Atsushi Goto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6927861/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery. Journal of Power Sources, 2013, 225, 137-140.	7.8	165
2	Achievement of 1020 MHz NMR. Journal of Magnetic Resonance, 2015, 256, 30-33.	2.1	127
3	Properties of a novel hard-carbon optimized to large size Li ion secondary battery studied by 7Li NMR. Journal of Power Sources, 2006, 162, 1322-1328.	7.8	79
4	The NQR Observation of Spin-Peierls Transition in an Antiferromagnetic MX-Chain Complex [NiBr(chxn)2]Br2. Journal of the American Chemical Society, 2004, 126, 1614-1615.	13.7	61
5	Spin susceptibility and superexchange interaction in the antiferromagnet CuO. Physical Review B, 2003, 68, .	3.2	51
6	1020 MHz single-channel proton fast magic angle spinning solid-state NMR spectroscopy. Journal of Magnetic Resonance, 2015, 261, 1-5.	2.1	38
7	Correlation between the Magnetoresistance Ratio and the Interface Structure, and Local Strain of Co/Cu Superlattices Investigated by59Co NMR. Journal of the Physical Society of Japan, 1993, 62, 1450-1454.	1.6	35
8	NMR Investigation on the Spin Polarization Oscillation in Cu Layers of [Ni/Cu] Magnetic Superlattices. Journal of the Physical Society of Japan, 1993, 62, 2129-2140.	1.6	31
9	Successful Upgrading of 920-MHz NMR Superconducting Magnet to 1020 MHz Using Bi-2223 Innermost Coil. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-7.	1.7	31
10	Optical pumping NMR in the compensated semiconductor InP:Fe. Physical Review B, 2004, 69, .	3.2	30
11	Achievement of a 920-MHz High Resolution NMR. Journal of Magnetic Resonance, 2002, 156, 318-321.	2.1	29
12	Oneâ€Dimensional Bromoâ€Bridged Ni ^{III} Complexes [Ni(<i>S,S</i> â€bn) ₂ Br]Br ₂ (<i>S</i> , <i>S</i> â€bn=2 <i>S</i> ,3 <i>S</i> â€diaminobutane): Synthesis, Physical Properties, and Electrostatic Carrier Doping, Chemistry - A European Journal, 2008, 14, 472-477.	3.3	27
13	Zigzag Charge Ordering in α′-NaV 2O 5. Journal of the Physical Society of Japan, 2000, 69, 2751-2754.	1.6	27
14	Correlation between the interface structure and magnetic and transport properties for Co/Cu(110) andNi8Fe2/Cu/Co/Cu(110) superlattices. Physical Review B, 1995, 52, 6500-6512.	3.2	23
15	Decoupling-free NMR quantum computer on a quantum spin chain. Physical Review A, 2003, 67, .	2.5	23
16	Carrier Concentration Dependence of the Spin Pseudo-Gap Behaviors in YBa2Cu3Oy. Journal of the Physical Society of Japan, 1996, 65, 3043-3048.	1.6	22
17	Magnetic Dimensionality of the Antiferromagnet CuO. Journal of the Physical Society of Japan, 2003, 72, 2165-2168.	1.6	22
18	Giant magnetoresistance and microstructure in Crî—,Fe and Cuî—,Co heterogeneous alloys. Thin Solid Films, 1996, 275, 106-110	1.8	20

#	Article	IF	CITATIONS
19	High-Field NMR up to 30 T with a Hybrid Magnet. Japanese Journal of Applied Physics, 2005, 44, 4194-4199.	1.5	19
20	High-magnetic-field NMR studies ofLiVGe2O6:A quasi-one-dimensional spinS=1system. Physical Review B, 2002, 65, .	3.2	18
21	Optical-pumping double-resonance NMR system for semiconductors. Review of Scientific Instruments, 2006, 77, 093904.	1.3	18
22	Charge Segregation in the Metal-Insulator Transition of the Thiospinel Cu1-xZnxIr2S4. Journal of the Physical Society of Japan, 2001, 70, 9-12.	1.6	17
23	The critical thickness of Fe buffer layer in giant magnetoresistance of Co/Cu superlattices. Journal of Magnetism and Magnetic Materials, 1993, 126, 495-497.	2.3	15
