List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6930503/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reactive Oxygen Species and Reactive Nitrogen Species in Peroxisomes. Production, Scavenging, and Role in Cell Signaling. Plant Physiology, 2006, 141, 330-335.	4.8	530
2	Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends in Plant Science, 2001, 6, 145-150.	8.8	462
3	Cellular and Subcellular Localization of Endogenous Nitric Oxide in Young and Senescent Pea Plants. Plant Physiology, 2004, 136, 2722-2733.	4.8	360
4	Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. Journal of Experimental Botany, 2002, 53, 1255-1272.	4.8	354
5	Localization of Nitric-oxide Synthase in Plant Peroxisomes. Journal of Biological Chemistry, 1999, 274, 36729-36733.	3.4	324
6	Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry, 2004, 65, 783-792.	2.9	317
7	Nitrosative stress in plants. FEBS Letters, 2007, 581, 453-461.	2.8	309

8 Metabolism of reactive oxygen species and reactive nitrogen species in pepper (<i>Capsicum) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 462

9	Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and <i>S</i> -nitrosylation. Journal of Experimental Botany, 2014, 65, 527-538.	4.8	294
10	Metabolism of Reactive Nitrogen Species in Pea Plants Under Abiotic Stress Conditions. Plant and Cell Physiology, 2008, 49, 1711-1722.	3.1	287
11	Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta, 2006, 224, 246-254.	3.2	277
12	Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Science, 2011, 181, 604-611.	3.6	273
13	Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. Journal of Experimental Botany, 2002, 53, 1255-1272.	4.8	246
14	Localization of S-nitrosoglutathione and expression of S-nitrosoglutathione reductase in pea plants under cadmium stress. Journal of Experimental Botany, 2006, 57, 1785-1793.	4.8	233
15	The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants. Plant, Cell and Environment, 2006, 29, 1449-1459.	5.7	228
16	Evidence supporting the existence of <scp>l</scp> â€arginineâ€dependent nitric oxide synthase activity in plants. New Phytologist, 2009, 184, 9-14.	7.3	228
17	A forty year journey: The generation and roles of NO in plants. Nitric Oxide - Biology and Chemistry, 2019, 93, 53-70.	2.7	209
18	Arsenic triggers the nitric oxide (NO) and S-nitrosoglutathione (CSNO) metabolism in Arabidopsis. Environmental Pollution, 2012, 166, 136-143.	7.5	186

