
Sven Cichon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6929140/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature, 2012, 491, 119-124.	27.8	4,038
2	Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature Genetics, 2018, 50, 668-681.	21.4	2,224
3	Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nature Genetics, 2013, 45, 984-994.	21.4	2,067
4	Genome-wide association study identifies five new schizophrenia loci. Nature Genetics, 2011, 43, 969-976.	21.4	1,758
5	Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nature Genetics, 2011, 43, 333-338.	21.4	1,685
6	Large recurrent microdeletions associated with schizophrenia. Nature, 2008, 455, 232-236.	27.8	1,619
7	Common variants conferring risk of schizophrenia. Nature, 2009, 460, 744-747.	27.8	1,572
8	Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nature Genetics, 2011, 43, 977-983.	21.4	1,283
9	Genome-wide association study identifies 30 loci associated with bipolar disorder. Nature Genetics, 2019, 51, 793-803.	21.4	1,191
10	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	12.6	1,085
11	A mega-analysis of genome-wide association studies for major depressive disorder. Molecular Psychiatry, 2013, 18, 497-511.	7.9	1,002
12	Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nature Genetics, 2008, 40, 1053-1055.	21.4	977
13	Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders. Cell, 2019, 179, 1469-1482.e11.	28.9	935
14	Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 2022, 604, 502-508.	27.8	929
15	Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nature Genetics, 2017, 49, 27-35.	21.4	838
16	Common genetic variants influence human subcortical brain structures. Nature, 2015, 520, 224-229.	27.8	772
17	The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging and Behavior, 2014, 8, 153-182.	2.1	696
18	Microduplications of 16p11.2 are associated with schizophrenia. Nature Genetics, 2009, 41, 1223-1227.	21.4	646

#	Article	IF	CITATIONS
19	Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nature Genetics, 2019, 51, 1207-1214.	21.4	641
20	Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nature Genetics, 2021, 53, 817-829.	21.4	629
21	A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Molecular Psychiatry, 2008, 13, 197-207.	7.9	619
22	Identification of common variants associated with human hippocampal and intracranial volumes. Nature Genetics, 2012, 44, 552-561.	21.4	594
23	Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nature Genetics, 2015, 47, 1449-1456.	21.4	529
24	Psychiatric Genomics: An Update and an Agenda. American Journal of Psychiatry, 2018, 175, 15-27.	7.2	518
25	Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1043-1048.	21.4	494
26	Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nature Neuroscience, 2018, 21, 1656-1669.	14.8	490
27	The genetic architecture of the human cerebral cortex. Science, 2020, 367, .	12.6	450
28	A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nature Genetics, 2015, 47, 1443-1448.	21.4	435
29	Disruption of the neurexin 1 gene is associated with schizophrenia. Human Molecular Genetics, 2009, 18, 988-996.	2.9	424
30	Key susceptibility locus for nonsyndromic cleft lip with or without cleft palate on chromosome 8q24. Nature Genetics, 2009, 41, 473-477.	21.4	415
31	Significant Locus and Metabolic Genetic Correlations Revealed in Genome-Wide Association Study of Anorexia Nervosa. American Journal of Psychiatry, 2017, 174, 850-858.	7.2	410
32	Genome Scan Meta-Analysis of Schizophrenia and Bipolar Disorder, Part III: Bipolar Disorder. American Journal of Human Genetics, 2003, 73, 49-62.	6.2	400
33	Genomewide Association Studies: History, Rationale, and Prospects for Psychiatric Disorders. American Journal of Psychiatry, 2009, 166, 540-556.	7.2	391
34	Genome-wide association study identifies two susceptibility loci for nonsyndromic cleft lip with or without cleft palate. Nature Genetics, 2010, 42, 24-26.	21.4	379
35	Neural Mechanisms of a Genome-Wide Supported Psychosis Variant. Science, 2009, 324, 605-605.	12.6	375
36	Genome-wide Association Study of Alcohol Dependence. Archives of General Psychiatry, 2009, 66, 773.	12.3	354

#	Article	IF	CITATIONS
37	Genome-wide association for major depressive disorder: a possible role for the presynaptic protein piccolo. Molecular Psychiatry, 2009, 14, 359-375.	7.9	354
38	Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. Nature Genetics, 2009, 41, 1083-1087.	21.4	344
39	Multiple Independent Loci at Chromosome 15q25.1 Affect Smoking Quantity: a Meta-Analysis and Comparison with Lung Cancer and COPD. PLoS Genetics, 2010, 6, e1001053.	3.5	332
40	Genome-wide meta-analyses of nonsyndromic cleft lip with or without cleft palate identify six new risk loci. Nature Genetics, 2012, 44, 968-971.	21.4	311
41	Increased Activity of Coagulation Factor XII (Hageman Factor) Causes Hereditary Angioedema Type III. American Journal of Human Genetics, 2006, 79, 1098-1104.	6.2	306
42	Genetic variants associated with response to lithium treatment in bipolar disorder: a genome-wide association study. Lancet, The, 2016, 387, 1085-1093.	13.7	306
43	Genome-wide association study reveals two new risk loci for bipolar disorder. Nature Communications, 2014, 5, 3339.	12.8	294
44	Examination of G72 and D-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. Molecular Psychiatry, 2004, 9, 203-207.	7.9	293
45	High Frequencies of De Novo CNVs in Bipolar Disorder and Schizophrenia. Neuron, 2011, 72, 951-963.	8.1	290
46	Evidence for a Relationship Between Genetic Variants at the Brain-Derived Neurotrophic Factor (BDNF) Locus and Major Depression. Biological Psychiatry, 2005, 58, 307-314.	1.3	284
47	All SNPs Are Not Created Equal: Genome-Wide Association Studies Reveal a Consistent Pattern of Enrichment among Functionally Annotated SNPs. PLoS Genetics, 2013, 9, e1003449.	3.5	268
48	Genome-wide Association Study Identifies Genetic Variation in Neurocan as a Susceptibility Factor for Bipolar Disorder. American Journal of Human Genetics, 2011, 88, 372-381.	6.2	257
49	Novel genetic loci associated with hippocampal volume. Nature Communications, 2017, 8, 13624.	12.8	250
50	Mast Cells Increase Vascular Permeability by Heparin-Initiated Bradykinin Formation InÂVivo. Immunity, 2011, 34, 258-268.	14.3	230
51	Copy number variations of chromosome 16p13.1 region associated with schizophrenia. Molecular Psychiatry, 2011, 16, 17-25.	7.9	227
52	Joint Analysis of Psychiatric Disorders Increases Accuracy of Risk Prediction for Schizophrenia, Bipolar Disorder, and Major Depressive Disorder. American Journal of Human Genetics, 2015, 96, 283-294.	6.2	225
53	Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nature Genetics, 2011, 43, 1224-1227.	21.4	224
54	Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nature Genetics, 2021, 53, 1636-1648.	21.4	223

#	Article	IF	CITATIONS
55	Combined Analysis from Eleven Linkage Studies of Bipolar Disorder Provides Strong Evidence of Susceptibility Loci on Chromosomes 6q and 8q. American Journal of Human Genetics, 2005, 77, 582-595.	6.2	218
56	Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nature Neuroscience, 2016, 19, 1569-1582.	14.8	213
57	Common variants at 12q14 and 12q24 are associated with hippocampal volume. Nature Genetics, 2012, 44, 545-551.	21.4	212
58	Strong Genetic Evidence of DCDC2 as a Susceptibility Gene for Dyslexia. American Journal of Human Genetics, 2006, 78, 52-62.	6.2	211
59	A large-scale genome-wide association study meta-analysis of cannabis use disorder. Lancet Psychiatry,the, 2020, 7, 1032-1045.	7.4	200
60	Genetic Variation in the Human Androgen Receptor Gene Is the Major Determinant of Common Early-Onset Androgenetic Alopecia. American Journal of Human Genetics, 2005, 77, 140-148.	6.2	198
61	A framework for interpreting genome-wide association studies of psychiatric disorders. Molecular Psychiatry, 2009, 14, 10-17.	7.9	195
62	Common variants at VRK2 and TCF4 conferring risk of schizophrenia. Human Molecular Genetics, 2011, 20, 4076-4081.	2.9	193
63	Genetic architecture of subcortical brain structures in 38,851 individuals. Nature Genetics, 2019, 51, 1624-1636.	21.4	192
64	Association of Mouse <i>Dlg4</i> (PSD-95) Gene Deletion and Human <i>DLG4</i> Gene Variation With Phenotypes Relevant to Autism Spectrum Disorders and Williams' Syndrome. American Journal of Psychiatry, 2010, 167, 1508-1517.	7.2	191
65	Loss-of-function mutations of an inhibitory upstream ORF in the human hairless transcript cause Marie Unna hereditary hypotrichosis. Nature Genetics, 2009, 41, 228-233.	21.4	190
66	The Neuronal Transporter Gene SLC6A15 Confers Risk to Major Depression. Neuron, 2011, 70, 252-265.	8.1	189
67	GWAS of Suicide Attempt in Psychiatric Disorders and Association With Major Depression Polygenic Risk Scores. American Journal of Psychiatry, 2019, 176, 651-660.	7.2	186
68	Gene variants associated with schizophrenia in a Norwegian genome-wide study are replicated in a large European cohort. Journal of Psychiatric Research, 2010, 44, 748-753.	3.1	183
69	Genome-wide association study of 40,000 individuals identifies two novel loci associated with bipolar disorder. Human Molecular Genetics, 2016, 25, 3383-3394.	2.9	182
70	The DTNBP1 (Dysbindin) Gene Contributes to Schizophrenia, Depending on Family History of the Disease. American Journal of Human Genetics, 2003, 73, 1438-1443.	6.2	180
71	Genome-wide association study meta-analysis of European and Asian-ancestry samples identifies three novel loci associated with bipolar disorder. Molecular Psychiatry, 2013, 18, 195-205.	7.9	180
72	Two variants in Ankyrin 3 (ANK3) are independent genetic risk factors for bipolar disorder. Molecular Psychiatry, 2009, 14, 487-491.	7.9	171