24	X-ray diffraction and NMR study on the structure of Co/Cu superlattices with artificially modified interfaces. Physical Review B, 1994, 50, 18580-18585.	3.2	14
25	Optical Pumping System for a Qubit Initializer in a Solid-state NMR Quantum Computer. Japanese Journal of Applied Physics, 2003, 42, 2864-2866.	1.5	14
26	NMR study of thermally activated paramagnetism in metallic low-silica X zeolite filled with sodium atoms. Physical Review B, 2013, 87, .	3.2	14
27	47,49Ti solid-state NMR and DFT study of Ziegler-Natta catalyst: Adsorption of TiCl4 molecule onto the surface of MgCl2. Journal of Physics and Chemistry of Solids, 2019, 135, 109088.	4.0	14
28	Highly swellable hydrogel of regioselectively aminated (1→3)-α-d-glucan crosslinked with ethylene glycol diglycidyl ether. Carbohydrate Polymers, 2020, 237, 116189.	10.2	14
29	Correlation between the magnetoresistance ratio and the interface structure investigated by 59Co NMR. Journal of Magnetism and Magnetic Materials, 1993, 126, 466-469.	2.3	13
30	NMR and magnetic susceptibility in superconducting and antiferromagnetic Ga-based cuprates Y1â^'Ca Sr2Cu2GaO7 (0â‰æâ‰@.3). Physica C: Superconductivity and Its Applications, 1996, 257, 86-98.	1.2	13
31	Optical switching of nuclear spin–spin couplings in semiconductors. Nature Communications, 2011, 2, 378.	12.8	12
32	Efficiency of High Magnetic Fields in Solid-state NMR. Chemistry Letters, 2016, 45, 209-210.	1.3	11
33	Operation of 1020-MHz NMR Superconducting Magnet. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-4.	1.7	10
34	Roles of the interlayer spin correlations in the Cu NMR relaxation rates of bi- and tri-layered high-Tccuprates. Physical Review B, 1998, 57, 7977-7985.	3.2	9
35	Optically pumped NMR in semiconductor InP. Physica B: Condensed Matter, 2003, 329-333, 1235-1236.	2.7	9
36	Carrier Concentration Dependence of the Pseudo Spin Gap Behavior inLaBa2Cu3Oy. Journal of the Physical Society of Japan, 1995, 64, 367-370.	1.6	8

#	Article	IF	CITATIONS
37	NMR study of copper in [Ni/Cu] magnetic superlattices. Journal of Magnetism and Magnetic Materials, 1993, 124, 285-292.	2.3	7
38	NMR studies of magnetic multilayers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1995, 31, 177-185.	3.5	7
39	NMR Study of Anomalous CDW Behaviors in a Layered Copper Sulfide, K3Cu8S6. Journal of the Physical Society of Japan, 1995, 64, 1223-1229.	1.6	7
40	Superconductivity in the thiospinel, Cu0.7Zn0.3Ir2S4 studied by Cu-NMR. Physica C: Superconductivity and Its Applications, 2000, 341-348, 737-738.	1.2	7
41	An NMR quantum computer of the semiconductor CdTe. Superlattices and Microstructures, 2002, 32, 313-316.	3.1	7
42	NMR study of Rb clusters in zeolite LTA. Physica B: Condensed Matter, 2003, 327, 72-78.	2.7	7
43	NMR study on the quantum spin ladder NH4CuCl3. Physica B: Condensed Matter, 2003, 329-333, 977-978.	2.7	7
44	Cu?O?Cu bond-angle dependence of magnetic interactions in antiferromagnetic cuprates. Physica B: Condensed Matter, 2003, 329-333, 765-766.	2.7	7
45	Trial Measurement of NMR in a Bitter Magnet of NIMS. Chemistry Letters, 2004, 33, 1502-1503.	1.3	7
46	NMR Study of Metallic Thallic Oxides; Tl2O3-δ. Journal of the Physical Society of Japan, 1992, 61, 1178-1181.	1.6	6
47	NMR study of copper in [Ni/Cu], [Co/Cu] magnetic superlattices synthesized by the ion beam sputtering method. Journal of Magnetism and Magnetic Materials, 1993, 126, 358-360.	2.3	6
48	Phase diagram for the spin pseudogap inLaBa2Cu3Oystudied by NMR. Physical Review B, 1997, 55, 12736-12741.	3.2	6
