William L Barnes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6928880/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Probing Vibrational Strong Coupling of Molecules with Wavelengthâ€Modulated Raman Spectroscopy. Advanced Optical Materials, 2022, 10, .	7.3	10
2	Strong Coupling of Multimolecular Species to Soft Microcavities. Journal of Physical Chemistry Letters, 2022, 13, 1019-1024.	4.6	3
3	Ghost Image Processing. Optics Express, 2022, 30, 7035-7043.	3.4	1
4	All-optical control of phase singularities using strong light-matter coupling. Nature Communications, 2022, 13, 1809.	12.8	15
5	Single vs double anti-crossing in the strong coupling between surface plasmons and molecular excitons. Journal of Chemical Physics, 2021, 154, 024704.	3.0	7
6	Polariton assisted photoemission from a layered molecular material: role of vibrational states and molecular absorption. Nanoscale, 2021, 13, 14497-14505.	5.6	3
7	All-optical switching of an epsilon-near-zero plasmon resonance in indium tin oxide. Nature Communications, 2021, 12, 1017.	12.8	66
8	Reflected phonons reveal strong coupling. Nature Photonics, 2021, 15, 169-170.	31.4	9
9	3 Ways to View the Local Density of Optical States. , 2021, , .		0
10	Cavity-Free Ultrastrong Light-Matter Coupling. Journal of Physical Chemistry Letters, 2021, 12, 6914-6918.	4.6	24
11	Metamaterial Analogues of Strongly Coupled Molecular Ensembles. ACS Photonics, 2021, 8, 2997-3003.	6.6	1
12	Strong Coupling beyond the Light-Line. ACS Photonics, 2020, 7, 2448-2459.	6.6	19
13	A New Signature for Strong Light–Matter Coupling Using Spectroscopic Ellipsometry. Nano Letters, 2020, 20, 6412-6419.	9.1	17
14	The danger of going online only. Physics World, 2020, 33, 19-19.	0.0	1
15	Classical antennas, quantum emitters, and densities of optical states. Journal of Optics (United) Tj ETQq1 1 0.7	′843 <u>1</u> 4 rgB 2.2	T /Qyerlock
16	Molecular Monolayer Strong Coupling in Dielectric Soft Microcavities. Nano Letters, 2020, 20, 1766-1773.	9.1	21
17	Direct observation of defect modes in molecular aggregate analogs. Physical Review B, 2020, 102, .	3.2	1
18	Vibrational Strong Coupling with Surface Plasmons and the Presence of Surface Plasmon Stop Bands. ACS Photonics, 2019, 6, 2110-2116.	6.6	35

#	Article	IF	CITATIONS
19	Metamaterial Analogues of Molecular Aggregates. ACS Photonics, 2019, 6, 3003-3009.	6.6	10
20	Electrically tuneable exciton energy exchange between spatially separated 2-dimensional semiconductors in a microcavity. Applied Physics Letters, 2019, 115, 071103.	3.3	4
21	Electrically Tuneable Excitonâ€Polaritons through Free Electron Doping in Monolayer WS ₂ Microcavities. Advanced Optical Materials, 2019, 7, 1900484.	7.3	17
22	Hybridization of Multiple Vibrational Modes via Strong Coupling Using Confined Light Fields. Advanced Optical Materials, 2019, 7, 1900403.	7.3	29
23	Strong Light–Matter Coupling in Carbon Nanotubes as a Route to Exciton Brightening. ACS Photonics, 2019, 6, 904-914.	6.6	27
24	Nanoscale Design of the Local Density of Optical States. Nano Letters, 2019, 19, 1613-1617.	9.1	38
25	Optimal position of an emitter in a wavelength-scale parabolic reflector. Applied Optics, 2019, 58, 7957.	1.8	1
26	Special Issue on "Strong Coupling of Molecules to Cavities― ACS Photonics, 2018, 5, 1-1.	6.6	12
27	Realizing an ultra-wideband backward-wave metamaterial waveguide. Physical Review B, 2018, 98, .	3.2	4
28	Design and fabrication of plasmonic cavities for magneto-optical sensing. AIP Advances, 2018, 8, .	1.3	5
29	Investigation of the coupling between tunable split-ring resonators. Physical Review B, 2018, 98, .	3.2	12
30	Enhancing the magneto-optical Kerr effect through the use of a plasmonic antenna. Optics Express, 2018, 26, 4738.	3.4	22