#	Article	IF	CITATIONS
73	Brain Function in Carriers of a Genome-wide Supported Bipolar Disorder Variant. Archives of General Psychiatry, 2010, 67, 803.	12.3	165
74	Hypotrichosis simplex of the scalp is associated with nonsense mutations in CDSN encoding corneodesmosin. Nature Genetics, 2003, 34, 151-153.	21.4	164
75	Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci. Molecular Psychiatry, 2014, 19, 325-333.	7.9	163
76	A genome-wide association study for late-onset Alzheimer's disease using DNA pooling. BMC Medical Genomics, 2008, 1, 44.	1.5	162
77	Cloning, Genomic Organization, Alternative Transcripts and Mutational Analysis of the Gene Responsible for Autosomal Recessive Universal Congenital Alopecia. Human Molecular Genetics, 1998, 7, 1671-1679.	2.9	159
78	Systems genetics identifies Sestrin 3 as a regulator of a proconvulsant gene network in human epileptic hippocampus. Nature Communications, 2015, 6, 6031.	12.8	158
79	Genome-Wide Association-, Replication-, and Neuroimaging Study Implicates HOMER1 in the Etiology of Major Depression. Biological Psychiatry, 2010, 68, 578-585.	1.3	156
80	Assessment of Response to Lithium Maintenance Treatment in Bipolar Disorder: A Consortium on Lithium Genetics (ConLiGen) Report. PLoS ONE, 2013, 8, e65636.	2.5	156
81	Cenomeâ€wide significant association between alcohol dependence and a variant in the <i>ADH</i> gene cluster. Addiction Biology, 2012, 17, 171-180.	2.6	154
82	Evidence for Linkage of Spelling Disability to Chromosome 15. American Journal of Human Genetics, 1998, 63, 279-282.	6.2	153
83	Meta-analysis of genome-wide association data identifies a risk locus for major mood disorders on 3p21.1. Nature Genetics, 2010, 42, 128-131.	21.4	152
84	The Complement Control-Related Genes CSMD1 and CSMD2 Associate to Schizophrenia. Biological Psychiatry, 2011, 70, 35-42.	1.3	149
85	Meta-analysis identifies seven susceptibility loci involved in the atopic march. Nature Communications, 2015, 6, 8804.	12.8	148
86	A genome-wide association study of attempted suicide. Molecular Psychiatry, 2012, 17, 433-444.	7.9	141
87	Genome-Wide Association Study of Suicide Attempts in Mood Disorder Patients. American Journal of Psychiatry, 2010, 167, 1499-1507.	7.2	140
88	Expanding the range of ZNF804A variants conferring risk of psychosis. Molecular Psychiatry, 2011, 16, 59-66.	7.9	140
89	The International Consortium on Lithium Genetics (ConLiGen): An Initiative by the NIMH and IGSLI to Study the Genetic Basis of Response to Lithium Treatment. Neuropsychobiology, 2010, 62, 72-78.	1.9	134
90	A genome-wide association study in 574 schizophrenia trios using DNA pooling. Molecular Psychiatry, 2009, 14, 796-803.	7.9	133

6

#	Article	IF	CITATIONS
91	Effects of a genome-wide supported psychosis risk variant on neural activation during a theory-of-mind task. Molecular Psychiatry, 2011, 16, 462-470.	7.9	133
92	TMEM132D, a new candidate for anxiety phenotypes: evidence from human and mouse studies. Molecular Psychiatry, 2011, 16, 647-663.	7.9	130
93	A genome screen for genes predisposing to bipolar affective disorder detects a new susceptibility locus on 8q. Human Molecular Genetics, 2001, 10, 2933-2944.	2.9	126
94	Evaluation of linkage of bipolar affective disorder to chromosome 18 in a sample of 57 German families. Molecular Psychiatry, 1999, 4, 76-84.	7.9	124
95	Genotype-Phenotype Studies in Bipolar Disorder Showing Association Between the DAOA/G30 Locus and Persecutory Delusions: A First Step Toward a Molecular Genetic Classification of Psychiatric Phenotypes. American Journal of Psychiatry, 2005, 162, 2101-2108.	7.2	123
96	Human dopamine D4 receptor gene: frequent occurrence of a null allele and observation of homozygosity. Human Molecular Genetics, 1994, 3, 2207-2212.	2.9	122
97	Molecular genetic overlap in bipolar disorder, schizophrenia, and major depressive disorder. World Journal of Biological Psychiatry, 2014, 15, 200-208.	2.6	120
98	Susceptibility variants for male-pattern baldness on chromosome 20p11. Nature Genetics, 2008, 40, 1279-1281.	21.4	119
99	Genetic Schizophrenia Risk Variants Jointly Modulate Total Brain and White Matter Volume. Biological Psychiatry, 2013, 73, 525-531.	1.3	119
100	Systematic Analysis of Glutamatergic Neurotransmission Genes in Alcohol Dependence and Adolescent Risky Drinking Behavior. Archives of General Psychiatry, 2008, 65, 826.	12.3	116
101	At-Risk Variant in TCF7L2 for Type II Diabetes Increases Risk of Schizophrenia. Biological Psychiatry, 2011, 70, 59-63.	1.3	114
102	Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors. Biological Psychiatry, 2022, 91, 313-327.	1.3	114
103	Effects of the Circadian Rhythm Gene Period 1 (<i>Per1</i>) on Psychosocial Stress-Induced Alcohol Drinking. American Journal of Psychiatry, 2011, 168, 1090-1098.	7.2	113
104	Brain-specific tryptophan hydroxylase 2 (TPH2): a functional Pro206Ser substitution and variation in the 5'-region are associated with bipolar affective disorder. Human Molecular Genetics, 2007, 17, 87-97.	2.9	109
105	Runs of Homozygosity Implicate Autozygosity as a Schizophrenia Risk Factor. PLoS Genetics, 2012, 8, e1002656.	3.5	109
106	Cognitive state and connectivity effects of the genome-wide significant psychosis variant in ZNF804A. NeuroImage, 2011, 54, 2514-2523.	4.2	108
107	Systematic screening for DNA sequence variation in the coding region of the human dopamine transporter gene (DAT1). Molecular Psychiatry, 2000, 5, 275-282.	7.9	106
108	Association between genetic variation in a region on chromosome 11 and schizophrenia in large samples from Europe. Molecular Psychiatry, 2012, 17, 906-917.	7.9	105