#	Article	IF	CITATIONS
19	Protein targets of tyrosine nitration in sunflower (Helianthus annuus L.) hypocotyls. Journal of Experimental Botany, 2009, 60, 4221-4234.	4.8	180
20	Protein tyrosine nitration in pea roots during development and senescence. Journal of Experimental Botany, 2013, 64, 1121-1134.	4.8	171
21	Involvement of Reactive Nitrogen and Oxygen Species (RNS and ROS) in Sunflower–Mildew Interaction. Plant and Cell Physiology, 2009, 50, 265-279.	3.1	168
22	Peroxisomes Are Required for in Vivo Nitric Oxide Accumulation in the Cytosol following Salinity Stress of Arabidopsis Plants. Plant Physiology, 2009, 151, 2083-2094.	4.8	163
23	A dehydrogenase-mediated recycling system of NADPH in plant peroxisomes. Biochemical Journal, 1998, 330, 777-784.	3.7	157
24	Mechanical wounding induces a nitrosative stress by down-regulation of GSNO reductase and an increase in S-nitrosothiols in sunflower (Helianthus annuus) seedlings. Journal of Experimental Botany, 2011, 62, 1803-1813.	4.8	157
25	Nitroâ€oxidative stress vs oxidative or nitrosative stress in higher plants. New Phytologist, 2013, 199, 633-635.	7.3	154
26	Current overview of S-nitrosoglutathione (GSNO) in higher plants. Frontiers in Plant Science, 2013, 4, 126.	3.6	154
27	Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and <i>S</i> -nitrosylation. Journal of Experimental Botany, 2015, 66, 5983-5996.	4.8	153
28	Antioxidant Systems are Regulated by Nitric Oxide-Mediated Post-translational Modifications (NO-PTMs). Frontiers in Plant Science, 2016, 7, 152.	3.6	150
29	Plant peroxisomes: A nitro-oxidative cocktail. Redox Biology, 2017, 11, 535-542.	9.0	150
30	High temperature triggers the metabolism of <i>S</i> â€nitrosothiols in sunflower mediating a process of nitrosative stress which provokes the inhibition of ferredoxin–NADP reductase by tyrosine nitration. Plant, Cell and Environment, 2011, 34, 1803-1818.	5.7	145
31	Function of S-nitrosoglutathione reductase (GSNOR) in plant development and under biotic/abiotic stress. Plant Signaling and Behavior, 2011, 6, 789-793.	2.4	144
32	Root Hairs Play a Key Role in the Endophytic Colonization of Olive Roots by Pseudomonas spp. with Biocontrol Activity. Microbial Ecology, 2011, 62, 435-445.	2.8	142
33	Ripening of pepper (<i>Capsicum annuum</i>) fruit is characterized by an enhancement of protein tyrosine nitration. Annals of Botany, 2015, 116, 637-647.	2.9	141
34	Peroxisomal Monodehydroascorbate Reductase. Genomic Clone Characterization and Functional Analysis under Environmental Stress Conditions. Plant Physiology, 2005, 138, 2111-2123.	4.8	134
35	Peroxynitrite (ONOOâ^) is endogenously produced in arabidopsis peroxisomes and is overproduced under cadmium stress. Annals of Botany, 2014, 113, 87-96.	2.9	130
36	A dual system formed by the ARC and NR molybdoenzymes mediates nitriteâ€dependent NO production in <i>Chlamydomonas</i> . Plant, Cell and Environment, 2016, 39, 2097-2107.	5.7	130

JUAN B BARROSO

#	Article	IF	CITATIONS
37	Peroxisomal NADP-Dependent Isocitrate Dehydrogenase. Characterization and Activity Regulation during Natural Senescence. Plant Physiology, 1999, 121, 921-928.	4.8	128
38	Differential Transcriptomic Analysis by RNA-Seq of GSNO-Responsive Genes Between Arabidopsis Roots and Leaves. Plant and Cell Physiology, 2014, 55, 1080-1095.	3.1	124
39	Water stress induces a differential and spatially distributed nitro-oxidative stress response in roots and leaves of Lotus japonicus. Plant Science, 2013, 201-202, 137-146.	3.6	118
40	Nitro-Fatty Acids in Plant Signaling: Nitro-Linolenic Acid Induces the Molecular Chaperone Network in Arabidopsis. Plant Physiology, 2016, 170, 686-701.	4.8	116
41	Neuronal and inducible nitric oxide synthase and nitrotyrosine immunoreactivities in the cerebral cortex of the aging rat. , 1998, 43, 75-88.		115
42	Peroxisomal xanthine oxidoreductase: Characterization of the enzyme from pea (Pisum sativum L.) leaves. Journal of Plant Physiology, 2008, 165, 1319-1330.	3.5	111
43	Protein tyrosine nitration in higher plants grown under natural and stress conditions. Frontiers in Plant Science, 2013, 4, 29.	3.6	108
44	Hydrogen sulfide: A novel component in <i>Arabidopsis</i> peroxisomes which triggers catalase inhibition. Journal of Integrative Plant Biology, 2019, 61, 871-883.	8.5	108
45	Detection and Quantification of S-Nitrosoglutathione (CSNO) in Pepper (Capsicum annuum L.) Plant Organs by LC-ES/MS. Plant and Cell Physiology, 2011, 52, 2006-2015.	3.1	107
46	Nitric oxide buffering and conditional nitric oxide release in stress response. Journal of Experimental Botany, 2018, 69, 3425-3438.	4.8	107
47	Plant Peroxisomes, Reactive Oxygen Metabolism and Nitric Oxide. IUBMB Life, 2003, 55, 71-81.	3.4	105
48	Need of biomarkers of nitrosative stress in plants. Trends in Plant Science, 2007, 12, 436-438.	8.8	104
49	Arsenate and arsenite exposure modulate antioxidants and amino acids in contrasting arsenic accumulating rice (Oryza sativa L.) genotypes. Journal of Hazardous Materials, 2013, 262, 1123-1131.	12.4	102
50	Olives and Olive Oil Are Sources of Electrophilic Fatty Acid Nitroalkenes. PLoS ONE, 2014, 9, e84884.	2.5	102
51	Nitric oxide synthase-like activity in higher plants. Nitric Oxide - Biology and Chemistry, 2017, 68, 5-6.	2.7	100
52	The Expression of Different Superoxide Dismutase Forms is Cell-type Dependent in Olive (Olea) Tj ETQq0 0 0 rg	gBT /Overlo 3.1	ock 10 Tf 50 1
53	Lead-induced stress, which triggers the production of nitric oxide (NO) and superoxide anion (O2Â) in Arabidopsis peroxisomes, affects catalase activity. Nitric Oxide - Biology and Chemistry, 2017, 68, 103-110.	2.7	93