31	Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chemical Reviews, 2018, 118, 5912-5951.	47.7	931
32	Manipulating type-I and type-II Dirac polaritons in cavity-embedded honeycomb metasurfaces. Nature Communications, 2018, 9, 2194.	12.8	37
33	Hybridised exciton–polariton resonances in core–shell nanoparticles. Journal of Optics (United) Tj ETQq1 1 ().784314 2.2	rgBJ /Overl <mark>o</mark> c
34	New horizons for nanophotonics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160380.	3.4	3
35	Electromagnetic interactions in a pair of coupled split-ring resonators. Physical Review B, 2017, 96, .	3.2	21
36	Absence of Anderson localization in certain random lattices. Physical Review E, 2017, 96, 022122.	2.1	8

#	Article	IF	CITATIONS
37	Organic materials instead of metals for plasmonics. , 2017, , .		1
38	A platform for time-resolved scanning Kerr microscopy in the near-field. Review of Scientific Instruments, 2017, 88, 123708.	1.3	16
39	Enhancement of optical energy delivery through strongly scattering media by wavefront shaping techniques. , 2017, , .		0
40	Design of strong-coupling microcavities for optoelectronic applications. , 2017, , .		0
41	Particle plasmons: Why shape matters. American Journal of Physics, 2016, 84, 593-601.	0.7	35
42	Excitonic Optical Tamm States: A Step toward a Full Molecular–Dielectric Photonic Integration. ACS Photonics, 2016, 3, 743-748.	6.6	40
43	Excitonic surface lattice resonances. Journal of Optics (United Kingdom), 2016, 18, 085004.	2.2	10
44	Peer-review thoughts. Physics World, 2016, 29, 21-22.	0.0	1
45	Localized exciton–polariton modes in dye-doped nanospheres: a quantum approach. Journal of Optics (United Kingdom), 2016, 18, 015001.	2.2	15
46	Plasmonic surface lattice resonances in arrays of metallic nanoparticle dimers. Journal of Optics (United Kingdom), 2016, 18, 035005.	2.2	43
47	Surface Lattice Resonances in Plasmonic Arrays of Asymmetric Disc Dimers. ACS Photonics, 2016, 3, 634-639.	6.6	65
48	Controlling the generation of THz radiation from metallic films using periodic microstructure. Applied Physics B: Lasers and Optics, 2015, 120, 53-59.	2.2	9
49	Ensemble strong coupling. New Journal of Physics, 2015, 17, 081001.	2.9	3
50	Strong coupling between surface plasmon polaritons and emitters: a review. Reports on Progress in Physics, 2015, 78, 013901.	20.1	1,109
51	The Basics of Plasmonics. Handbook of Surface Science, 2014, , 37-74.	0.3	6
52	Mechanisms of THz generation from silver nanoparticle and nanohole arrays illuminated by 100 fs pulses of infrared light. Physical Review B, 2014, 89, .	3.2	43
53	Plasmonic meta-atoms and metasurfaces. Nature Photonics, 2014, 8, 889-898.	31.4	802
54	Transient plasmon-like modes in multi-level quantum emitter systems. Proceedings of SPIE, 2014, , .	0.8	0

#	Article	IF	CITATIONS
55	Optical Field-Enhancement and Subwavelength Field-Confinement Using Excitonic Nanostructures. Nano Letters, 2014, 14, 2339-2344.	9.1	70
56	Plasmonic surface lattice resonances on arrays of different lattice symmetry. Physical Review B, 2014, 90, .	3.2	167
57	Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures. Physical Review B, 2013, 88, .	3.2	103
58	Graphene as a substrate for plasmonic nanoparticles. Journal of Optics (United Kingdom), 2013, 15, 114001.	2.2	14
59	Dirac-like Plasmons in Honeycomb Lattices of Metallic Nanoparticles. Physical Review Letters, 2013, 110, 106801.	7.8	115
60	Plasmon Biophotonic Arrays for Multi-analyte Biosensing in Complex Media. , 2012, , 127-151.		1
61	Novel Highly Conductive and Transparent Grapheneâ€Based Conductors. Advanced Materials, 2012, 24, 2844-2849.	21.0	289
62	Metallic metamaterials and plasmonics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 3431-3433.	3.4	5