#	Article	IF	CITATIONS
109	Meta-analysis of two genome-wide association studies of bipolar disorder reveals important points of agreement. Molecular Psychiatry, 2008, 13, 466-467.	7.9	103
110	Volition diminishes genetically mediated amygdala hyperreactivity. NeuroImage, 2010, 53, 943-951.	4.2	103
111	Genetic Differences in the Immediate Transcriptome Response to Stress Predict Risk-Related Brain Function and Psychiatric Disorders. Neuron, 2015, 86, 1189-1202.	8.1	102
112	Association of Polygenic Score for Schizophrenia and HLA Antigen and Inflammation Genes With Response to Lithium in Bipolar Affective Disorder. JAMA Psychiatry, 2018, 75, 65-74.	11.0	102
113	Genome-wide association study implicates NDST3 in schizophrenia and bipolar disorder. Nature Communications, 2013, 4, 2739.	12.8	101
114	Polymorphic imprinting of the serotonin-2A (5-HT2A) receptor gene in human adult brain. Molecular Brain Research, 1998, 59, 90-92.	2.3	99
115	Brain-derived neurotrophic factor gene (BDNF) variants and schizophrenia: An association study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2006, 30, 924-933.	4.8	98
116	Association of the OPRM1 Variant rs1799971 (A118G) with Non-Specific Liability to Substance Dependence in a Collaborative de novo Meta-Analysis of European-Ancestry Cohorts. Behavior Genetics, 2016, 46, 151-169.	2.1	98
117	Studying variability in human brain aging in a population-based German cohort—rationale and design of 1000BRAINS. Frontiers in Aging Neuroscience, 2014, 6, 149.	3.4	97
118	Striatal Response to Reward Anticipation. JAMA Psychiatry, 2014, 71, 531.	11.0	96
119	Maternally Derived Microduplications at 15q11-q13: Implication of Imprinted Genes in Psychotic Illness. American Journal of Psychiatry, 2011, 168, 408-417.	7.2	95
120	Involvement of the atrial natriuretic peptide transcription factor GATA4 in alcohol dependence, relapse risk and treatment response to acamprosate. Pharmacogenomics Journal, 2011, 11, 368-374.	2.0	93
121	The KMO allele encoding Arg452 is associated with psychotic features in bipolar disorder type 1, and with increased CSF KYNA level and reduced KMO expression. Molecular Psychiatry, 2014, 19, 334-341.	7.9	91
122	Genetic and functional abnormalities of the melatonin biosynthesis pathway in patients with bipolar disorder. Human Molecular Genetics, 2012, 21, 4030-4037.	2.9	90
123	The Genetic Architecture of Depression in Individuals of East Asian Ancestry. JAMA Psychiatry, 2021, 78, 1258.	11.0	88
124	Metabotropic glutamate receptor 3 (<i>GRM3</i>) gene variation is not associated with schizophrenia or bipolar affective disorder in the German population. American Journal of Medical Genetics Part A, 2002, 114, 46-50.	2.4	87
125	Does Childhood Trauma Moderate Polygenic Risk for Depression? A Meta-analysis of 5765 Subjects From the Psychiatric Genomics Consortium. Biological Psychiatry, 2018, 84, 138-147.	1.3	87
126	Common variant at 16p11.2 conferring risk of psychosis. Molecular Psychiatry, 2014, 19, 108-114.	7.9	85

#	Article	IF	CITATIONS
127	An Analysis of Two Genome-wide Association Meta-analyses Identifies a New Locus for Broad Depression Phenotype. Biological Psychiatry, 2017, 82, 322-329.	1.3	84
128	The DISC locus and schizophrenia: evidence from an association study in a central European sample and from a meta-analysis across different European populations. Human Molecular Genetics, 2009, 18, 2719-2727.	2.9	78
129	Association Study of Nonsynonymous Single Nucleotide Polymorphisms in Schizophrenia. Biological Psychiatry, 2012, 71, 169-177.	1.3	78
130	Common obesity risk alleles in childhood attentionâ€deficit/hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 295-305.	1.7	77
131	Identification of shared risk loci and pathways for bipolar disorder and schizophrenia. PLoS ONE, 2017, 12, e0171595.	2.5	77
132	Genomeâ€wide association study in German patients with attention deficit/hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 888-897.	1.7	76
133	Genome-wide survey implicates the influence of copy number variants (CNVs) in the development of early-onset bipolar disorder. Molecular Psychiatry, 2012, 17, 421-432.	7.9	76
134	Genome-wide analysis of rare copy number variations reveals PARK2 as a candidate gene for attention-deficit/hyperactivity disorder. Molecular Psychiatry, 2014, 19, 115-121.	7.9	76
135	Association study of the low-activity allele of catechol-O-methyltransferase and alcoholism using a family-based approach. Molecular Psychiatry, 2001, 6, 109-111.	7.9	75
136	Consensus paper of the WFSBP Task Force on Genetics: Genetics, epigenetics and gene expression markers of major depressive disorder and antidepressant response. World Journal of Biological Psychiatry, 2017, 18, 5-28.	2.6	75
137	Genetic variants associated with longitudinal changes in brain structure across the lifespan. Nature Neuroscience, 2022, 25, 421-432.	14.8	75
138	TLR4, ATF-3 and IL8 inflammation mediator expression correlates with seizure frequency in human epileptic brain tissue. Seizure: the Journal of the British Epilepsy Association, 2013, 22, 675-678.	2.0	74
139	Single Nucleotide Variation Analysis in 65 Candidate Genes for CNS Disorders in a Representative Sample of the European Population. Genome Research, 2003, 13, 2271-2276.	5.5	72
140	Increased Genetic Vulnerability to Smoking at CHRNA5 in Early-Onset Smokers. Archives of General Psychiatry, 2012, 69, 854.	12.3	71
141	Association between schizophrenia and common variation in neurocan (NCAN), a genetic risk factor for bipolar disorder. Schizophrenia Research, 2012, 138, 69-73.	2.0	70
142	Implication of a Rare Deletion at Distal 16p11.2 in Schizophrenia. JAMA Psychiatry, 2013, 70, 253.	11.0	69
143	Genome-wide scan for genes involved in bipolar affective disorder in 70 European families ascertained through a bipolar type I early-onset proband: supportive evidence for linkage at 3p14. Molecular Psychiatry, 2006, 11, 685-694.	7.9	68
144	Dissection of phenotype reveals possible association between schizophrenia and Glutamate Receptor Delta 1 (GRID1) gene promoter. Schizophrenia Research, 2009, 111, 123-130.	2.0	67

#	Article	IF	CITATIONS
145	GWA study data mining and independent replication identify cardiomyopathy-associated 5 (CMYA5) as a risk gene for schizophrenia. Molecular Psychiatry, 2011, 16, 1117-1129.	7.9	67
146	Genome-wide Studies of Verbal Declarative Memory in Nondemented Older People: The Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium. Biological Psychiatry, 2015, 77, 749-763.	1.3	67
147	Analysis of 10 independent samples provides evidence for association between schizophrenia and a SNP flanking fibroblast growth factor receptor 2. Molecular Psychiatry, 2009, 14, 30-36.	7.9	66
148	Polymorphisms in SREBF1 and SREBF2, two antipsychotic-activated transcription factors controlling cellular lipogenesis, are associated with schizophrenia in German and Scandinavian samples. Molecular Psychiatry, 2010, 15, 463-472.	7.9	66
149	Hereditary angioedema with normal C1 inhibitor gene in a family with affected women and men is associated with the p.Thr328Lys mutation in the F12 gene. Journal of Allergy and Clinical Immunology, 2007, 120, 975-977.	2.9	65
150	The Opioid Peptides Enkephalin and β-Endorphin in Alcohol Dependence. Biological Psychiatry, 2008, 64, 989-997.	1.3	64
151	αCaMKII Autophosphorylation Controls the Establishment of Alcohol Drinking Behavior. Neuropsychopharmacology, 2013, 38, 1636-1647.	5.4	63
152	Investigation of the human serotonin 6 (5-HT6) receptor gene in bipolar affective disorder and schizophrenia. , 2000, 96, 217-221.		62
153	New findings in the genetics of major psychoses. Dialogues in Clinical Neuroscience, 2010, 12, 85-93.	3.7	62
154	Detection of four polymorphic sites in the human dopamine D1 receptor gene (DRD1). Human Molecular Genetics, 1994, 3, 209-209.	2.9	61
155	Systematic screening for mutations in the promoter and the coding region of the 5-HT1A gene. American Journal of Medical Genetics Part A, 1995, 60, 393-399.	2.4	61
156	A Gene for Universal Congenital Alopecia Maps to Chromosome 8p21-22. American Journal of Human Genetics, 1998, 62, 386-390.	6.2	61
157	Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders. Biological Psychiatry, 2022, 91, 102-117.	1.3	61
158	Novel Hairless Mutations in Two Kindreds with Autosomal Recessive Papular Atrichia. Journal of Investigative Dermatology, 1999, 113, 954-959.	0.7	60
159	Investigation of the Genetic Association between Quantitative Measures of Psychosis and Schizophrenia: A Polygenic Risk Score Analysis. PLoS ONE, 2012, 7, e37852.	2.5	60
160	Genome-wide mapping of genetic determinants influencing DNA methylation and gene expression in human hippocampus. Nature Communications, 2017, 8, 1511.	12.8	60
161	Functional Subclone Profiling for Prediction of Treatment-Induced Intratumor Population Shifts and Discovery of Rational Drug Combinations in Human Glioblastoma. Clinical Cancer Research, 2017, 23, 562-574.	7.0	60
162	Supporting evidence for LRRTM1 imprinting effects in schizophrenia. Molecular Psychiatry, 2009, 14, 743-745.	7.9	59