Regulating the regulator: nitric oxide control of postâ€translational modifications. New Phytologist, 7.3 91 2020, 227, 1319-1325.

#	Article	IF	CITATIONS
55	Protein tyrosine nitration. Plant Signaling and Behavior, 2009, 4, 920-923.	2.4	90
56	Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. Journal of Experimental Botany, 2002, 53, 1255-72.	4.8	84
57	Tyrosine nitration provokes inhibition of sunflower carbonic anhydrase (β-CA) activity under high temperature stress. Nitric Oxide - Biology and Chemistry, 2013, 29, 30-33.	2.7	80
58	Nitro-fatty acids in plant signaling: New key mediators of nitric oxide metabolism. Redox Biology, 2017, 11, 554-561.	9.0	77
59	Structural and functional characterization of a plant S-nitrosoglutathione reductase from Solanum lycopersicum. Biochimie, 2013, 95, 889-902.	2.6	76
60	Purification of Catalase from Pea Leaf Peroxisomes: Identification of Five Different Isoforms. Free Radical Research, 1999, 31, 235-241.	3.3	72
61	NADPH-generating dehydrogenases: their role in the mechanism of protection against nitro-oxidative stress induced by adverse environmental conditions. Frontiers in Environmental Science, 2014, 2, .	3.3	71
62	Early and delayed long-term transcriptional changes and short-term transient responses during cold acclimation in olive leaves. DNA Research, 2015, 22, 1-11.	3.4	67
63	Carbohydrates affect protein-turnover rates, growth, and nucleic acid content in the white muscle of rainbow trout (Oncorhynchus mykiss). Aquaculture, 1999, 179, 425-437.	3.5	63
64	Variations in the kinetic behaviour of the NADPH-production systems in different tissues of the trout when fed on an amino-acid-based diet at different frequencies1Publication No. 184 from the `Drugs, Environmental Toxics and Cellular Metabolism Research Group', Department of Biochemistry and Molecular Biology, Centre of Biological Sciences, University of Granada, Granada, Spain.1.	2.8	62
65	Inhibition of peroxisomal hydroxypyruvate reductase (HPR1) by tyrosine nitration. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4981-4989.	2.4	62
66	Functions of Nitric Oxide (NO) in Roots during Development and under Adverse Stress Conditions. Plants, 2015, 4, 240-252.	3.5	62
67	Arsenite Tolerance is Related to Proportional Thiolic Metabolite Synthesis in Rice (Oryza sativa L.). Archives of Environmental Contamination and Toxicology, 2013, 64, 235-242.	4.1	61
68	Functional analysis of superoxide dismutases (SODs) in sunflower under biotic and abiotic stress conditions. Identification of two new genes of mitochondrial Mn-SOD. Journal of Plant Physiology, 2011, 168, 1303-1308.	3.5	59
69	Nitric oxide from a "green―perspective. Nitric Oxide - Biology and Chemistry, 2015, 45, 15-19.	2.7	59
70	Fate of Trichoderma harzianum in the olive rhizosphere: time course of the root colonization process and interaction with the fungal pathogen Verticillium dahliae. BioControl, 2016, 61, 269-282.	2.0	56
71	Tolerance of olive (<i>Olea europaea</i>) cv Frantoio to <i>Verticillium dahliae</i> relies on both basal and pathogenâ€induced differential transcriptomic responses. New Phytologist, 2018, 217, 671-686.	7.3	56
72	Recommendations on terminology and experimental best practice associated with plant nitric oxide research. New Phytologist, 2020, 225, 1828-1834.	7.3	56