63	Plasmonics and THz frequency generation. , 2011, , .		0
64	THz Generation from Plasmonic Nanoparticle Arrays. Nano Letters, 2011, 11, 4718-4724.	9.1	113
65	Plasmonics for THz frequency applications. , 2011, , .		1
66	Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate. Physical Review B, 2010, 82, .	3.2	193
67	Large spectral extinction due to overlap of dipolar and quadrupolar plasmonic modes of metallic nanoparticles in arrays. Optics Express, 2010, 18, 3187.	3.4	65
68	Extinction and scattering of metallic nanoparticles in ordered and random arrays. Proceedings of SPIE, 2010, , .	0.8	0
69	Cascaded Optical Field Enhancement in Composite Plasmonic Nanostructures. Physical Review Letters, 2010, 105, 246806.	7.8	38
70	Composite Au Nanostructures for Fluorescence Studies in Visible Light. Nano Letters, 2010, 10, 874-879.	9.1	33
71	In Vivo Spectroscopic Imaging of Biological Membranes and Surface Imaging for High-Throughput Screening. , 2010, , 17-1-17-13.		0
72	Surface-mode lifetime and the terahertz transmission of subwavelength hole arrays. Physical Review B, 2009, 80, .	3.2	16

#	Article	IF	CITATIONS
73	Sensitivity of Localized Surface Plasmon Resonances to Bulk and Local Changes in the Optical Environment. Journal of Physical Chemistry C, 2009, 113, 5120-5125.	3.1	94
74	Comparing experiment and theory in plasmonics. Journal of Optics, 2009, 11, 114002.	1.5	48
75	Diffractive coupling in gold nanoparticle arrays and the effect of disorder. Optics Letters, 2009, 34, 401.	3.3	95
76	Double-grating-structured light microscopy using plasmonic nanoparticle arrays. Optics Letters, 2009, 34, 1255.	3.3	11
77	Localized surface-plasmon resonances and negative refractive index in nanostructured electromagnetic metamaterials. Physical Review B, 2009, 80, .	3.2	41
78	Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays. Physical Review B, 2009, 79, .	3.2	116
79	Fluorescence enhancement through modified dye molecule absorption associated with the localized surface plasmon resonances of metallic dimers. New Journal of Physics, 2008, 10, 105002.	2.9	33
80	Spontaneous emission from within a metal-clad cavity mediated by coupled surface plasmon–polaritons. Journal of Physics Condensed Matter, 2008, 20, 304218.	1.8	5
81	Surface plasmon mediated transmission of subwavelength slits at THz frequencies. Physical Review B, 2008, 77, .	3.2	59
82	Collective Resonances in Gold Nanoparticle Arrays. Physical Review Letters, 2008, 101, 143902.	7.8	915
83	Field profiles of coupled surface plasmon-polaritons. Journal of Modern Optics, 2008, 55, 2929-2943.	1.3	32
84	Terahertz surface plasmons for subwavelength sensing and spectroscopy. , 2008, , .		0
85	Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons. Applied Physics Letters, 2008, 93, .	3.3	115
86	Coupling localized and extended plasmons to improve the light extraction through metal films. Optics Express, 2007, 15, 10533.	3.4	70
87	Plasmonic Materials. Advanced Materials, 2007, 19, 3771-3782.	21.0	745
88	Long-Range Refractive Index Sensing Using Plasmonic Nanostructures. Journal of Physical Chemistry C, 2007, 111, 11806-11810.	3.1	77
89	Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes. Applied Physics Letters, 2006, 88, 161105.	3.3	62
90	Emission of light through thin silver films via near-field coupling to surface plasmon polaritons. Applied Physics Letters, 2006, 88, 051109.	3.3	52

#	Article	IF	CITATIONS
91	Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure. Physical Review B, 2006, 74, .	3.2	61
92	Surface plasmon–polariton length scales: a route to sub-wavelength optics. Journal of Optics, 2006, 8, S87-S93.	1.5	539
93	Role of surface profiles in surface plasmon-polariton-mediated emission of light through a thin metal film. Journal of Modern Optics, 2006, 53, 429-436.	1.3	8