#	Article	IF	CITATIONS
163	Altered Functional Subnetwork During Emotional Face Processing. JAMA Psychiatry, 2016, 73, 598.	11.0	59
164	Multiple Testing in the Context of Haplotype Analysis Revisited: Application to Caseâ€Control Data. Annals of Human Genetics, 2005, 69, 747-756.	0.8	58
165	Genome-wide association of mood-incongruent psychotic bipolar disorder. Translational Psychiatry, 2012, 2, e180-e180.	4.8	58
166	Studies in Humans and Mice Implicate Neurocan in the Etiology of Mania. American Journal of Psychiatry, 2012, 169, 982-990.	7.2	58
167	Systematic screening for mutations in the 5′-regulatory region of the human dopamine D1 receptor (DRD1) gene in patients with schizophrenia and bipolar affective disorder. American Journal of Medical Genetics Part A, 1996, 67, 424-428.	2.4	57
168	Lack of support for a genetic association of the XBP1 promoter polymorphism with bipolar disorder in probands of European origin. Nature Genetics, 2004, 36, 783-784.	21.4	57
169	Hippocampal and Frontolimbic Function as Intermediate Phenotype for Psychosis: Evidence from Healthy Relatives and a Common Risk Variant in CACNA1C. Biological Psychiatry, 2014, 76, 466-475.	1.3	57
170	Genomewide Scan and Fine-Mapping Linkage Studies in Four European Samples with Bipolar Affective Disorder Suggest a New Susceptibility Locus on Chromosome 1p35-p36 and Provides Further Evidence of Loci on Chromosome 4q31 and 6q24. American Journal of Human Genetics, 2005, 77, 1102-1111.	6.2	56
171	Common Genetic Variants and Gene-Expression Changes Associated with Bipolar Disorder Are Over-Represented in Brain Signaling Pathway Genes. Biological Psychiatry, 2012, 72, 311-317.	1.3	56
172	A case of hereditary angio-oedema type III presenting with C1-inhibitor cleavage and a missense mutation in the F12 gene. British Journal of Dermatology, 2007, 156, 1063-1065.	1.5	55
173	Don't give up on GWAS. Molecular Psychiatry, 2012, 17, 2-3.	7.9	54
174	Enzymatic Assays for the Diagnosis of Bradykinin-Dependent Angioedema. PLoS ONE, 2013, 8, e70140.	2.5	54
175	Association of Copy Number Variation of the 15q11.2 BP1-BP2 Region With Cortical and Subcortical Morphology and Cognition. JAMA Psychiatry, 2020, 77, 420.	11.0	54
176	Reduced Anxiety and Depression-Like Behaviours in the Circadian Period Mutant Mouse Afterhours. PLoS ONE, 2012, 7, e38263.	2.5	54
177	Chromosome workshop: Chromosomes 11, 14, and 15. American Journal of Medical Genetics Part A, 1999, 88, 244-254.	2.4	53
178	New data and an old puzzle: the negative association between schizophrenia and rheumatoid arthritis. International Journal of Epidemiology, 2015, 44, 1706-1721.	1.9	53
179	Influence of age and cognitive performance on resting-state brain networks of older adults in a population-based cohort. Cortex, 2017, 89, 28-44.	2.4	53
180	A serine to glycine substitution at position 9 in the extracellular N-terminal part of the dopamine D3 receptor protein: No role in the genetic predisposition to bipolar affective disorder. Psychiatry Research, 1993, 46, 253-259.	3.3	52

#	Article	IF	CITATIONS
181	Association analysis of the dopamine D2 receptor gene in Tourette's syndrome using the haplotype relative risk method. American Journal of Medical Genetics Part A, 1994, 54, 249-252.	2.4	52
182	A large replication study and meta-analysis in European samples provides further support for association of AHI1 markers with schizophrenia. Human Molecular Genetics, 2010, 19, 1379-1386.	2.9	51
183	A possible susceptibility locus for bipolar affective disorder in chromosomal region 10q25–q26. Molecular Psychiatry, 2001, 6, 342-349.	7.9	50
184	<i>G72</i> and Its Association With Major Depression and Neuroticism in Large Population-Based Groups From Germany. American Journal of Psychiatry, 2008, 165, 753-762.	7.2	50
185	Variation in <i>P2RX7</i> candidate gene (rs2230912) is not associated with bipolar I disorder and unipolar major depression in four European samples. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2009, 150B, 1017-1021.	1.7	50
186	CLCN2 variants in idiopathic generalized epilepsy. Nature Genetics, 2009, 41, 954-955.	21.4	50
187	The First Genomewide Interaction and Locus-Heterogeneity Linkage Scan in Bipolar Affective Disorder: Strong Evidence of Epistatic Effects between Loci on Chromosomes 2q and 6q. American Journal of Human Genetics, 2007, 81, 974-986.	6.2	49
188	Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia. Molecular Psychiatry, 2020, 25, 584-602.	7.9	49
189	A Gene for Hypotrichosis Simplex of the Scalp Maps to Chromosome 6p21.3. American Journal of Human Genetics, 2000, 66, 1979-1983.	6.2	48
190	Clozapine and Weight Gain. American Journal of Psychiatry, 2001, 158, 816-816.	7.2	48
191	Meta-analysis and brain imaging data support the involvement of VRK2 (rs2312147) in schizophrenia susceptibility. Schizophrenia Research, 2012, 142, 200-205.	2.0	48
192	Systematic Integration of Brain eQTL and GWAS Identifies <i>ZNF323</i> as a Novel Schizophrenia Risk Gene and Suggests Recent Positive Selection Based on Compensatory Advantage on Pulmonary Function. Schizophrenia Bulletin, 2015, 41, 1294-1308.	4.3	48
193	Genetics of schizophrenia: A consensus paper of the WFSBP Task Force on Genetics. World Journal of Biological Psychiatry, 2017, 18, 492-505.	2.6	48
194	Localization of a Gene for Syndactyly Type 1 to Chromosome 2q34-q36. American Journal of Human Genetics, 2000, 67, 492-497.	6.2	47
195	Association between a promoter dopamine D2 receptor gene variant and the personality trait detachment. Biological Psychiatry, 2003, 53, 577-584.	1.3	46
196	Genes and Schizophrenia: The G72/G30 Gene Locus in Psychiatric Disorders: A Challenge to Diagnostic Boundaries?. Schizophrenia Bulletin, 2005, 32, 599-608.	4.3	46
197	Pharmacogenetics of schizophrenia. , 2000, 97, 98-106.		45
198	Hippocampal Function in Healthy Carriers of the <i>CLU</i> Alzheimer's Disease Risk Variant. Journal of Neuroscience, 2011, 31, 18180-18184.	3.6	45

#	Article	IF	CITATIONS
199	Imaging genetics of FOXP2 in dyslexia. European Journal of Human Genetics, 2012, 20, 224-229.	2.8	44
200	Linkage-Disequilibrium-Based Binning Affects the Interpretation of GWASs. American Journal of Human Genetics, 2012, 90, 727-733.	6.2	44
201	Integrated Pathway-Based Approach Identifies Association between Genomic Regions at CTCF and CACNB2 and Schizophrenia. PLoS Genetics, 2014, 10, e1004345.	3.5	44
202	Epigenetic alteration of the dopamine transporter gene in alcoholâ€dependent patients is associated with age. Addiction Biology, 2014, 19, 305-311.	2.6	44
203	Association of polygenic score for major depression with response to lithium in patients with bipolar disorder. Molecular Psychiatry, 2021, 26, 2457-2470.	7.9	44
204	Further evidence for age of onset being an indicator for severity in bipolar disorder. Journal of Affective Disorders, 2002, 68, 343-345.	4.1	43
205	Haplotype interaction analysis of unlinked regions. Genetic Epidemiology, 2005, 29, 313-322.	1.3	43
206	Hereditary Angioedema with Normal C1 Inhibitor and F12 Mutations in 42 Brazilian Families. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 1209-1216.e8.	3.8	43
207	Associations Between Attention-Deficit/Hyperactivity Disorder and Various Eating Disorders: A Swedish Nationwide Population Study Using Multiple Genetically Informative Approaches. Biological Psychiatry, 2019, 86, 577-586.	1.3	43
208	International Consensus on the Use of Genetics in the Management of Hereditary Angioedema. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 901-911.	3.8	43
209	Dopamine D2 receptor molecular variant and schizophrenia. Lancet, The, 1994, 343, 1301-1302.	13.7	42
210	Tourette syndrome and the norepinephrine transporter gene: Results of a systematic mutation screening. , 1999, 88, 158-163.		42
211	Candidate Gene Analysis of the Human Natural Killer-1 Carbohydrate Pathway and Perineuronal Nets in Schizophrenia: B3GAT2 Is Associated with Disease Risk and Cortical Surface Area. Biological Psychiatry, 2011, 69, 90-96.	1.3	42
212	Genomeâ€wide association analysis of age at onset and psychotic symptoms in bipolar disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 370-378.	1.7	42
213	Replication of functional serotonin receptor type 3A and B variants in bipolar affective disorder: a European multicenter study. Translational Psychiatry, 2012, 2, e103-e103.	4.8	42
214	Further Evidence for the Impact of a Genome-Wide-Supported Psychosis Risk Variant in ZNF804A on the Theory of Mind Network. Neuropsychopharmacology, 2014, 39, 1196-1205.	5.4	42
215	Combining lifestyle risks to disentangle brain structure and functional connectivity differences in older adults. Nature Communications, 2019, 10, 621.	12.8	42
216	No Association Between the Putative Functional ZDHHC8 Single Nucleotide Polymorphism rs175174 and Schizophrenia in Large European Samples. Biological Psychiatry, 2005, 58, 78-80.	1.3	41

