ischemia-reperfusion. Surgery Today, 1999, 29, 1053-1058.	1.5	10
81	Extracellular Signal-Regulated Kinase Mediates Renal Regeneration in Rats with Myoglobinuric Acute Renal Injury. Biochemical and Biophysical Research Communications, 1999, 254, 88-92.	2.1	28
82	Activation of Epidermal Growth Factor Receptor in the Early Phase after Renal Ischemia-Reperfusion in Rat. Nephron, 1999, 81, 230-233.	1.8	25
83	Regenerative response in acute renal failure due to vitamin E deficiency and glutathione depletion in rats. Biochemical Pharmacology, 1998, 56, 543-546.	4.4	5
84	The inhibitory effect of vitamin E on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis in mice based on the regulation of polyamine metabolism. Cancer Letters, 1998, 126, 173-178.	7.2	14
85	The repetitive activation of extracellular signal-regulated kinase is required for renal regeneration in rat. Life Sciences, 1998, 62, 2341-2347.	4.3	9
86	Activation of extracellular signal-regulated kinase in lung tissues of mice treated with carcinogen. Life Sciences, 1998, 64, 229-236.	4.3	16
87	Induction of heme oxygenase-1 in toxic renal injury: mercuric chloride-induced acute renal failure in rat. Toxicology Letters, 1998, 94, 57-64.	0.8	20
88	The Inhibitory Effect of Vitamin E on Arachidonic Acid Metabolism during the Process of Urethane-Induced Lung Tumorigenesis in Mice Journal of Nutritional Science and Vitaminology, 1997, 43, 471-477.	0.6	5
89	Effects of Vitamin E Deficiency and Glutathione Depletion on Stress Protein Heme Oxygenase 1 mRNA Expression in Rat Liver and Kidney. Biochemical Pharmacology, 1997, 54, 1081-1086.	4.4	8
90	The inhibitory effect of vitamin E on K-ras mutation at an early stage of lung carcinogenesis in mice. European Journal of Pharmacology, 1997, 323, 99-102.	3.5	7

#	Article	IF	CITATIONS
91	The modulation effect of vitamin E on prostaglandin E2 level and ornithine decarboxylase activity at the promotion phase of lung tumorigenesis in mice. Biochemical Pharmacology, 1997, 53, 1757-1759.	4.4	13
92	Regulation and Immunohistochemical Analysis of Stress Protein Heme Oxygenase-1 in Rat Kidney with Myoglobinuric Acute Renal Failure. Biochemical and Biophysical Research Communications, 1997, 240, 93-98.	2.1	24
93	The inhibitory effect of vitamin E on pulmonary polyamine biosynthesis, cell proliferation and carcinogenesis in mice. Biochimica Et Biophysica Acta - Molecular Cell Research, 1997, 1356, 35-42.	4.1	14
94	Immunohistochemical analysis of heme oxygenaseâ€l in rat liver after ischemia. IUBMB Life, 1997, 43, 551-556.	3.4	3
95	The Detection of Chemically Initiated Cells Having the Mutation of K-rasGene at an Early Stage of Lung Carcinogenesis in Mice. Analytical Biochemistry, 1997, 244, 187-189.	2.4	11
96	Inhibitory Effect of Vitamin E on Cellular Events Related to Lung Tumorigenesis in Mice. , 1997, , 436-439.		0
97	The activation of K-ras gene at an early stage of lung tumorigenesis in mice. Cancer Letters, 1996, 107, 165-170.	7.2	28
98	The analysis of the process of renal regeneration in rats treated with mercury chloride. The Japanese Journal of Pharmacology, 1996, 71, 288.	1.2	1
99	Is K-ras Point Mutation an Early Event in Lung Tumorigenesis of Mice?. Japanese Journal of Toxicology and Environmental Health, 1996, 42, 178-181.	0.1	0
100	Oxidative Stress on the Nuclei as a Factor Regulating the Susceptibility of Spontaneous Lung Tumorigenesis in Mice Japanese Journal of Toxicology and Environmental Health, 1996, 42, 87-91.	0.1	0
101	The inhibitory effect of vitamin E feeding on polyamine synthesis and cell proliferation in lung tunorigenes is of mice. The Japanese Journal of Pharmacology, 1995, 67, 315.	1.2	1
102	Modulating effect of vitamin e on certain functions of alveolar macrophage. Nutrition Research, 1994, 14, 1387-1395.	2.9	2
103	Vitamin E acts as a useful chemopreventive agent to reduce spontaneous lung tumorigenesis in mice. Cancer Letters, 1994, 87, 205-210.	7.2	8
104	Enhancing effect of high dietary iron on lung tumorigenesis in mice. Cancer Letters, 1994, 76, 57-62.	7.2	7
105	Vitamin E Acts as a Useful Antioxidant to Protect Pulmonary Nuclei Japanese Journal of Toxicology and Environmental Health, 1994, 40, 193-196.	0.1	2
106	ls vitamin E a useful agent to protect against oxy radical-promoted lung tumorigenesis in ddY mice?. Carcinogenesis, 1993, 14, 1133-1136.	2.8	15
107	Active oxygen generation by alveolar macrophage in mice treated with carcinogen and promoter Journal of Toxicological Sciences, 1993, 18, 125-128.	1.5	1
108	The Modulating Effect of Vitamin E on Active Oxygen Generation by Alveolar Macrophage Challenged with Different Stimuli Japanese Journal of Toxicology and Environmental Health, 1993, 39, 76-79.	0.1	4

#	Article	IF	CITATIONS
109	BROMOBENZENE-INDUCED CLARA CELL DAMAGE: THE CONTRIBUTION OF CYTOCHROME P-450 SYSTEM LOCALIZED IN THE CLARA CELL. Journal of Toxicologic Pathology, 1990, 3, 223-230.	0.7	Ο
110	Restoration of connexin 43 by Bowman-Birk protease inhibitor in M5076 bearing mice. Oncology Reports, 0, , .	2.6	8