94	Overlayers on Silver Nanotriangles:  Field Confinement and Spectral Position of Localized Surface Plasmon Resonances. Nano Letters, 2006, 6, 1772-1777.	9.1	109
95	Dependence on surface profile in grating-assisted coupling of light to surface plasmon-polaritons. Optics Communications, 2006, 261, 291-295.	2.1	25
96	Can lasing at visible wavelengths be achieved using the low-loss long-range surface plasmon-polariton mode?. New Journal of Physics, 2006, 8, 125-125.	2.9	42
97	The emission of light through thin metal films via surface plasmon-polaritons (Invited Paper). , 2005, 5840, 353.		0
98	Photoluminescence emission through thin metal films via coupled surface plasmon–polaritons. Journal of Modern Optics, 2005, 52, 833-843.	1.3	6
99	Light Out-Coupling Efficiencies of Organic Light-Emitting Diode Structures and the Effect of Photoluminescence Quantum Yield. Advanced Functional Materials, 2005, 15, 1839-1844.	14.9	114
100	Fluorescence in the presence of metallic hole arrays. Journal of Modern Optics, 2005, 52, 1105-1122.	1.3	15
101	Low threshold edge emitting polymer distributed feedback laser based on a square lattice. Applied Physics Letters, 2005, 86, 161102.	3.3	34
102	Direct observation of surface plasmon-polariton dispersion. Optics Express, 2005, 13, 428.	3.4	42
103	Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays. Physical Review B, 2005, 71, .	3.2	397
104	Light emission through a corrugated metal film: The role of cross-coupled surface plasmon polaritons. Physical Review B, 2004, 69, .	3.2	50
105	Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium. Journal of Applied Physics, 2004, 96, 6959-6965.	2.5	97
106	Coupled surface plasmon-polariton mediated photoluminescencefrom a top-emitting organic light-emitting structure. Applied Physics Letters, 2004, 85, 182-184.	3.3	81
107	Turning the tables on surface plasmons. Nature Materials, 2004, 3, 588-589.	27.5	81
108	Determining the orientation of the emissive dipole moment associated with dye molecules in microcavity structures. Journal of Modern Optics, 2004, 51, 2287-2295.	1.3	13

#	Article	IF	CITATIONS
109	Energy Transfer Across a Metal Film Mediated by Surface Plasmon Polaritons. Science, 2004, 306, 1002-1005.	12.6	441
110	Light outcoupling efficiency of top-emitting organic light-emitting diodes. Applied Physics Letters, 2004, 84, 2986-2988.	3.3	180
111	Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film. Physical Review Letters, 2004, 92, 107401.	7.8	645
112	Surface plasmon-polariton mediated light emission through thin metal films. Optics Express, 2004, 12, 3673.	3.4	104
113	Transmission of light through thin silver films via surface plasmon-polaritons. Optics Express, 2004, 12, 5881.	3.4	41
114	Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array. Physical Review B, 2004, 69, .	3.2	119
115	Surface plasmon polariton mediated emission of light. , 2004, , .		1
116	Determining the orientation of the emissive dipole moment associated with dye molecules in microcavity structures. Journal of Modern Optics, 2004, 51, 2287-2295.	1.3	1
117	Surface plasmon subwavelength optics. Nature, 2003, 424, 824-830.	27.8	10,571
118	Operating characteristics of a semiconducting polymer laser pumped by a microchip laser. Applied Physics Letters, 2003, 82, 313-315.	3.3	134
119	Blue, surface-emitting, distributed feedback polyfluorene lasers. Applied Physics Letters, 2003, 83, 2118-2120.	3.3	111
120	Photonic mode dispersion of a two-dimensional distributed feedback polymer laser. Physical Review B, 2003, 67, .	3.2	56
121	Optical properties of a light-emitting polymer directly patterned by soft lithography. Applied Physics Letters, 2002, 81, 1955-1957.	3.3	39
