Camelia Bala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6932146/publications.pdf

Version: 2024-02-01

78 3,018 31 54 g-index

80 80 80 4268

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Surface Plasmon Resonance (SPR) Biosensors in Pharmaceutical Analysis. Critical Reviews in Analytical Chemistry, 2015, 45, 97-105.	3.5	262
2	Electrochemical biosensors for fast detection of food contaminants – trends and perspective. TrAC - Trends in Analytical Chemistry, 2016, 79, 80-87.	11.4	248
3	Biosensors based on screen-printing technology, and their applications in environmental and food analysis. Analytical and Bioanalytical Chemistry, 2007, 388, 565-578.	3.7	240
4	SPR and SPR Imaging: Recent Trends in Developing Nanodevices for Detection and Real-Time Monitoring of Biomolecular Events. Sensors, 2016, 16, 870.	3.8	142
5	Highly sensitive label-free immunosensor for ochratoxin A based on functionalized magnetic nanoparticles and EIS/SPR detection. Sensors and Actuators B: Chemical, 2011, 159, 178-184.	7.8	114
6	A novel amperometric biosensor based on gold nanoparticles anchored on reduced graphene oxide for sensitive detection of l-lactate tumor biomarker. Biosensors and Bioelectronics, 2015, 69, 280-286.	10.1	107
7	Development of a bio-electrochemical assay for AFB1 detection in olive oil. Biosensors and Bioelectronics, 2009, 24, 1962-1968.	10.1	89
8	A novel, sensitive, reusable and low potential acetylcholinesterase biosensor for chlorpyrifos based on 1-butyl-3-methylimidazolium tetrafluoroborate/multiwalled carbon nanotubes gel. Biosensors and Bioelectronics, 2011, 26, 3692-3695.	10.1	89
9	Biosensors designed for environmental and food quality control based on screen-printed graphite electrodes with different configurations. Analytical and Bioanalytical Chemistry, 2002, 374, 25-32.	3.7	81
10	Peptide-based biosensors: From self-assembled interfaces to molecular probes in electrochemical assays. Bioelectrochemistry, 2018, 120, 66-75.	4.6	72
11	Screen-printed electrodes with electropolymerized Meldola Blue as versatile detectors in biosensors. Biosensors and Bioelectronics, 2003, 18, 781-790.	10.1	68
12	Disposable immunosensor for the determination of domoic acid in shellfish. Biosensors and Bioelectronics, 2004, 20, 190-196.	10.1	67
13	New potentiometric microbial biosensor for ethanol determination in alcoholic beverages. Analytica Chimica Acta, 2004, 513, 119-123.	5.4	65
14	Classification of red wines using suitable markers coupled with multivariate statistic analysis. Food Chemistry, 2016, 192, 1015-1024.	8. 2	63
15	Detection of organophosphorus insecticides with immobilized acetylcholinesterase - comparative study of two enzyme sensors. Analytical and Bioanalytical Chemistry, 2002, 374, 39-45.	3.7	59
16	The NADH Electrochemical Detection Performed at Carbon Nanofibers Modified Glassy Carbon Electrode. Electroanalysis, 2007, 19, 1455-1459.	2.9	53
17	Kinetic approach of aflatoxin B1–acetylcholinesterase interaction: A tool for developing surface plasmon resonance biosensors. Analytical Biochemistry, 2012, 421, 587-594.	2.4	51
18	Acetylcholinesterase biosensor for carbamate drugs based on tetrathiafulvalene–tetracyanoquinodimethane/ionic liquid conductive gels. Biosensors and Bioelectronics, 2013, 46, 61-67.	10.1	51