#	Article	IF	CITATIONS
73	Transposon activation is a major driver in the genome evolution of cultivated olive trees (<i>Olea) Tj ETQq1 1 (</i>).784314 rg 2.8	BT/Overlock
74	Oxidative Stress in Plants. Antioxidants, 2020, 9, 481.	5.1	54
75	Protein Tyrosine Nitration during Development and Abiotic Stress Response in Plants. Frontiers in Plant Science, 2016, 7, 1699.	3.6	52
76	NADP-Dependent Isocitrate Dehydrogenase from <i>Arabidopsis</i> Roots Contributes in the Mechanism of Defence against the Nitro-Oxidative Stress Induced by Salinity. Scientific World Journal, The, 2012, 2012, 1-9.	2.1	51
77	Transcriptomic profiling of linolenic acid-responsive genes in ROS signaling from RNA-seq data in Arabidopsis. Frontiers in Plant Science, 2015, 6, 122.	3.6	51
78	Nitro-linolenic acid is a nitric oxide donor. Nitric Oxide - Biology and Chemistry, 2016, 57, 57-63.	2.7	51
79	Enzymatic sources of nitric oxide in plant cells – beyond one protein–one function. New Phytologist, 2004, 162, 246-248.	7.3	49
80	Plant Peroxisomes, Reactive Oxygen Metabolism and Nitric Oxide. IUBMB Life, 2003, 55, 71-81.	3.4	49
81	Spatial and temporal regulation of the metabolism of reactive oxygen and nitrogen species during the early development of pepper (<i>Capsicum annuum</i>) seedlings. Annals of Botany, 2015, 116, 679-693.	2.9	46
82	Peroxisomal plant nitric oxide synthase (NOS) protein is imported by peroxisomal targeting signal type 2 (PTS2) in a process that depends on the cytosolic receptor PEX7 and calmodulin. FEBS Letters, 2014, 588, 2049-2054.	2.8	45
83	Immunolocalization of S-nitrosoglutathione, S-nitrosoglutathione reductase and tyrosine nitration in pea leaf organelles. Acta Physiologiae Plantarum, 2013, 35, 2635-2640.	2.1	44
84	Peroxisomal NADP-isocitrate dehydrogenase is required for Arabidopsis stomatal movement. Protoplasma, 2016, 253, 403-415.	2.1	44
85	Post-translational modifications mediated by reactive nitrogen species. Plant Signaling and Behavior, 2008, 3, 301-303.	2.4	43
86	Peroxisomal plant metabolism – an update on nitric oxide, Ca2+ and the NADPH recycling network. Journal of Cell Science, 2018, 131, .	2.0	41
87	Relationship between growth and protein turnover rates and nucleic acids in the liver of rainbow trout (<i>Oncorhynchus mykiss</i>) during development. Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55, 649-657.	1.4	40
88	Vinyl sulfone silica: application of an open preactivated support to the study of transnitrosylation of plant proteins by S-nitrosoglutathione. BMC Plant Biology, 2013, 13, 61.	3.6	39
89	Growth, protein-turnover rates and nucleic-acid concentrations in the white muscle of rainbow trout during development. International Journal of Biochemistry and Cell Biology, 2001, 33, 1227-1238.	2.8	37
90	Hypothesis: Nitro-fatty acids play a role in plant metabolism. Plant Science, 2013, 199-200, 1-6.	3.6	37

