Sumit Bahl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6927431/publications.pdf

Version: 2024-02-01

36	1,471	21	35
papers	citations	h-index	g-index
38	38	38	1188 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	A creep-resistant additively manufactured Al-Ce-Ni-Mn alloy. Acta Materialia, 2022, 227, 117699.	7.9	51
2	Microstructural evolution and strengthening mechanisms in a heat-treated additively manufactured Al–Cu–Mn–Zr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142928.	5.6	15
3	Cavitation-resistant intergranular precipitates enhance creep performance of Î,′-strengthened Al-Cu based alloys. Acta Materialia, 2022, 228, 117788.	7.9	38
4	Effect of grain-boundary Î,-Al2Cu precipitates on tensile and compressive creep properties of cast Al–Cu–Mn–Zr alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142946.	5.6	19
5	Repurposing the Î, (Al2Cu) phase to simultaneously increase the strength and ductility of an additively manufactured Al–Cu alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 850, 143511.	5.6	7
6	Comprehensive review on alloy design, processing, and performance of $\langle i \rangle \hat{l}^2 \langle i \rangle$ Titanium alloys as biomedical materials. International Materials Reviews, 2021, 66, 114-139.	19.3	71
7	Aging behavior and strengthening mechanisms of coarsening resistant metastable θ' precipitates in an Al–Cu alloy. Materials and Design, 2021, 198, 109378.	7. 0	62
8	The role of Si in determining the stability of the θ′ precipitate in Al-Cu-Mn-Zr alloys. Journal of Alloys and Compounds, 2021, 862, 158152.	5 . 5	22
9	Enhanced biomechanical performance of additively manufactured Ti-6Al-4V bone plates. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 119, 104552.	3.1	25
10	Elevated temperature ductility dip in an additively manufactured Al-Cu-Ce alloy. Acta Materialia, 2021, 220, 117285.	7.9	38
11	Al-Cu-Ce(-Zr) alloys with an exceptional combination of additive processability and mechanical properties. Additive Manufacturing, 2021, 48, 102404.	3.0	9
12	Effect of copper content on the tensile elongation of Al–Cu–Mn–Zr alloys: Experiments and finite element simulations. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138801.	5.6	28
13	Influence of copper content on the high temperature tensile and low cycle fatigue behavior of cast Al-Cu-Mn-Zr alloys. International Journal of Fatigue, 2020, 140, 105836.	5 . 7	12
14	An additively manufactured AlCuMnZr alloy microstructure and tensile mechanical properties. Materialia, 2020, 12, 100758.	2.7	36
15	Primary solidification of ternary compounds in Al-rich Al–Ce–Mn alloys. Journal of Alloys and Compounds, 2020, 844, 156048.	5 . 5	21
16	Solute-vacancy clustering in aluminum. Acta Materialia, 2020, 196, 747-758.	7.9	96
17	Microstructure and properties of a high temperature Al–Ce–Mn alloy produced by additive manufacturing. Acta Materialia, 2020, 196, 595-608.	7.9	116
18	Role of aging induced $\hat{l}\pm$ precipitation on the mechanical and tribocorrosive performance of a \hat{l}^2 Ti-Nb-Ta-O orthopedic alloy. Materials Science and Engineering C, 2019, 103, 109755.	7.3	13

#	Article	IF	CITATIONS
19	Non-equilibrium microstructure, crystallographic texture and morphological texture synergistically result in unusual mechanical properties of 3D printed 316L stainless steel. Additive Manufacturing, 2019, 28, 65-77.	3.0	73
20	Globularization using heat treatment in additively manufactured Ti-6Al-4V for high strength and toughness. Acta Materialia, 2019, 162, 239-254.	7.9	214
21	Process mediated polymorphism, crystallographic texture and structure-property correlation in crystalline/amorphous blends. Polymer, 2018, 138, 307-319.	3.8	14
22	Surface nanostructuring of titanium imparts multifunctional properties for orthopedic and cardiovascular applications. Materials and Design, 2018, 144, 169-181.	7.0	35
23	Engineering the next-generation tin containing \hat{l}^2 titanium alloys with high strength and low modulus for orthopedic applications. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 78, 124-133.	3.1	44
24	Retardation of Small Creep–Fatigue Crack in Gr. 91 Steel Through the Combined Effects of Stress Relaxation, Microstructural Evolution, and Oxidation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 6110-6121.	2.2	4
25	Variant selection in metastable \hat{l}^2 Ti-V-Fe-Al alloy during triaxial and uniaxial compression. Materialia, 2018, 4, 20-32.	2.7	11
26	Surface Severe Plastic Deformation of an Orthopedic Ti–Nb–Sn Alloy Induces Unusual Precipitate Remodeling and Supports Stem Cell Osteogenesis through Akt Signaling. ACS Biomaterials Science and Engineering, 2018, 4, 3132-3142.	5.2	18
27	Establishing the microstructure-strengthening correlation in severely deformed surface of titanium. Philosophical Magazine, 2018, 98, 2095-2119.	1.6	7
28	Controlled nanoscale precipitation to enhance the mechanical and biological performances of a metastable \hat{l}^2 Ti-Nb-Sn alloy for orthopedic applications. Materials and Design, 2017, 126, 226-237.	7.0	55
29	Processing–Microstructure–Crystallographic Texture–Surface Property Relationships in Friction Stir Processing of Titanium. Journal of Materials Engineering and Performance, 2017, 26, 4206-4216.	2.5	13
30	Elucidating microstructural evolution and strengthening mechanisms in nanocrystalline surface induced by surface mechanical attrition treatment of stainless steel. Acta Materialia, 2017, 122, 138-151.	7.9	115
31	Enhancing the mechanical and biological performance of a metallic biomaterial for orthopedic applications through changes in the surface oxide layer by nanocrystalline surface modification. Nanoscale, 2015, 7, 7704-7716.	5.6	63
32	Thermomechanical response and toughening mechanisms of a carbon nano bead reinforced epoxy composite. Materials Chemistry and Physics, 2015, 166, 144-152.	4.0	37
33	Effect of boron addition and processing of Ti–6Al–4V on corrosion behaviour and biocompatibility. Materials Technology, 2014, 29, B64-B68.	3.0	14
34	The control of crystallographic texture in the use of magnesium as a resorbable biomaterial. RSC Advances, 2014, 4, 55677-55684.	3.6	24
35	The importance of crystallographic texture in the use of titanium as an orthopedic biomaterial. RSC Advances, 2014, 4, 38078-38087.	3.6	37
36	Role of Substrate Temperature in the Pulsed Laser Deposition of Zirconium Oxide Thin Film. Materials Science Forum, 0, 710, 757-761.	0.3	11