49	Origin of the Enhanced Copper Spin Echo Decay Rate in the Pseudogap Regime of the Multilayer High-TcCuprates. Physical Review Letters, 2002, 89, 127002.	7.8	6
50	Investigation of nuclear-spin couplings in the lithium fluorides as possible candidates for crystal nuclear magnetic resonance quantum computing devices. Applied Physics A: Materials Science and Processing, 2002, 74, 73-77.	2.3	6
51	Development of a nuclear spin polarizer with the optical pumping method. Superlattices and Microstructures, 2002, 32, 303-307.	3.1	6
52	Homonuclear and Heteronuclear Indirect Spin-Spin Couplings in InP Studied Using31P Cross Polarization NMR Spectra under Magic-Angle Spinning. Japanese Journal of Applied Physics, 2003, 42, L1411-L1413.	1.5	6
53	Indirect Spin–Spin Coupling in InP Investigated by Triple-Resonance NMR under Magic-Angle Spinning. Journal of the Physical Society of Japan, 2004, 73, 1045-1049.	1.6	6
54	Anisotropic indirect nuclear spin–spin coupling in InP: 31P CP NMR study under slow MAS condition. Chemical Physics Letters, 2006, 419, 28-32.	2.6	6

#	Article	IF	CITATIONS
55	NMR property of sodalite loaded with potassium. Journal of Physics and Chemistry of Solids, 2010, 71, 638-641.	4.0	6
56	Magnon-excitation contribution to the interface magnetization in Co/Cu superlattices. Physical Review B, 1995, 51, 3930-3932.	3.2	5
57	Investigation for the possible crystal NMR quantum computing device with BaLiF3. Physica B: Condensed Matter, 2001, 298, 585-589.	2.7	5
58	Development of an Optical Pumping Nuclear Spin Polarizer. IEEE Transactions on Applied Superconductivity, 2004, 14, 1635-1638.	1.7	5
59	NMR property of arrayed K clusters in zeolite LTA with Si/Al=1.5. Journal of Physics and Chemistry of Solids, 2006, 67, 1063-1066.	4.0	5
60	Dynamics of electron-nuclear and heteronuclear polarization transfers in optically oriented semi-insulating InP:Fe. Physical Review B, 2008, 77, .	3.2	5
61	NMR property of rubidium loaded sodalite. Journal of Physics and Chemistry of Solids, 2012, 73, 1534-1537.	4.0	5
62	24 T High-Resolution and -Sensitivity Solid-State NMR Measurements of Low-Gamma Half-Integer Quadrupolar Nuclei 35Cl and 37Cl. Analytical Sciences, 2016, 32, 1339-1345.	1.6	5
63	Spin susceptibility of the quasi-one-dimensional antiferromagnet CuO. Physica B: Condensed Matter, 1999, 259-261, 573-575.	2.7	4
64	Experimental aspects of an NMR quantum computer with CeP. Applied Physics A: Materials Science and Processing, 2000, 70, 359-360.	2.3	4
65	SPIN DENSITY WAVE ORDER AND FLUCTUATIONS IN (TMTSF)2PF6 AT VERY HIGH MAGNETIC FIELDS. International Journal of Modern Physics B, 2002, 16, 3252-3257.	2.0	4
66	NMR Measurements with a Hybrid Magnet. Japanese Journal of Applied Physics, 2004, 43, L1020-L1022.	1.5	4
67	75As,113,115In, and123Sb NMR Studies of Indirect Nuclear Spin–Spin Coupling in InX(X=As, Sb). Japanese Journal of Applied Physics, 2006, 45, 651-655.	1.5	4
68	NMR property of low silica X zeolite with incorporated potassium. Journal of Magnetism and Magnetic Materials, 2007, 310, e307-e309.	2.3	4
69	High-Field Nuclear Magnetic Resonance with a Newly Designed Hybrid Magnet System. Japanese Journal of Applied Physics, 2009, 48, 010220.	1.5	4
70	Magnon-Mediated NMR Quantum Gates in a One-Dimensional Antiferromagnet. Journal of the Physical Society of Japan, 2002, 71, 2125-2128.	1.6	4
71	Interface Structure and Magnetic and Transport Properties for Co/Cu(111) Multilayers. Japanese Journal of Applied Physics, 1995, 34, 3088-3092.	1.5	3