#	Article	IF	CITATIONS
91	The function of S-nitrosothiols during abiotic stress in plants. Journal of Experimental Botany, 2019, 70, 4429-4439.	4.8	37
92	Selective changes in the protein-turnover rates and nature of growth induced in trout liver by long-term starvation followed by re-feeding. Molecular and Cellular Biochemistry, 1999, 201, 1-10.	3.1	34
93	The Transcriptome of Verticillium dahliae Responds Differentially Depending on the Disease Susceptibility Level of the Olive (Olea europaea L.) Cultivar. Genes, 2019, 10, 251.	2.4	34
94	Transcriptomic Analysis of Olea europaea L. Roots during the Verticillium dahliae Early Infection Process. Plant Genome, 2017, 10, plantgenome2016.07.0060.	2.8	33
95	Post-Translational Modification of Proteins Mediated by Nitro-Fatty Acids in Plants: Nitroalkylation. Plants, 2019, 8, 82.	3.5	33
96	Reactive sulfur species (RSS): possible new players in the oxidative metabolism of plant peroxisomes. Frontiers in Plant Science, 2015, 6, 116.	3.6	30
97	Dietary protein effects on growth and fractional protein synthesis and degradation rates in liver and white muscle of rainbow trout (Oncorhynchus mykiss). Aquaculture, 1994, 124, 35-46.	3.5	29
98	The influence of dietary protein on the kinetics of NADPH production systems in various tissues of rainbow trout (Oncorhynchus mykiss). Aquaculture, 1994, 124, 47-59.	3.5	28
99	Molecular and kinetic characterization and cell type location of inducible nitric oxide synthase in fish. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R650-R656.	1.8	28
100	Localization of Sâ€Nitrosothiols and Assay of Nitric Oxide Synthase and Sâ€Nitrosoglutathione Reductase Activity in Plants. Methods in Enzymology, 2008, 437, 561-574.	1.0	28
101	Impact of starvation-refeeding on kinetics and protein expression of trout liver NADPH-production systems. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 274, R1578-R1587.	1.8	26
102	Cytosolic NADP-isocitrate dehydrogenase in Arabidopsis leaves and roots. Biologia Plantarum, 2012, 56, 705-710.	1.9	26
103	Altered Plant and Nodule Development and Protein S-Nitrosylation in Lotus japonicus Mutants Deficient in S-Nitrosoglutathione Reductases. Plant and Cell Physiology, 2020, 61, 105-117.	3.1	25
104	Dietary alterations in protein, carbohydrates and fat increase liver protein-turnover rate and decrease overall growth rate in the rainbow trout (Oncorhynchus mykiss). Molecular and Cellular Biochemistry, 2000, 209, 97-104.	3.1	24
105	Identification of a gene involved in the juvenile-to-adult transition (JAT) in cultivated olive trees. Tree Genetics and Genomes, 2010, 6, 891-903.	1.6	24
106	Carbohydrate deprivation reduces NADPH-production in fish liver but not in adipose tissue. International Journal of Biochemistry and Cell Biology, 2001, 33, 785-796.	2.8	23
107	Functional implications of peroxisomal nitric oxide (NO) in plants. Frontiers in Plant Science, 2014, 5, 97.	3.6	22
108	Nitric oxide release from nitro-fatty acids in Arabidopsis roots. Plant Signaling and Behavior, 2016, 11, e1154255.	2.4	22