#	Article	IF	Citations
19	Microfluidics-integrated biosensing platforms as emergency tools for on-site field detection of foodborne pathogens. TrAC - Trends in Analytical Chemistry, 2020, 125, 115831.	11.4	45
20	A rational design of the multiwalled carbon nanotube–7,7,8,8-tetracyanoquinodimethan sensor for sensitive detection of acetylcholinesterase inhibitors. Analytica Chimica Acta, 2012, 748, 81-88.	5.4	43
21	Poly(allylamine hydrochloride) modified screen-printed carbon electrode for sensitive and selective detection of NADH. Sensors and Actuators B: Chemical, 2014, 191, 491-497.	7.8	42
22	NADH sensing platform based on electrochemically generated reduced graphene oxide–gold nanoparticles composite stabilized with poly(allylamine hydrochloride). Sensors and Actuators B: Chemical, 2016, 223, 697-704.	7.8	42
23	Advances in Electrochemical Impedance Spectroscopy Detection of Endocrine Disruptors. Sensors, 2020, 20, 6443.	3.8	42
24	Yeast cells sucrose biosensor based on a potentiometric oxygen electrode. Analytica Chimica Acta, 2002, 458, 215-222.	5.4	41
25	Differentiation of Romanian Wines on Geographical Origin and Wine Variety by Elemental Composition and Phenolic Components. Food Analytical Methods, 2014, 7, 2064-2074.	2.6	41
26	A modular electrochemical peptide-based sensor for antibody detection. Chemical Communications, 2014, 50, 8962.	4.1	40
27	Verifying the red wines adulteration through isotopic and chromatographic investigations coupled with multivariate statistic interpretation of the data. Food Control, 2016, 62, 1-9.	5.5	40
28	Non-enzymatic polyamic acid sensors for hydrogen peroxide detection. Sensors and Actuators B: Chemical, 2016, 226, 525-533.	7.8	39
29	Improvement of NADH detection using Prussian blue modified screen-printed electrodes and different strategies of immobilisation. Sensors and Actuators B: Chemical, 2008, 128, 536-544.	7.8	35
30	Magnetic beads-based immunoassay as a sensitive alternative for atrazine analysis. Talanta, 2008, 77, 839-843.	5 . 5	34
31	Sensitive detection of endocrine disrupters using ionic liquid – Single walled carbon nanotubes modified screen-printed based biosensors. Talanta, 2011, 85, 2007-2013.	5.5	34
32	Unprecedented Catalytic Wet Oxidation of Glucose to Succinic Acid Induced by the Addition of <i>n</i> â∈Butylamine to a Ru ^{III} Catalyst. ChemSusChem, 2016, 9, 2307-2311.	6.8	32
33	Electrochemical determination of NADH using screen printed carbon electrodes modified with reduced graphene oxide and poly(allylamine hydrochloride). Mikrochimica Acta, 2016, 183, 57-65.	5.0	32
34	Manganese oxide based screen-printed sensor for xenoestrogens detection. Sensors and Actuators B: Chemical, 2015, 210, 273-280.	7.8	31
35	Low potential thiocholine oxidation at carbon nanotube-ionic liquid gel sensor. Sensors and Actuators B: Chemical, 2010, 150, 73-79.	7.8	30
36	Enhanced Sensitive Love Wave Surface Acoustic Wave Sensor Designed for Immunoassay Formats. Sensors, 2015, 15, 10511-10525.	3.8	29

#	Article	IF	Citations
37	Sensitive Aflatoxin B1 Determination Using a Magnetic Particles-Based Enzyme-Linked Immunosorbent Assay. Sensors, 2008, 8, 7571-7580.	3.8	28
38	Biocatalytic microreactor incorporating HRP anchored on micro-/nano-lithographic patterns for flow oxidation of phenols. Journal of Molecular Catalysis B: Enzymatic, 2011, 69, 133-139.	1.8	28
39	Evaluation of Meldola Blueâ€Carbon Nanotubeâ€Solâ€Gel Composite for Electrochemical NADH Sensors and Their Application for Lactate Dehydrogenaseâ€Based Biosensors. Electroanalysis, 2008, 20, 2355-2362.	2.9	27
40	Amperometric L-Lactate Biosensor Based upon a Gold Nanoparticles/Reduced Graphene Oxide/Polyallylamine Hydrochloride Modified Screen-Printed Graphite Electrode. Chemosensors, 2021, 9, 74.	3.6	26
41	Biosensor for the enantioselective analysis of S-captopril. Sensors and Actuators B: Chemical, 2003, 92, 228-231.	7.8	25
42	Strategies for developing NADH detectors based on Meldola Blue and screen-printed electrodes: a comparative study. Talanta, 2003, 59, 751-765.	5.5	25
43	On-line assay of the S-enantiomers of enalapril, ramipril and pentopril using a sequential injection analysis/amperometric biosensor system. Journal of Pharmaceutical and Biomedical Analysis, 2004, 36, 889-892.	2.8	24
44	New Type of Ethanol Microbial Biosensor Based on a Highly Sensitive Amperometric Oxygen Electrode and Yeast Cells. Analytical Letters, 2003, 36, 2459-2471.	1.8	21
45	Amperometric Low-Potential Detection of Malic Acid Using Single-Wall Carbon Nanotubes Based Electrodes. Sensors, 2008, 8, 1497-1507.	3.8	21
46	Enalapril and Ramipril Selective Membranesâ^—. Analytical Letters, 1997, 30, 1999-2008.	1.8	19
47	Synergistic effect of mediator–carbon nanotube composites for dehydrogenases and peroxidases based biosensors. Bioelectrochemistry, 2009, 76, 107-114.	4.6	15
48	Sensing of sulfhydryl based compounds by a simple electrochemical approach. Sensors and Actuators B: Chemical, 2015, 206, 65-73.	7.8	14
49	Paper-based diagnostic platforms and devices. Current Opinion in Electrochemistry, 2021, 27, 100726.	4.8	14
50	An enzyme-free hydrogen peroxide sensor for evaluation of probiotic potential of Enterococcus faecium. Sensors and Actuators B: Chemical, 2018, 273, 298-304.	7.8	13
51	Building switchable peptide-architectures on gold/composite surfaces: New perspectives in electrochemical bioassays. Current Opinion in Electrochemistry, 2018, 12, 13-20.	4.8	12
52	Biosensors for Antioxidants Detection: Trends and Perspectives. Biosensors, 2020, 10, 112.	4.7	12
53	Enalapril Microbial Biosensor. Preparative Biochemistry and Biotechnology, 1998, 28, 261-269.	1.9	11
54	Simultaneous Determination of Phenolic Acids in Water Caltrop by HPLC-DAD. Analytical Letters, 2012, 45, 2519-2529.	1.8	9