122	Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser. Applied Physics Letters, 2002, 81, 954-956.	3.3	75
123	Coupling effciency of surface plasmon polaritons to radiation using a corrugated surface; angular dependence. Journal of Modern Optics, 2002, 49, 1453-1462.	1.3	21
124	<title>Surface plasmon mediated emission from organic materials</title> . , 2002, , .		2
125	<title>Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser</title> . , 2002, , .		1
126	Controlling the optical emission from the polymer MEH-PPV using corrugated thin films. EPJ Applied Physics, 2002, 18, 89-97.	0.7	2

#	Article	IF	CITATIONS
127	Effects of hole depth on enhanced light transmission through subwavelength hole arrays. Applied Physics Letters, 2002, 81, 4327-4329.	3.3	284
128	Strong exciton–photon coupling in a low-Q all-metal mirror microcavity. Applied Physics Letters, 2002, 81, 3519-3521.	3.3	182
129	<title>Coupling to surface modes of metal-based photonic crystals</title> . , 2002, 4655, 132.		1
130	Surface Plasmon Mediated Emission from Organic Light-Emitting Diodes. Advanced Materials, 2002, 14, 1393-1396.	21.0	307
131	Stalagmite lamina doublets: a 1000 year proxy record of severe winters in northwest Scotland?. International Journal of Climatology, 2002, 22, 1339-1345.	3.5	49
132	Photonic band structure and emissive characteristics of MEH-PPV textured microcavities. Journal of Modern Optics, 2001, 48, 1085-1098.	1.3	6
133	Rate and efficiency of spontaneous emission in metal-clad microcavities. Journal of Applied Physics, 2001, 89, 615-625.	2.5	18
134	Efficient coupling of surface plasmon polaritons to radiation using a bi-grating. Applied Physics Letters, 2001, 79, 3035-3037.	3.3	102
135	Microcavities, texture symmetry, and photonic bandgaps. Journal of the Optical Society of America B: Optical Physics, 2001, 18, 240.	2.1	8
136	Increased Efficiency and Controlled Light Output from a Microstructured Light-Emitting Diode. Advanced Materials, 2001, 13, 123-127.	21.0	196
137	Molecular fluorescence above metallic gratings. Physical Review B, 2001, 64, .	3.2	57
138	Efficiency of radiative emission from thin films of a light-emitting conjugated polymer. Physical Review B, 2001, 64, .	3.2	32
139	Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser. Physical Review B, 2001, 64, .	3.2	151
140	Increased Efficiency and Controlled Light Output from a Microstructured Light-Emitting Diode. , 2001, 13, 123.		2
141	Photonic band structure and emissive characteristics of MEH-PPV textured microcavities. Journal of Modern Optics, 2001, 48, 1085-1098.	1.3	5
142	Efficiency of spontaneous emission from planar microcavities. Journal of Modern Optics, 2000, 47, 725-741.	1.3	129
143	A thousand year speleothem proxy record of North Atlantic climate from Scotland. Climate Dynamics, 2000, 16, 815-820.	3.8	180
144	Flat photonic bands in guided modes of textured metallic microcavities. Physical Review B, 2000, 61, 11125-11135.	3.2	21

#	Article	IF	CITATIONS
145	Bragg scattering from periodically microstructured light emitting diodes. Applied Physics Letters, 2000, 77, 3340-3342.	3.3	175
146	Forster Energy Transfer in an Optical Microcavity. Science, 2000, 290, 785-788.	12.6	293
147	Photonic band gaps and flat band edges in periodically textured metallic microcavities. Applied Physics Letters, 2000, 77, 193-195.	3.3	7
148	Spontaneous emission and energy transfer in the optical microcavity. Contemporary Physics, 2000, 41, 287-300.	1.8	6
149	Efficiency of spontaneous emission from planar microcavities. Journal of Modern Optics, 2000, 47, 725-741.	1.3	17
150	Spontaneous emission within metal-clad microcavities. Journal of Optics, 1999, 1, 501-506.	1.5	14
151	Modification of the spontaneous emission rate of Eu^{3+} ions embedded within a dielectric layer above a silver mirror. Physical Review A, 1999, 59, 865-872.	2.5	71