#	Article	IF	CITATIONS
217	Association analysis of Neuregulin 1 candidate regions in schizophrenia and bipolar disorder. Neuroscience Letters, 2010, 478, 9-13.	2.1	41
218	Reduced Cortical Thickness is Associated with the Glutamatergic Regulatory Gene Risk Variant DAOA Arg30Lys in Schizophrenia. Neuropsychopharmacology, 2011, 36, 1747-1753.	5.4	40
219	Gene-Based Analysis of Regionally Enriched Cortical Genes in GWAS Data Sets of Cognitive Traits and Psychiatric Disorders. PLoS ONE, 2012, 7, e31687.	2.5	40
220	Genetic variation of the FAT gene at 4q35 is associated with bipolar affective disorder. Molecular Psychiatry, 2008, 13, 277-284.	7.9	38
221	Possible association between genetic variants at the GRIN1 gene and schizophrenia with lifetime history of depressive symptoms in a German sample. Psychiatric Genetics, 2007, 17, 308-310.	1.1	36
222	VEGF Gene Haplotypes Are Associated With Sarcoidosis. Chest, 2010, 137, 156-163.	0.8	36
223	Agonist Binding to Chemosensory Receptors: A Systematic Bioinformatics Analysis. Frontiers in Molecular Biosciences, 2017, 4, 63.	3.5	36
224	A distinct gene close to the hairless locus on chromosome 8p underlies hereditary Marie Unna type hypotrichosis in a German family. British Journal of Dermatology, 2000, 143, 811-814.	1.5	35
225	A family-based and case–control association study of trace amine receptor genes on chromosome 6q23 in bipolar affective disorder. Molecular Psychiatry, 2005, 10, 618-620.	7.9	35
226	Association between copy number variants in 16p11.2 and major depressive disorder in a German case–control sample. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2012, 159B, 263-273.	1.7	35
227	FARVAT: a family-based rare variant association test. Bioinformatics, 2014, 30, 3197-3205.	4.1	34
228	Leveraging Genomic Annotations and Pleiotropic Enrichment for Improved Replication Rates in Schizophrenia GWAS. PLoS Genetics, 2016, 12, e1005803.	3.5	34
229	Common and Rare Variant Analysis in Early-Onset Bipolar Disorder Vulnerability. PLoS ONE, 2014, 9, e104326.	2.5	34
230	Bipolar multiplex families have an increased burden of common risk variants for psychiatric disorders. Molecular Psychiatry, 2021, 26, 1286-1298.	7.9	33
231	Monoamine related functional gene variants and relationships to monoamine metabolite concentrations in CSF of healthy volunteers. BMC Psychiatry, 2004, 4, 4.	2.6	32
232	Distinct Loci in the <i>CHRNA5</i> / <i>CHRNA3</i> / <i>CHRNB4</i> Gene Cluster Are Associated With Onset of Regular Smoking. Genetic Epidemiology, 2013, 37, 846-859.	1.3	32
233	Replication of brain function effects of a genome-wide supported psychiatric risk variant in the CACNA1C gene and new multi-locus effects. NeuroImage, 2014, 94, 147-154.	4.2	32
234	Single-strand conformation analysis (SSCA) of the dopamine D1 receptor gene (DRD1) reveals no significant mutation in patients with schizophrenia and manic depression. Biological Psychiatry, 1994, 36, 850-853.	1.3	31

#	Article	IF	CITATIONS
235	Converging evidence for epistasis between ANK3 and potassium channel gene KCNQ2 in bipolar disorder. Frontiers in Genetics, 2013, 4, 87.	2.3	31
236	Neuregulin 3 is associated with attention deficits in schizophrenia and bipolar disorder. International Journal of Neuropsychopharmacology, 2013, 16, 549-556.	2.1	30
237	Effects of copy number variations on brain structure and risk for psychiatric illness: Largeâ€scale studies from the <scp>ENIGMA</scp> working groups on <scp>CNVs</scp> . Human Brain Mapping, 2022, 43, 300-328.	3.6	30
238	DCLK1 Variants Are Associated across Schizophrenia and Attention Deficit/Hyperactivity Disorder. PLoS ONE, 2012, 7, e35424.	2.5	30
239	Investigation of the DAOA/G30 locus in panic disorder. Molecular Psychiatry, 2005, 10, 428-429.	7.9	28
240	Independent evidence for the selective influence of GABAA receptors on one component of the bipolar disorder phenotype. Molecular Psychiatry, 2011, 16, 587-589.	7.9	28
241	ZNF804A and Cortical Structure in Schizophrenia: In Vivo and Postmortem Studies. Schizophrenia Bulletin, 2014, 40, 532-541.	4.3	28
242	Genomeâ€wide association study reveals greater polygenic loading for schizophrenia in cases with a family history of illness. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 276-289.	1.7	28
243	Analysis of the Influence of microRNAs in Lithium Response in Bipolar Disorder. Frontiers in Psychiatry, 2018, 9, 207.	2.6	28
244	Shared genetic risk between eating disorder―and substanceâ€useâ€related phenotypes: Evidence from genomeâ€wide association studies. Addiction Biology, 2021, 26, e12880.	2.6	28
245	Clutamate receptor delta 1 (GRID1) genetic variation and brain structure in schizophrenia. Journal of Psychiatric Research, 2012, 46, 1531-1539.	3.1	27
246	Classical Human Leukocyte Antigen Alleles and C4 Haplotypes Are Not Significantly Associated With Depression. Biological Psychiatry, 2020, 87, 419-430.	1.3	27
247	Association study of a null mutation in the dopamine D4 receptor gene in Italian patients with obsessive-compulsive disorder, bipolar mood disorder and schizophrenia. Psychiatric Genetics, 1996, 6, 119-122.	1.1	26
248	Analysis of genome-wide significant bipolar disorder genes in borderline personality disorder. Psychiatric Genetics, 2014, 24, 262-265.	1.1	26
249	Association between a polymorphism in the pseudoautosomal X-linked geneSYBL1and bipolar affective disorder. American Journal of Medical Genetics Part A, 2002, 114, 74-78.	2.4	25
250	Dopamine D4 receptor gene (DRD4) variants and schizophrenia: meta-analyses. Schizophrenia Research, 2003, 61, 111-119.	2.0	25
251	Combining schizophrenia and depression polygenic risk scores improves the genetic prediction of lithium response in bipolar disorder patients. Translational Psychiatry, 2021, 11, 606.	4.8	25
252	Investigation of the tryptophan hydroxylase 2 gene in bipolar I disorder in the Romanian population. Psychiatric Genetics, 2008, 18, 240-247.	1.1	24