#	Article	IF	CITATIONS
55	Biomimetic Sensors Based on Molecularly Imprinted Interfaces. Comprehensive Analytical Chemistry, 2017, 77, 147-177.	1.3	9
56	Multi-frequency analysis in a single square-wave chronoamperometric experiment. Electrochemistry Communications, 2021, 124, 106943.	4.7	8
57	Characterization of Wines by <i>Trans</i> -Resveratrol Concentration: A Case Study of Romanian Varieties. Analytical Letters, 2014, 47, 1737-1746.	1.8	6
58	Voltammetric Detection of Copper Ions on a Gold Electrode Modified with a <i>N</i> -methyl-2-naphthyl-cyclam film. Analytical Letters, 2018, 51, 971-982.	1.8	6
59	Significance Testing and Multivariate Analysis of Datasets from Surface Plasmon Resonance and Surface Acoustic Wave Biosensors: Prediction and Assay Validation for Surface Binding of Large Analytes. Sensors, 2018, 18, 3541.	3.8	6
60	A Novel Amperometric Biosensor Based on Poly(allylamine hydrochloride) for Determination of Ethanol in Beverages. Sensors, 2021, 21, 6510.	3.8	6
61	Amperometric Determination of Ethanol using a Novel Nanobiocomposite. Analytical Letters, 2018, 51, 323-335.	1.8	5
62	Development of Biological Sensors Based on Screen-Printed Electrodes for Environmental Pollution Monitoring. NATO Science for Peace and Security Series C: Environmental Security, 2009, , 401-413.	0.2	4
63	Portable measuring and display unit for electrochemical sensors. , 2010, , .		3
64	Synthesis and electroactivated addressing of ferrocenyl and azido-modified stem-loop oligonucleotides on an integrated electrochemical device. Electrochimica Acta, 2015, 164, 62-70.	5.2	3
65	Validation of a Quantitative Method Determination of Estradiol in Pharmaceutical Products using UV-Vis Molecular Absorption Spectrometry. Analytical Letters, 2008, 41, 3272-3296.	1.8	2
66	Determination of Xenoestrogenic Compounds Using a Nanostructured Biosensing Device. Electroanalysis, 2012, 24, 2371-2379.	2.9	2
67	Selective chemical sensor for liquid specimens based on lithium tantalate surface acoustic wave devices. , 2015, , .		2
68	Early detection of cannabinoids in biological samples based on their affinity interaction with the growth hormone secretagogue receptor. Talanta, 2022, 237, 122905.	5.5	2
69	Label-free detection of target proteins using peptide molecular wires as conductive supports. Sensors and Actuators B: Chemical, 2021, 345, 130416.	7.8	2
70	Electrochemical sensor with polymer thick film printed electrodes., 2009,,.		1
71	New Challenges in the Design of Bio(Sensors) for Biological Warfare Agents. NATO Science for Peace and Security Series A: Chemistry and Biology, 2012, , 15-41.	0.5	1
72	Peptide-based electrochemical biosensors. , 2019, , 277-306.		1

#	Article	IF	CITATIONS
73	Early Detection of Growth Hormone Secretagogue Receptor Antagonists Exploiting Their Atypical Behavior in Competitive Assays. Analytical Chemistry, 2019, 91, 14812-14817.	6.5	1
74	DEVELOPMENT OF A PESTICIDES BIOSENSOR USING CARBON-BASED ELECTRODE SYSTEMS. , 2006, , 337-343.		1
7 5	Presentation of the MADICA 2016 Special Issue. Analytical Letters, 2018, 51, 293-295.	1.8	0
76	Determination of Water-Soluble Vitamins and Drug Residues. Series in Sensors, 2013, , 443-472.	0.0	0
77	New Routes in the High-Throughput Screening of Toxic Proteins Using Immunochemical Tools. Advanced Sciences and Technologies for Security Applications, 2016, , 35-59.	0.5	0
78	Plasmonic biosensors in medical applications. , 2022, , .		0