JUAN B BARROSO

#	Article	IF	CITATIONS
109	InÂvitro nitro-fatty acid release from Cys-NO2-fatty acid adducts under nitro-oxidative conditions. Nitric Oxide - Biology and Chemistry, 2017, 68, 14-22.	2.7	21
110	Drought stress triggers the accumulation of NO and SNOs in cortical cells of Lotus japonicus L. roots and the nitration of proteins with relevant metabolic function. Environmental and Experimental Botany, 2019, 161, 228-241.	4.2	21
111	Nitric oxideâ€releasing nanomaterials: from basic research to potential biotechnological applications in agriculture. New Phytologist, 2022, 234, 1119-1125.	7.3	21
112	Nitric oxide content is associated with tolerance to bicarbonate-induced chlorosis in micropropagated Prunus explants. Journal of Plant Physiology, 2011, 168, 1543-1549.	3.5	20
113	Genetic changes involved in the juvenile-to-adult transition in the shoot apex of Olea europaea L. occur years before the first flowering. Tree Genetics and Genomes, 2014, 10, 585.	1.6	20
114	Immunohistochemical localisation of neuronal nitric oxide synthase in the rainbow trout kidney. Journal of Chemical Neuroanatomy, 2001, 21, 289-294.	2.1	19
115	Function of Nitric Oxide Under Environmental Stress Conditions. , 2012, , 99-113.		19
116	Short-Term Low Temperature Induces Nitro-Oxidative Stress that Deregulates the NADP-Malic Enzyme Function by Tyrosine Nitration in Arabidopsis thaliana. Antioxidants, 2019, 8, 448.	5.1	19
117	High hydrostatic pressure (101 ATA) changes the metabolic design of yellow freshwater eel muscle. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1998, 121, 195-200.	1.6	18
118	Nitration and S-Nitrosylation: Two Post-translational Modifications (PTMs) Mediated by Reactive Nitrogen Species (RNS) and Their Role in Signalling Processes of Plant Cells. Signaling and Communication in Plants, 2015, , 267-281.	0.7	17
119	Involvement of Reactive Nitrogen and Oxygen Species (RNS and ROS) in Sunflower-Mildew Interaction. Plant and Cell Physiology, 2009, 50, 665-679.	3.1	16
120	Biological properties of nitro-fatty acids in plants. Nitric Oxide - Biology and Chemistry, 2018, 78, 176-179.	2.7	16
121	Kinetic properties of hexose-monophosphate dehydrogenases. II. Isolation and partial purification of 6-phosphogluconate dehydrogenase from rat liver and kidney cortex. Molecular and Cellular Biochemistry, 1995, 144, 97-104.	3.1	15
122	Calmodulin (CaM) antagonist affects peroxisomal functionality by disrupting both peroxisomal Ca2+ and protein import. Journal of Cell Science, 2018, 131, .	2.0	15
123	Alterations in the fractional protein turnover rates in rainbowâ€trout liver and white muscle caused by an Aminoacidâ€based diet and changes in the feeding frequency ¹ . Toxicological and Environmental Chemistry, 1992, 36, 217-224.	1.2	14
124	Gene Expression Pattern in Olive Tree Organs (Olea europaea L.). Genes, 2020, 11, 544.	2.4	14
125	Mitochondrial 1-Cys-peroxiredoxin/thioredoxin system protects manganese-containing superoxide dismutase (Mn-SOD) against inactivation by peroxynitrite in Saccharomyces cerevisiae. Nitric Oxide - Biology and Chemistry, 2010, 23, 206-213.	2.7	13
126	Endogenous Biosynthesis of S-Nitrosoglutathione From Nitro-Fatty Acids in Plants. Frontiers in Plant Science, 2020, 11, 962.	3.6	13