#	Article	IF	CITATIONS
253	Genome-wide association data provide further support for an association between 5-HTTLPR and major depressive disorder. Journal of Affective Disorders, 2013, 146, 438-440.	4.1	24
254	Copy Number Variants in German Patients with Schizophrenia. PLoS ONE, 2013, 8, e64035.	2.5	24
255	Elevated expression of a minor isoform of ANK3 is a risk factor for bipolar disorder. Translational Psychiatry, 2018, 8, 210.	4.8	24
256	1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans. Translational Psychiatry, 2021, 11, 182.	4.8	24
257	No Reliable Association between Runs of Homozygosity and Schizophrenia in a Well-Powered Replication Study. PLoS Genetics, 2016, 12, e1006343.	3.5	24
258	Moodâ€incongruent psychosis in bipolar disorder: conditional linkage analysis shows genomeâ€wide suggestive linkage at 1q32.3, 7p13 and 20q13.31. Bipolar Disorders, 2009, 11, 610-620.	1.9	23
259	Investigation of the involvement of <i>MIR185</i> and its target genes in the development of schizophrenia. Journal of Psychiatry and Neuroscience, 2014, 39, 386-396.	2.4	23
260	MicroRNA hsaâ€miRâ€4717â€5p regulates RGS2 and may be a risk factor for anxietyâ€related traits. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 296-306.	1.7	23
261	Whole-exome sequencing of 81 individuals from 27 multiply affected bipolar disorder families. Translational Psychiatry, 2020, 10, 57.	4.8	23
262	Can long-range microsatellite data be used to predict short-range linkage disequilibrium?. Human Molecular Genetics, 2002, 11, 1363-1372.	2.9	22
263	Genetic association between the phospholipase A2 gene and unipolar affective disorder: a multicentre case???control study. Psychiatric Genetics, 2003, 13, 211-220.	1.1	22
264	Feasible and Successful: Genome-Wide Interaction Analysis Involving All 1.9 × 10 ¹¹ Pair-Wise Interaction Tests. Human Heredity, 2010, 69, 268-284.	0.8	22
265	Angio-Oedema Induced by Oestrogen Contraceptives Is Mediated by Bradykinin and Is Frequently Associated with Urticaria. Dermatology, 2012, 225, 62-69.	2.1	22
266	The 5-HTTLPR Polymorphism Affects Network-Based Functional Connectivity in the Visual-Limbic System in Healthy Adults. Neuropsychopharmacology, 2018, 43, 406-414.	5.4	22
267	Caught in the trio trap? Potential selection bias inherent to association studies usings parentâ€offspring trios. American Journal of Medical Genetics Part A, 2001, 105, 351-353.	2.4	21
268	The catechol-O-methyl transferase (COMT) gene and its potential association with schizophrenia: Findings from a large German case-control and family-based sample. Schizophrenia Research, 2010, 122, 24-30.	2.0	21
269	Identifying bipolar disorder susceptibility loci in a densely affected pedigree. Molecular Psychiatry, 2013, 18, 1245-1246.	7.9	21
270	A Genome-Wide Association Study Suggests Novel Loci Associated with a Schizophrenia-Related Brain-Based Phenotype. PLoS ONE, 2013, 8, e64872.	2.5	21

#	Article	IF	CITATIONS
271	A Genetic Deconstruction of Neurocognitive Traits in Schizophrenia and Bipolar Disorder. PLoS ONE, 2013, 8, e81052.	2.5	20
272	Convergent Lines of Evidence Support LRP8 as a Susceptibility Gene for Psychosis. Molecular Neurobiology, 2016, 53, 6608-6619.	4.0	20
273	Investigating polygenic burden in age at disease onset in bipolar disorder: Findings from an international multicentric study. Bipolar Disorders, 2019, 21, 68-75.	1.9	20
274	Characterisation of age and polarity at onset in bipolar disorder. British Journal of Psychiatry, 2021, 219, 659-669.	2.8	20
275	No association between a promoter dopamine D4receptor gene variant and schizophrenia. American Journal of Medical Genetics Part A, 2001, 105, 525-528.	2.4	19
276	Association study between two variants in the DOPA decarboxylase gene in bipolar and unipolar affective disorder. American Journal of Medical Genetics Part A, 2002, 114, 519-522.	2.4	19
277	Levetiracetam resistance: Synaptic signatures & corresponding promoter SNPs in epileptic hippocampi. Neurobiology of Disease, 2013, 60, 115-125.	4.4	19
278	Integration of transcriptomic and cytoarchitectonic data implicates a role for MAOA and TAC1 in the limbic-cortical network. Brain Structure and Function, 2018, 223, 2335-2342.	2.3	19
279	Shared genetic etiology between alcohol dependence and major depressive disorder. Psychiatric Genetics, 2018, 28, 66-70.	1.1	19
280	A reappraisal of the association between Dysbindin (DTNBP1) and schizophrenia in a large combined case–control and family-based sample of German ancestry. Schizophrenia Research, 2010, 118, 98-105.	2.0	17
281	Promoter Variants Determine γ-Aminobutyric Acid Homeostasis-Related Gene Transcription in Human Epileptic Hippocampi. Journal of Neuropathology and Experimental Neurology, 2011, 70, 1080-1088.	1.7	17
282	Rs6295 promoter variants of the serotonin type 1A receptor are differentially activated by c-Jun in vitro and correlate to transcript levels in human epileptic brain tissue. Brain Research, 2013, 1499, 136-144.	2.2	17
283	Genetics of structural connectivity and information processing in the brain. Brain Structure and Function, 2016, 221, 4643-4661.	2.3	17
284	Efficacy and safety of exogenous ketone bodies for preventive treatment of migraine: A study protocol for a single-centred, randomised, placebo-controlled, double-blind crossover trial. Trials, 2019, 20, 61.	1.6	17
285	Identification of ADHD risk genes in extended pedigrees by combining linkage analysis and whole-exome sequencing. Molecular Psychiatry, 2020, 25, 2047-2057.	7.9	17
286	Polymorphism of Human Complement Component C6: An Amino Acid Substitution (GLU/ALA) within the Second Thrombospondin Repeat Differentiates between the Two Common Allotypes C6A and C6B. Biochemical and Biophysical Research Communications, 1993, 194, 458-464.	2.1	16
287	The hairless gene in androgenetic alopecia: results of a systematic mutation screening and a family-based association approach. British Journal of Dermatology, 2002, 146, 601-608.	1.5	16
288	No evidence for DUP25 in patients with panic disorder using a quantitative real-time PCR approach. Human Genetics, 2003, 114, 115-117.	3.8	16

#	Article	IF	CITATIONS
289	Identification of mutations in the human hairless gene in two new families with congenital atrichia. Archives of Dermatological Research, 2007, 299, 157-161.	1.9	16
290	European collaborative study of earlyâ€onset bipolar disorder: Evidence for genetic heterogeneity on 2q14 according to age at onset. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 1425-1433.	1.7	16
291	Effects of exogenous agmatine in human leukemia HMC-1 and HL-60 cells on proliferation, polyamine metabolism and cell cycle. Leukemia Research, 2011, 35, 1248-1253.	0.8	16
292	Association of Whole-Genome and NETRIN1 Signaling Pathway–Derived Polygenic Risk Scores for Major Depressive Disorder and White Matter Microstructure in the UK Biobank. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 91-100.	1.5	16
293	Description of the Genetic Analysis Workshop 10 bipolar disorder linkage data sets. , 1997, 14, 563-568.		15
294	Variant 1859G→A (Arg620Gln) of the "Hairless―Gene: Absence of Association with Papular Atrichia or Androgenetic Alopecia. American Journal of Human Genetics, 2001, 69, 235-237.	6.2	15
295	No association between a putative functional promoter variant in the dopamine ??-hydroxylase gene and schizophrenia. Psychiatric Genetics, 2003, 13, 175-178.	1.1	15
296	Systematic investigation of genetic variability in 111 human genes—implications for studying variable drug response. Pharmacogenomics Journal, 2005, 5, 183-192.	2.0	15
297	Replication Study and Meta-Analysis in European Samples Supports Association of the 3p21.1 Locus with Bipolar Disorder. Biological Psychiatry, 2012, 72, 645-650.	1.3	15
298	Bipolar disorder risk alleles in children with ADHD. Journal of Neural Transmission, 2013, 120, 1611-1617.	2.8	15
299	GENDER-SPECIFIC ASSOCIATION OF VARIANTS IN THE <i>AKR1C1</i> GENE WITH DIMENSIONAL ANXIETY IN PATIENTS WITH PANIC DISORDER: ADDITIONAL EVIDENCE FOR THE IMPORTANCE OF NEUROSTEROIDS IN ANXIETY?. Depression and Anxiety, 2014, 31, 843-850.	4.1	15
300	A new susceptibility locus for bipolar affective disorder in PAR1 on Xp22.3/Yp11.3. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 1110-1114.	1.7	14
301	Marie Unna hereditary hypotrichosis: Identification of a U2HR mutation in the family from the original 1925 report. Journal of the American Academy of Dermatology, 2011, 64, e45-e50.	1.2	14
302	Genome-wide significant association between a â€~negative mood delusions' dimension in bipolar disorder and genetic variation on chromosome 3q26.1. Translational Psychiatry, 2012, 2, e165-e165.	4.8	14
303	Gene set enrichment analysis and expression pattern exploration implicate an involvement of neurodevelopmental processes in bipolar disorder. Journal of Affective Disorders, 2018, 228, 20-25.	4.1	14
304	Association study of a functional promoter polymorphism in theXBP1 gene and schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2006, 141B, 71-75.	1.7	13
305	Resequencing and follow-up of neurexin 1 (NRXN1) in schizophrenia patients. Schizophrenia Research, 2011, 127, 35-40.	2.0	13
306	Reply to "Replication of association of 3p21.1 with susceptibility to bipolar disorder but not major depression― Nature Genetics, 2011, 43, 5-5.	21.4	13