72	NMR study of the anomalous metallic state below the CDW transition temperature inRb3Cu8S6: A possibility of self-organized spinless solitons. Physical Review B, 1996, 53, R13223-R13226.	3.2	3

#	Article	IF	CITATIONS
73	Anisotropy Study of the Spin-Lattice Relaxation Rates at the Cu(1) Chain Sites of YBa2Cu3O7and YBa2Cu4O8. Journal of the Physical Society of Japan, 1998, 67, 759-762.	1.6	3
74	Magnetic scaling in the underdoped superconductorHg0.8Re0.2Ba2Ca2Cu3O8studied by63CuNMR. Physical Review B, 1999, 59, R14169-R14172.	3.2	3
75	Electrochemical Measurement of Dissolved Oxygen from Atmosphere in a Highly Homogeneous Magnetic Field. Chemistry Letters, 2000, 29, 656-657.	1.3	3
76	Shallow Donor Impurity States of InP Studied by31P NMR Spectra under Magic-Angle Spinning. Japanese Journal of Applied Physics, 2004, 43, L1387-L1389.	1.5	3
77	Efficiency of the optical pumping qubit initializer for solid-state NMR quantum computers. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1669-E1670.	2.3	3
78	High field NMR up to 23.5T with a resistive magnet. Physica B: Condensed Matter, 2004, 346-347, 531-533.	2.7	3
79	Magic-angle-spinning NMR at 30 T with a Hybrid Magnet. Chemistry Letters, 2007, 36, 884-885.	1.3	3
80	Surface-sensitive NMR in optically pumped semiconductors. Applied Physics A: Materials Science and Processing, 2008, 93, 533-536.	2.3	3
81	²⁷ Al NMR/NQR Studies of YbAl ₃ C ₃ . Journal of the Physical Society of Japan, 2009, 78, 014709.	1.6	3
82	Molecular dynamics and structural phase transition in C ₆₀ nanowhiskers. Journal of Physics: Conference Series, 2009, 159, 012022.	0.4	3
83	Optically induced nuclear spin–spin couplings in GaAs manifested by spin echo decays under optical pumping. Npj Quantum Information, 2022, 8, .	6.7	3
84	Interrelation between the spin pseudogap and the staggered susceptibility in bilayered cuprates. Physica B: Condensed Matter, 1999, 259-261, 468-470.	2.7	2
85	Progress of solid-state quantum computers at NRIM. Physica B: Condensed Matter, 2001, 298, 567-572.	2.7	2
86	Observation of a High Resolution Proton NMR with a 920 MHz Superconducting Magnet. Chemistry Letters, 2002, 31, 370-371.	1.3	2
87	NMR at 23.5 T by a Resistive Magnet in NIMS. IEEE Transactions on Applied Superconductivity, 2004, 14, 1632-1634.	1.7	2
88	Indirect nuclear spin–spin coupling in InP studied by CP/MAS NMR. Physica B: Condensed Matter, 2004, 346-347, 476-478.	2.7	2
89	Trial measurements of MAS-NMR with a hybrid magnet. Journal of Physics: Conference Series, 2006, 51, 573-575.	0.4	2
90	NMR study of field-induced magnetic ordering in the Haldane system. Journal of Magnetism and Magnetic Materials, 2007, 310, 1242-1244.	2.3	2

#	Article	IF	CITATIONS
91	NMR Study of YbAl3C3in High Magnetic Field. Journal of the Physical Society of Japan, 2008, 77, 291-293.	1.6	2
92	Analysis of bis(trifluoromethylsulfonyl)imide-doped paramagnetic graphite intercalation compound using 19F very fast magic angle spinning nuclear magnetic resonance. Carbon, 2011, 49, 4064-4066.	10.3	2
93	Optical-Pumping Double-Nuclear-Magnetic-Resonance System with a Gifford–McMahon Cryocooler. Japanese Journal of Applied Physics, 2011, 50, 126701.	1.5	2
94	Fabrication of a porous alumina mask on the large surface area of a semi-insulating semiconductor substrate. Journal of the Ceramic Society of Japan, 2013, 121, 516-519.	1.1	2
95	Relationship between Strength in Magnetic Field and Spectral Width of Solid-state ³³ S NMR in an Organosulfur Compound. Chemistry Letters, 2019, 48, 601-603.	1.3	2
