
Igor Shats

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/693436/publications.pdf Version: 2024-02-01

ICOD SHATS

#	Article	IF	CITATIONS
1	Predicting tumor response to drugs based on gene-expression biomarkers of sensitivity learned from cancer cell lines. BMC Genomics, 2021, 22, 272.	2.8	25
2	HNF4α regulates sulfur amino acid metabolism and confers sensitivity to methionine restriction in liver cancer. Nature Communications, 2020, 11, 3978.	12.8	73
3	Bacteria Boost Mammalian Host NAD Metabolism by Engaging the Deamidated Biosynthesis Pathway. Cell Metabolism, 2020, 31, 564-579.e7.	16.2	130
4	Bacteria boost host NAD metabolism. Aging, 2020, 12, 23425-23426.	3.1	0
5	Glypican 6 is a putative biomarker for metastatic progression of cutaneous melanoma. PLoS ONE, 2019, 14, e0218067.	2.5	14
6	CDSeq: A novel complete deconvolution method for dissecting heterogeneous samples using gene expression data. PLoS Computational Biology, 2019, 15, e1007510.	3.2	42
7	Expression level is a key determinant of E2F1-mediated cell fate. Cell Death and Differentiation, 2017, 24, 626-637.	11.2	42
8	E2F1-Mediated Induction of NFYB Attenuates Apoptosis via Joint Regulation of a Pro-Survival Transcriptional Program. PLoS ONE, 2015, 10, e0127951.	2.5	16
9	p53 amplifies Toll-like receptor 5 response in human primary and cancer cells through interaction with multiple signal transduction pathways. Oncotarget, 2015, 6, 16963-16980.	1.8	21
10	FOXO Transcription Factors Control E2F1 Transcriptional Specificity and Apoptotic Function. Cancer Research, 2013, 73, 6056-6067.	0.9	43
11	Interaction of E2F7 Transcription Factor with E2F1 and C-terminal-binding Protein (CtBP) Provides a Mechanism for E2F7-dependent Transcription Repression. Journal of Biological Chemistry, 2013, 288, 24581-24589.	3.4	33
12	Using a Stem Cell–Based Signature to Guide Therapeutic Selection in Cancer. Cancer Research, 2011, 71, 1772-1780.	0.9	112
13	Upregulation of survivin during immortalization of nontransformed human fibroblasts transduced with telomerase reverse transcriptase. Oncogene, 2009, 28, 2678-2689.	5.9	13
14	p53 Plays a Role in Mesenchymal Differentiation Programs, in a Cell Fate Dependent Manner. PLoS ONE, 2008, 3, e3707.	2.5	146
15	Myocardin in Tumor Suppression and Myofibroblast Differentiation. Cell Cycle, 2007, 6, 1141-1146.	2.6	13
16	Inactivation of Myocardin and p16 during Malignant Transformation Contributes to a Differentiation Defect. Cancer Cell, 2007, 11, 133-146.	16.8	67
17	Regulation of AIF expression by p53. Cell Death and Differentiation, 2006, 13, 2140-2149.	11.2	164
18	hTERT-Immortalized Prostate Epithelial and Stromal-Derived Cells: an Authentic In vitro Model for Differentiation and Carcinogenesis. Cancer Research, 2006, 66, 3531-3540.	0.9	90

IGOR SHATS

#	Article	IF	CITATIONS
19	Mutant p53 Protects Cells from 12-O-Tetradecanoylphorbol-13-Acetate–Induced Death by Attenuating Activating Transcription Factor 3 Induction. Cancer Research, 2006, 66, 10750-10759.	0.9	37
20	Transcriptional Programs following Genetic Alterations in p53, INK4A, and H-Ras Genes along Defined Stages of Malignant Transformation. Cancer Research, 2005, 65, 4530-4543.	0.9	52
21	The promoters of human cell cycle genes integrate signals from two tumor suppressive pathways during cellular transformation. Molecular Systems Biology, 2005, 1, 2005.0022.	7.2	64
22	p53 is a regulator of macrophage differentiation. Cell Death and Differentiation, 2004, 11, 458-467.	11.2	21
23	Activated p53 suppresses the histone methyltransferase EZH2 gene. Oncogene, 2004, 23, 5759-5769.	5.9	176
24	p53-dependent Down-regulation of Telomerase Is Mediated by p21. Journal of Biological Chemistry, 2004, 279, 50976-50985.	3.4	123
25	Hypoxia-dependent regulation of PHD1: cloning and characterization of the human PHD1/EGLN2 gene promoter. FEBS Letters, 2004, 567, 311-315.	2.8	16
26	The murine telomerase catalytic subunit shares the PAb-240 mutant specific epitope of the p53 protein. FEBS Letters, 2003, 546, 321-324.	2.8	2
27	Prolonged culture of telomerase-immortalized human fibroblasts leads to a premalignant phenotype. Cancer Research, 2003, 63, 7147-57.	0.9	121
28	Expression of prolyl-hydroxylase-1 (PHD1/EGLN2) suppresses hypoxia inducible factor-1alpha activation and inhibits tumor growth. Cancer Research, 2003, 63, 8777-83.	0.9	76
29	Activation of p53 protein by telomeric (TTAGGG)n repeats. Nucleic Acids Research, 2001, 29, 5207-5215.	14.5	23