#	Article	IF	CITATIONS
307	Prediction of serotonin transporter promoter polymorphism genotypes from single nucleotide polymorphism arrays using machine learning methods. Psychiatric Genetics, 2012, 22, 182-188.	1.1	13
308	Genetic variation at the synaptic vesicle gene SV2A is associated with schizophrenia. Schizophrenia Research, 2012, 141, 262-265.	2.0	13
309	A common risk variant in CACNA1C supports a sex-dependent effect on longitudinal functioning and functional recovery from episodes of schizophrenia-spectrum but not bipolar disorder. European Neuropsychopharmacology, 2015, 25, 2262-2270.	0.7	13
310	Distinct Conditions Support a Novel Classification for Bradykinin-Mediated Angio-Oedema. Dermatology, 2015, 230, 324-331.	2.1	13
311	Association between neuropeptide Y receptor Y2 promoter variant rs6857715 and major depressive disorder. Psychiatric Genetics, 2017, 27, 34-37.	1.1	13
312	Exome sequencing in large, multiplex bipolar disorder families from Cuba. PLoS ONE, 2018, 13, e0205895.	2.5	13
313	Leptin gene polymorphisms are associated with weight gain during lithium augmentation in patients with major depression. European Neuropsychopharmacology, 2019, 29, 211-221.	0.7	13
314	Genotypeâ€phenotype correlations in Brazilian patients with hereditary angioedema due to C1 inhibitor deficiency. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1013-1016.	5.7	13
315	Quantitative genome-wide association study of six phenotypic subdomains identifies novel genome-wide significant variants in autism spectrum disorder. Translational Psychiatry, 2020, 10, 215.	4.8	13
316	The human complement C8G gene, a member of the lipocalin gene family: polymorphisms and mapping to chromosome 9q34.3. Annals of Human Genetics, 1996, 60, 281-291.	0.8	12
317	Investigation of the role of <i>TCF4</i> rare sequence variants in schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 354-362.	1.7	12
318	XRCC5 as a Risk Gene for Alcohol Dependence: Evidence from a Genome-Wide Gene-Set-Based Analysis and Follow-up Studies in Drosophila and Humans. Neuropsychopharmacology, 2015, 40, 361-371.	5.4	12
319	CNTF and psychiatric disorders. Nature Genetics, 1996, 13, 142-143.	21.4	11
320	Association study between genetic variants at the PIP5K2A gene locus and schizophrenia and bipolar affective disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2006, 141B, 663-665.	1.7	11
321	Impact of a <i>cis</i> -associated gene expression SNP on chromosome 20q11.22 on bipolar disorder susceptibility, hippocampal structure and cognitive performance. British Journal of Psychiatry, 2016, 208, 128-137.	2.8	11
322	Genetic Contribution to Alcohol Dependence: Investigation of a Heterogeneous German Sample of Individuals with Alcohol Dependence, Chronic Alcoholic Pancreatitis, and Alcohol-Related Cirrhosis. Genes, 2017, 8, 183.	2.4	11
323	Pathway-Specific Genetic Risk for Alzheimer's Disease Differentiates Regional Patterns of Cortical Atrophy in Older Adults. Cerebral Cortex, 2019, 30, 801-811.	2.9	11
324	Using polygenic scores and clinical data for bipolar disorder patient stratification and lithium response prediction: machine learning approach. British Journal of Psychiatry, 2022, 220, 219-228.	2.8	11

#	Article	IF	CITATIONS
325	Lack of imprinting of the human dopamine D4 receptor (DRD4) gene. , 1996, 67, 229-231.		10
326	A summary statistic approach to sequence variation in noncoding regions of six schizophrenia-associated gene loci. European Journal of Human Genetics, 2006, 14, 1037-1043.	2.8	10
327	Association study between genetic variants at the VAMP2 and VAMP3 loci and bipolar affective disorder. Psychiatric Genetics, 2008, 18, 199-203.	1.1	10
328	Possible association of different G72/G30 SNPs with mood episodes and persecutory delusions in bipolar I Romanian patients. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2010, 34, 657-663.	4.8	10
329	Expert and self-assessment of lifetime symptoms and diagnosis of major depressive disorder in large-scale genetic studies in the general population. Psychiatric Genetics, 2017, 27, 187-196.	1.1	10
330	HLA-DRB1 and HLA-DQB1 genetic diversity modulates response to lithium in bipolar affective disorders. Scientific Reports, 2021, 11, 17823.	3.3	10
331	Human metabotropic glutamate receptor 2 gene (GRM2): Chromosomal sublocalization (3p21.1-p21.2) and genomic organization. American Journal of Medical Genetics Part A, 2002, 114, 12-14.	2.4	9
332	No association between the serine racemase gene (SRR) and schizophrenia in a German case–control sample. Psychiatric Genetics, 2007, 17, 125.	1.1	9
333	Caspase recruitment domain 15 gene haplotypes in sarcoidosis. Tissue Antigens, 2011, 77, 333-337.	1.0	9
334	Duplications in RB1CC1 are associated with schizophrenia; identification in large European sample sets. Translational Psychiatry, 2013, 3, e326-e326.	4.8	9
335	Identification of gene ontologies linked to prefrontal–hippocampal functional coupling in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9657-9662.	7.1	9
336	Clinical Utility Gene Card for hereditary angioedema with normal C1 inhibitor (HAEnC1). European Journal of Human Genetics, 2017, 25, e1-e4.	2.8	9
337	Common variants at 2q11.2, 8q21.3, and 11q13.2 are associated with major mood disorders. Translational Psychiatry, 2017, 7, 1273.	4.8	9
338	Identification of a Bipolar Disorder Vulnerable Gene CHDH at 3p21.1. Molecular Neurobiology, 2017, 54, 5166-5176.	4.0	9
339	No evidence for an association between variants at the proline dehydrogenase locus and schizophrenia or bipolar affective disorder. Psychiatric Genetics, 2005, 15, 195-198.	1.1	8
340	Dual association of a TRKA polymorphism with schizophrenia. Psychiatric Genetics, 2011, 21, 125-131.	1.1	8
341	Contact System Activation in Patients with HAE and Normal C1ÂInhibitor Function. Immunology and Allergy Clinics of North America, 2013, 33, 513-533.	1.9	8
342	Functional impact of a recently identified quantitative trait locus for hippocampal volume with genome-wide support. Translational Psychiatry, 2013, 3, e287-e287.	4.8	8

#	Article	IF	CITATIONS
343	Detecting significant genotype–phenotype association rules in bipolar disorder: market research meets complex genetics. International Journal of Bipolar Disorders, 2018, 6, 24.	2.2	8
344	No association between genetic variants at the GRIN1 gene and bipolar disorder in a German sample. Psychiatric Genetics, 2006, 16, 183-184.	1.1	7
345	Segment-Wise Genome-Wide Association Analysis Identifies a Candidate Region Associated with Schizophrenia in Three Independent Samples. PLoS ONE, 2012, 7, e38828.	2.5	7
346	Efficient region-based test strategy uncovers genetic risk factors for functional outcome in bipolar disorder. European Neuropsychopharmacology, 2019, 29, 156-170.	0.7	7
347	Identification of pleiotropy at the gene level between psychiatric disorders and related traits. Translational Psychiatry, 2021, 11, 410.	4.8	7
348	Identification of Phonology-Related Genes and Functional Characterization of Broca's and Wernicke's Regions in Language and Learning Disorders. Frontiers in Neuroscience, 2021, 15, 680762.	2.8	7
349	Linking single nucleotide polymorphisms. Pharmacogenetics and Genomics, 2002, 12, 89-90.	5.7	6
350	No association between genetic variants at the ASCT1 gene and schizophrenia or bipolar disorder in a German sample. Psychiatric Genetics, 2006, 16, 233-234.	1.1	6
351	No evidence for association between NOTCH4 and schizophrenia in a large family-based and case–control association analysis. Psychiatric Genetics, 2006, 16, 197-203.	1.1	6
352	No evidence for an association between variants at the γ-amino-n-butyric acid type A receptor β2 locus and schizophrenia. Psychiatric Genetics, 2007, 17, 43-45.	1.1	6
353	Genome-wide Association Study Identifies Genetic Variation in Neurocan as a Susceptibility Factor for Bipolar Disorder. American Journal of Human Genetics, 2011, 88, 396.	6.2	6
354	No evidence for an involvement of copy number variation in ABCA13 in schizophrenia, bipolar disorder, or major depressive disorder. Psychiatric Genetics, 2013, 23, 45-46.	1.1	6
355	Common functional variants of the glutamatergic system in Autism spectrum disorder with high and low intellectual abilities. Journal of Neural Transmission, 2018, 125, 259-271.	2.8	6
356	Efficacy and safety of exogenous beta-hydroxybutyrate for preventive treatment in episodic migraine: A single-centred, randomised, placebo-controlled, double-blind crossover trial. Cephalalgia, 2022, 42, 302-311.	3.9	6
357	Association of Attention-Deficit/Hyperactivity Disorder and Depression Polygenic Scores with Lithium Response: A Consortium for Lithium Genetics Study. Complex Psychiatry, 2021, 7, 80-89.	0.9	6
358	Family-based association studies of α-adrenergic receptor genes in chromosomal regions with linkage to bipolar affective disorder. , 2004, 126B, 79-81.		5
359	DRD4 exon 3 variants are not associated with symptomatology of major psychoses in a German population. Neuroscience Letters, 2004, 368, 269-273.	2.1	5
360	No association between genetic variants at the GLYT2 gene and bipolar affective disorder and schizophrenia. Psychiatric Genetics, 2006, 16, 91.	1.1	5