96	Field-stepwise-swept QCPMG solid-state 115In NMR of indium oxide. Solid State Nuclear Magnetic Resonance, 2020, 109, 101688.	2.3	2
97	Interface-sensitive nuclear magnetic resonance at a semiconductor heterojunction using hyperpolarization. Physical Review Materials, 2017, 1, .	2.4	2
98	Magnetic scaling in the underdoped cuprates studied by NMR. Physica B: Condensed Matter, 2000, 281-282, 810-811.	2.7	1
99	Possible 6-qubit NMR quantum computer device material; simulator of the NMR line width. Superlattices and Microstructures, 2002, 32, 309-312.	3.1	1
100	NMR study of YP and YPO4 as 2-qubits quantum computers. Superlattices and Microstructures, 2002, 32, 317-322.	3.1	1
101	A decoupling-free solid-state NMR quantum computer. Physica B: Condensed Matter, 2003, 329-333, 1621-1622.	2.7	1
102	Overview of the development of high-resolution NMR in NIMS. Physica B: Condensed Matter, 2004, 346-347, 528-530.	2.7	1
103	NUCLEAR HYPERPOLARIZATION AND POLARIZATION TRANSFER SYSTEM FOR SEMICONDUCTORS. International Journal of Modern Physics B, 2007, 21, 1664-1668.	2.0	1
104	NMR Evidence for Field-induced Magnetic Ordering at 30 T in the Haldane Compound PbNi2V2O8. Journal of the Physical Society of Japan, 2007, 76, 064705.	1.6	1
105	Temperature dependence of the optical nuclear orientation in InP. Journal of Physics: Conference Series, 2009, 150, 022018.	0.4	1
106	Development of a Flux Stabilizer for NMR Measurements with a Hybrid Magnet. Journal of Low Temperature Physics, 2010, 159, 288-291.	1.4	1
107	High-Temperature Pulsed-Field-Gradient 7Li-NMR Measurements of Li2CO3 over 700 K. Analytical Sciences, 2021, 37, 1477-1479.	1.6	1
108	Optical-Pumping Double-Nuclear-Magnetic-Resonance System with a Gifford–McMahon Cryocooler. Japanese Journal of Applied Physics, 2011, 50, 126701.	1.5	1

#	Article	IF	CITATIONS
109	Enhancing Radio-frequency Pulses Using a Field Shielding Device in a Solid-state NMR Sample Tube. Chemistry Letters, 2022, 51, 574-576.	1.3	1
110	Anomalous Metallic State Coexisting with the Charge Density Wave in Rb3Cu8S6Studied by NMR and Spin Echo Double Resonance (SEDOR). Journal of the Physical Society of Japan, 1998, 67, 1560-1563.	1.6	0
111	Nuclear Spin Polarizer for Solid-State NMR Quantum Computers. AIP Conference Proceedings, 2005, , .	0.4	0
112	High Field NMR Study of Yb0.9Y0.1InCu4 up to 30 T. Journal of the Physical Society of Japan, 2006, 75, 084714.	1.6	0
113	High-field In-NMR in YbYInCu. Physica B: Condensed Matter, 2006, 378-380, 734-735.	2.7	Ο
114	Anomalous property of the spin–spin relaxation of 27Al NMR in dehydrated zeolite A. Chemical Physics Letters, 2007, 436, 80-83.	2.6	0
115	Development of a dynamic nuclear polarization system based on the optical pumping method. Journal of Magnetism and Magnetic Materials, 2007, 310, 2716-2718.	2.3	Ο
116	Development of a Flux Stabilizer for Solid-state Nuclear Magnetic Resonance with a Hybrid Magnet. Chemistry Letters, 2010, 39, 1307-1308.	1.3	0
117	Development of an NMR Spectrometer Operated beyond 1 GHz. TEION KOGAKU (Journal of Cryogenics) Tj ETQq1	1,0.78431 0.1	14 rgBT /O
118	⁷¹ Ga NMR characterization of an n-doped free-standing gallium nitride wafer. Japanese Journal of Applied Physics, 2019, 58, 031003.	1.5	0
119	Experimental Comparison of Solid-state NMR Spectra for Quadrupolar Nuclei Using Various Spin-echo Sequences. Chemistry Letters, 2020, 49, 68-70.	1.3	0
120	Chemical Shift Tensor Analysis of Uniaxially Oriented Cellulose Microcrystals. Zairyo/Journal of the Society of Materials Science, Japan, 2019, 68, 643-648.	0.2	0