152	Modification of spontaneous emission lifetimes in the presence of corrugated metallic surfaces. Physical Review B, 1999, 59, 7708-7714.	3.2	36
153	Variations in stalagmite luminescence laminae structure at Poole's Cavern, England, AD 1910±1996: calibration of a palaeoprecipitation proxy. Holocene, 1999, 9, 683-688.	1.7	52
154	A rapid, non-destructive scanning method for detecting distal tephra layers in peats. Holocene, 1999, 9, 635-638.	1.7	20
155	Quantum optics: Energy transfer under control. Nature, 1999, 400, 505-506.	27.8	19
156	OPTOELECTRONICS:Reflections on Polymers. Science, 1999, 285, 211-212.	12.6	2
157	Fluorescence intensity variations of speleothem-forming groundwaters: Implications for paleoclimate reconstruction. Water Resources Research, 1999, 35, 407-413.	4.2	43
158	Fluorescence near interfaces: The role of photonic mode density. Journal of Modern Optics, 1998, 45, 661-699.	1.3	923
159	Comparison of the luminescence properties of waters depositing flowstone and stalagmites at Lower Cave, Bristol. , 1998, 12, 1447-1459.		22
160	Testing Theoretically Predicted Stalagmite Growth Rate with Recent Annually Laminated Samples: Implications for Past Stalagmite Deposition. Geochimica Et Cosmochimica Acta, 1998, 62, 393-404.	3.9	223
161	Variable-Angle Time-Resolved Evanescent Wave-Induced Fluorescence Spectroscopy (VATR-EWIFS):Â A Technique for Concentration Profiling Fluorophores at Dielectric Interfaces. Journal of Physical Chemistry B, 1998, 102, 10326-10333.	2.6	17
162	Photonic band gaps in metallic microcavities. Journal of Applied Physics, 1998, 84, 2399-2403.	2.5	23

#	Article	IF	CITATIONS
163	Fluorescence near interfaces: the role of photonic mode density. Journal of Modern Optics, 1998, 45, 661-699.	1.3	57
164	Modification of the spontaneous emission rate ofEu3+ions close to a thin metal mirror. Physical Review B, 1997, 55, 7249-7254.	3.2	171
165	Surface-plasmon energy gaps and photoabsorption. Journal of Modern Optics, 1997, 44, 395-406.	1.3	16
166	Photonic surfaces for surface-plasmon polaritons. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1997, 14, 1654.	1.5	85
167	Variations in the discharge and organic matter content of stalagmite drip waters in Lower Cave, Bristol. Hydrological Processes, 1997, 11, 1541-1555.	2.6	122
168	Variations in the discharge and organic matter content of stalagmite drip waters in Lower Cave, Bristol. , 1997, 11, 1541.		1
169	Full Photonic Band Gap for Surface Modes in the Visible. Physical Review Letters, 1996, 77, 2670-2673.	7.8	357
170	Excitation of molecular fluorescence via surface plasmon polaritons. Journal of Modern Optics, 1996, 43, 573-582.	1.3	29
171	Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. Physical Review B, 1996, 54, 6227-6244.	3.2	472
172	Surface profile dependence of surface plasmon band gaps on metallic gratings. Journal of Applied Physics, 1996, 79, 7383-7385.	2.5	39
173	Photonic gaps in the dispersion of surface plasmons on gratings. Physical Review B, 1995, 51, 11164-11167.	3.2	80
174	Surface-plasmon energy gaps and photoluminescence. Physical Review B, 1995, 52, 11441-11445.	3.2	58
175	Absorption and emission cross section of Er/sup 3+/ doped silica fibers. IEEE Journal of Quantum Electronics, 1991, 27, 1004-1010.	1.9	252
176	High-quantum-efficiency Er^3+ fiber lasers pumped at 980 nm. Optics Letters, 1989, 14, 1002.	3.3	57
177	Orientational inhomogeneity and scattering in Langmuir-Blodgett films of 22-tricosenoic acid. Journal Physics D: Applied Physics, 1988, 21, 773-779.	2.8	4
178	Optical loss in Langmuir-Blodgett multi-layers of 22-tricosenoic acid. Journal Physics D: Applied Physics, 1987, 20, 1125-1128.	2.8	7