#	Article	IF	CITATIONS
361	Lack of genetic association between the phospholipase A2 gene and bipolar mood disorder in a European multicentre case–control study. Psychiatric Genetics, 2006, 16, 169-171.	1.1	5
362	A systematic association mapping on chromosome 6q in bipolar affective disorder—evidence for the <i>melaninâ€concentratingâ€hormoneâ€receptorâ€2</i> gene as a risk factor for bipolar affective disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 878-884.	1.7	5
363	No association between genetic variants at the DGCR2 gene and schizophrenia in a German sample. Psychiatric Genetics, 2009, 19, 104.	1.1	5
364	Association study of the GRIA1 and CLINT1 (Epsin 4) genes in a German schizophrenia sample. Psychiatric Genetics, 2011, 21, 114.	1.1	5
365	Genetic risk for schizophrenia impacts Theory-of-Mind-related brain activation. Molecular Psychiatry, 2011, 16, 353-353.	7.9	5
366	Efficient Strategy for Detecting Gene × Gene Joint Action and Its Application in Schizophrenia. Genetic Epidemiology, 2014, 38, 60-71.	1.3	5
367	Identification of rare variants in KCTD13 at the schizophrenia risk locus 16p11.2. Psychiatric Genetics, 2016, 26, 293-296.	1.1	5
368	El estudio Andalusian Bipolar Family (ABiF): protocolo y descripción de la muestra. Revista De PsiquiatrÃa Y Salud Mental, 2018, 11, 199-207.	1.8	5
369	Strauch et al reply. Molecular Psychiatry, 2000, 5, 126-127.	7.9	4
370	Systematic screening for mutations in the human N-methyl-D-aspartate receptor 1 gene in schizophrenic patients from the German population. Psychiatric Genetics, 2004, 14, 233-234.	1.1	4
371	Analysis of the joint effect of SNPs to identify independent loci and allelic heterogeneity in schizophrenia GWAS data. Translational Psychiatry, 2017, 7, 1289.	4.8	4
372	Genetic factors influencing a neurobiological substrate for psychiatric disorders. Translational Psychiatry, 2021, 11, 192.	4.8	4
373	Assignment of the human serotonin 4 receptor gene (HTR4) to the long arm of chromosome 5 (5q31–q33). Molecular Membrane Biology, 1998, 15, 75-78.	2.0	3
374	Genome-wide Association Study of Postoperative Cognitive Dysfunction in Older Surgical Patients. Journal of Neurosurgical Anesthesiology, 2022, 34, 248-250.	1.2	3
375	Brain imaging genomics: influences of genomic variability on the structure and function of the human brain. Medizinische Genetik, 2020, 32, 47-56.	0.2	3
376	No association or linkage between polymorphisms at the porphobilinogen deaminase gene locus and schizophrenia. Psychiatric Genetics, 1993, 3, 101-106.	1.1	2
377	Reply. Journal of Investigative Dermatology, 2000, 115, 763-764.	0.7	2
378	A common microdeletion affecting a hippocampus―and amygdalaâ€specific isoform of tryptophan hydroxylase 2 is not associated with affective disorders. Bipolar Disorders, 2014, 16, 764-768.	1.9	2

#	Article	IF	CITATIONS
379	Gene expression is stable in a complete CIB1 knockout keratinocyte model. Scientific Reports, 2020, 10, 14952.	3.3	2
380	Insights into the genomics of affective disorders. Medizinische Genetik, 2020, 32, 9-18.	0.2	2
381	Is there a phenotypic difference between probands in case-control versus family-based association studies?. , 2003, 118B, 25-26.		1
382	Brief Report: No Association Between Premorbid Adjustment in Adult-Onset Schizophrenia and Genetic Variation in Dysbindin. Journal of Autism and Developmental Disorders, 2008, 38, 1977-1981.	2.7	1
383	No association between the D-aspartate oxidase locus and schizophrenia. Psychiatric Genetics, 2009, 19, 56.	1.1	1
384	Association study of 20 genetic variants at the D-amino acid oxidase gene in schizophrenia. Psychiatric Genetics, 2010, 20, 82-83.	1.1	1
385	Smoking behaviour. Psychiatric Genetics, 2014, 24, 279-280.	1.1	1
386	No association between dopamine D4 receptor gene variants and Novelty Seeking. Molecular Psychiatry, 2002, 7, 18-20.	7.9	1
387	A genome screen for genes predisposing to bipolar affective disorder detects a new susceptibility locus on 8q. Human Molecular Genetics, 2002, 11, 1685-1685.	2.9	0
388	No association between the serine racemase gene (SRR) and bipolar disorder in a German case–control sample. Psychiatric Genetics, 2007, 17, 127.	1.1	0
389	SEGMENT-WISE GENOME-WIDE ASSOCIATION ANALYSIS IDENTIFIES A LIMITED NUMBER OF REPLICABLE CANDIDATE REGIONS ASSOCIATED WITH SCHIZOPHRENIA. Schizophrenia Research, 2010, 117, 219.	2.0	0
390	Geneties of Schizophrenia and Bipolar Affective Disorder. , 2010, , 759-776.		0
391	Addendum: Genomeâ€wide association study in German patients with attention deficit/hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2012, 159B, 476-476.	1.7	0
392	Polygenic Risk For BIP, MDD, And SCZ In Andalusian Multiplex Families. European Neuropsychopharmacology, 2017, 27, S385-S386.	0.7	0
393	T8. GLUTAMATERGIC SIGNALLING AND AUTISM: A FAMILY BASED ASSOCIATION STUDY ON THE GLUTAMATERGIC NEUROTRANSMITTER SYSTEM. European Neuropsychopharmacology, 2017, 27, S436-S437.	0.7	0
394	The Andalusian Bipolar Family (ABiF) Study: Protocol and sample description. Revista De PsiquiatrÃa Y Salud Mental (English Edition), 2018, 11, 199-207.	0.3	0
395	SU30ANALYSIS OF WGS DATA FROM 108 INDIVIDUALS OF 8 SPANISH FAMILIES AFFECTED WITH BIPOLAR DISORDER. European Neuropsychopharmacology, 2019, 29, S1283-S1284.	0.7	0
396	EXOME SEQUENCING OF MULTIPLY AFFECTED BIPOLAR DISORDER FAMILIES AND FOLLOW-UP RESEQUENCING IMPLICATE RARE VARIANTS IN NEURONAL GENES CONTRIBUTING TO DISEASE ETIOLOGY. European Neuropsychopharmacology, 2019, 29, S836-S837.	0.7	0

#	Article	IF	CITATIONS
397	Analysis of genetic impact on smell impairment in patients with hereditary angioedema typeÂ1 and 2. JDDG - Journal of the German Society of Dermatology, 2021, 19, 1060-1062.	0.8	О
398	Untersuchung genetischer Einflüsse auf Riechstörungen bei Patienten mit hereditäem Angioödem Typ 1 und 2. JDDG - Journal of the German Society of Dermatology, 2021, 19, 1060-1063.	0.8	0
399	Title is missing!. , 2012, 7, e31687.		0
400	Title is missing!. , 2012, 7, e31687.		0
401	Title is missing!. , 2012, 7, e31687.		0
402	Title is missing!. , 2012, 7, e31687.		0
403	Title is missing!. , 2012, 7, e31687.		0
404	Title is missing!. , 2012, 7, e31687.		0
405	Title is missing!. , 2012, 7, e31687.		0
406	Title is missing!. , 2012, 7, e31687.		0
407	DCLK1 Variants Are Associated across Schizophrenia and Attention Deficit/Hyperactivity Disorder. , 2012, 7, e35424.		Ο
408	DCLK1 Variants Are Associated across Schizophrenia and Attention Deficit/Hyperactivity Disorder. , 2012, 7, e35424.		0
409	DCLK1 Variants Are Associated across Schizophrenia and Attention Deficit/Hyperactivity Disorder. , 2012, 7, e35424.		Ο
410	DCLK1 Variants Are Associated across Schizophrenia and Attention Deficit/Hyperactivity Disorder. , 2012, 7, e35424.		0
411	Title is missing!. , 2012, 7, e38828.		0
412	Title is missing!. , 2012, 7, e38828.		0
413	Title is missing!. , 2012, 7, e38828.		0