#	Article	IF	CITATIONS
127	Serine dehydratase expression decreases in rat livers injured by chronic thioacetamide ingestion. Molecular and Cellular Biochemistry, 2005, 268, 33-43.	3.1	11
128	Downregulation in the expression of the serine dehydratase in the rat liver during chronic metabolic acidosis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R1295-R1302.	1.8	11
129	Peroxisomes as Cell Generators of Reactive Nitrogen Species (RNS) Signal Molecules. Sub-Cellular Biochemistry, 2013, 69, 283-298.	2.4	11
130	Immunological evidence for the presence of peroxiredoxin in pea leaf peroxisomes and response to oxidative stress conditions. Acta Physiologiae Plantarum, 2017, 39, 1.	2.1	11
131	Role of electrophilic nitrated fatty acids during development and response to abiotic stress processes in plants. Journal of Experimental Botany, 2021, 72, 917-927.	4.8	11
132	Nitrosative Stress in Plants: AÂNew Approach to Understand the Role of NO in Abiotic Stress. Plant Cell Monographs, 2006, , 187-205.	0.4	9
133	Determination of nitrotyrosine in Arabidopsis thaliana cell cultures with a mixed-mode solid-phase extraction cleanup followed by liquid chromatography time-of-flight mass spectrometry. Analytical and Bioanalytical Chemistry, 2012, 404, 1495-1503.	3.7	9
134	Kinetic behavior and protein expression of hepatic NADPH-production systems during development of rainbow trout (Oncorhynchus mykiss). Aquaculture, 1999, 179, 375-385.	3.5	8
135	Nitro-Fatty Acid Detection in Plants by High-Pressure Liquid Chromatography Coupled to Triple Quadrupole Mass Spectrometry. Methods in Molecular Biology, 2018, 1747, 231-239.	0.9	8
136	Transcriptional analysis of adult cutting and juvenile seedling olive roots. Tree Genetics and Genomes, 2015, 11, 1.	1.6	7
137	Differential modulation of S-nitrosoglutathione reductase and reactive nitrogen species in wild and cultivated tomato genotypes during development and powdery mildew infection. Plant Physiology and Biochemistry, 2020, 155, 297-310.	5.8	6
138	Nitric oxide under abiotic stress conditions. , 2020, , 735-754.		6
139	Editorial: Nitric Oxide in Plants. Frontiers in Plant Science, 2021, 12, 705157.	3.6	6
140	Nitric Oxide Emission and Uptake from Higher Plants. Signaling and Communication in Plants, 2016, , 79-93.	0.7	5
141	Functional Implications of S-Nitrosothiols under Nitrooxidative Stress Induced by Abiotic Conditions. Advances in Botanical Research, 2016, , 79-96.	1.1	5
142	Function of Peroxisomes as a Cellular Source of Nitric Oxide and Other Reactive Nitrogen Species. , 2014, , 33-55.		5
143	Transcriptomic Analyses on the Role of Nitric Oxide in Plant Disease Resistance. Current Issues in Molecular Biology, 2016, 19, 121-8.	2.4	5
144	Quantification and Localization of S-Nitrosothiols (SNOs) in Higher Plants. Methods in Molecular Biology, 2016, 1424, 139-147.	0.9	4

#	Article	IF	CITATIONS
145	Transcriptional Regulation of Gene Expression Related to Hydrogen Peroxide (H2O2) and Nitric Oxide (NO). , 2019, , 69-90.		4
146	Serine dehydratase and tyrosine aminotransferase activities increased by longâ€ŧerm starvation and recovery by refeeding in rainbow trout (<i>Oncorhynchus mykiss</i>). Journal of Experimental Zoology, 2008, 309A, 25-34.	1.2	3
147	Nitro-Oleic Acid-Mediated Nitroalkylation Modulates the Antioxidant Function of Cytosolic Peroxiredoxin Tsa1 during Heat Stress in Saccharomyces cerevisiae. Antioxidants, 2022, 11, 972.	5.1	3
148	The influence of lipogenic and lipolytic conditions on the pentose phosphate pathway dehydrogenases in rat-kidney-cortex. Archives Internationales De Physiologie Et De Biochimie, 1990, 98, 283-289.	0.2	2
149	Role of nitric oxide–dependent posttranslational modifications of proteins under abiotic stress. , 2020, , 793-809.		2
150	The innervation of rainbow trout (Oncorhynchus mykiss) liver: protein gene product 9.5 and neuronal nitric oxide synthase immunoreactivities. , 0, .		2
151	Identification of Tyrosine and Nitrotyrosine with a Mixed-Mode Solid-Phase Extraction Cleanup Followed by Liquid Chromatography–Electrospray Time-of-Flight Mass Spectrometry in Plants. Methods in Molecular Biology, 2018, 1747, 161-169.	0.9	1
152	New Insights into the Functional Role of Nitric Oxide and Reactive Oxygen Species in Plant Response to Biotic and Abiotic Stress Conditions. Plant in Challenging Environments, 2021, , 215-235.	0.4	1