
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6926936/publications.pdf Version: 2024-02-01

TAKESHI IMAMIIDA

#	Article	IF	CITATIONS
1	Horizontal structures of bow-shaped mountain wave trains seen in thermal infrared images of venusian clouds taken by Akatsuki LIR. Icarus, 2022, 378, 114936.	2.5	4
2	Observation of the Solar Corona Using Radio Scintillation with the Akatsuki Spacecraft: Difference Between Fast and Slow Wind. Solar Physics, 2022, 297, 1.	2.5	6
3	Dynamical Effect on Static Stability of the Venus Atmosphere Simulated Using a General Circulation Model: A Comparison With Radio Occultation Measurements. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	2
4	Characteristic Features of <i>V</i> ₀ Layer in the Venus Ionosphere as Observed by the Akatsuki Orbiter: Evidence for Its Presence During the Local Noon and Post‧unset Conditions. Geophysical Research Letters, 2022, 49, .	4.0	7
5	Correlation of Venusian Mesoscale Cloud Morphology Between Images Acquired at Various Wavelengths. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	3
6	Automatic Detection of Stationary Waves in the Venus Atmosphere Using Deep Generative Models. , 2021, , .		0
7	The nightside cloud-top circulation of the atmosphere of Venus. Nature, 2021, 595, 511-515.	27.8	14
8	Gravity Wave Packets in the Venusian Atmosphere Observed by Radio Occultation Experiments: Comparison With Saturation Theory. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006912.	3.6	5
9	Thermal Tides in the Upper Cloud Layer of Venus as Deduced From the Emission Angle Dependence of the Brightness Temperature by Akatsuki/LIR. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006808.	3.6	5
10	Planetary‣cale Waves Seen in Thermal Infrared Images of Venusian Cloud Top. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE007047.	3.6	8
11	Vertical Propagation of Wave Perturbations in the Middle Atmosphere on Mars by MAVEN/IUVS. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006481.	3.6	18
12	Brightness modulations of our nearest terrestrial planet Venus reveal atmospheric super-rotation rather than surface features. Nature Communications, 2020, 11, 5720.	12.8	10
13	A Recharge Oscillator Model for Interannual Variability in Venus' Clouds. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006568.	3.6	3
14	Seasonal and Latitudinal Variations of Dayside N ₂ /CO ₂ Ratio in the Martian Thermosphere Derived From MAVEN IUVS Observations. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006378.	3.6	8
15	Superrotation in Planetary Atmospheres. Space Science Reviews, 2020, 216, 1.	8.1	22
16	Coronal Electron Density Fluctuations Inferred from Akatsuki Spacecraft Radio Observations. Solar Physics, 2020, 295, 1.	2.5	11
17	A Longâ€Lived Sharp Disruption on the Lower Clouds of Venus. Geophysical Research Letters, 2020, 47, e2020GL087221.	4.0	17
18	Spatial and Temporal Variability of the 365â€nm Albedo of Venus Observed by the Camera on Board Venus Express. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006271.	3.6	4

#	Article	IF	CITATIONS
19	Thermal structure of the Venusian atmosphere from the sub-cloud region to the mesosphere as observed by radio occultation. Scientific Reports, 2020, 10, 3448.	3.3	36
20	Dayside cloud top structure of Venus retrieved from Akatsuki IR2 observations. Icarus, 2020, 345, 113682.	2.5	13
21	A Warm Layer in the Nightside Mesosphere of Mars. Geophysical Research Letters, 2020, 47, e2019GL085646.	4.0	9
22	How waves and turbulence maintain the super-rotation of Venus' atmosphere. Science, 2020, 368, 405-409.	12.6	41
23	Vertical Coupling Between the Cloudâ€Level Atmosphere and the Thermosphere of Venus Inferred From the Simultaneous Observations by Hisaki and Akatsuki. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006192.	3.6	2
24	Constraints on Venus Lightning From Akatsuki's First 3 Years in Orbit. Geophysical Research Letters, 2019, 46, 7955-7961.	4.0	9
25	Long-term Variations of Venus's 365 nm Albedo Observed by Venus Express, Akatsuki, MESSENGER, and the Hubble Space Telescope. Astronomical Journal, 2019, 158, 126.	4.7	30
26	Planetaryâ€Scale Variations in Winds and UV Brightness at the Venusian Cloud Top: Periodicity and Temporal Evolution. Journal of Geophysical Research E: Planets, 2019, 124, 2635-2659.	3.6	21
27	Global Structure of Thermal Tides in the Upper Cloud Layer of Venus Revealed by LIR on Board Akatsuki. Geophysical Research Letters, 2019, 46, 9457-9465.	4.0	26
28	Principal components of short-term variability in the ultraviolet albedo of Venus. Astronomy and Astrophysics, 2019, 626, A30.	5.1	2
29	New cloud morphologies discovered on the Venus's night during Akatsuki. Icarus, 2019, 333, 177-182.	2.5	20
30	Stationary Features at the Cloud Top of Venus Observed by Ultraviolet Imager Onboard Akatsuki. Journal of Geophysical Research E: Planets, 2019, 124, 1266-1281.	3.6	17
31	Morphology and Dynamics of Venus's Middle Clouds With Akatsuki/IR1. Geophysical Research Letters, 2019, 46, 2399-2407.	4.0	10
32	Formation of the Y Feature at the Venusian Cloud Top by Planetaryâ€ S cale Waves and the Mean Circulation: Analysis of Venus Express VMC Images. Journal of Geophysical Research E: Planets, 2019, 124, 1143-1156.	3.6	10
33	Influence of the cloud-level neutral layer on the vertical propagation of topographically generated gravity waves on Venus. Earth, Planets and Space, 2019, 71, .	2.5	5
34	Initial products of Akatsuki 1-μm camera. Earth, Planets and Space, 2018, 70, .	2.5	17
35	Nightside Winds at the Lower Clouds of Venus with Akatsuki/IR2: Longitudinal, Local Time, and Decadal Variations from Comparison with Previous Measurements. Astrophysical Journal, Supplement Series, 2018, 239, 29.	7.7	21
36	Local Time Dependence of the Thermal Structure in the Venusian Equatorial Upper Atmosphere: Comparison of Akatsuki Radio Occultation Measurements and GCM Results. Journal of Geophysical Research E: Planets, 2018, 123, 2270-2280.	3.6	28

#	Article	IF	CITATIONS
37	Initiation of a lightning search using the lightning and airglow camera onboard the Venus orbiter Akatsuki. Earth, Planets and Space, 2018, 70, 88.	2.5	8
38	Fine Vertical Structures at the Cloud Heights of Venus Revealed by Radio Holographic Analysis of Venus Express and Akatsuki Radio Occultation Data. Journal of Geophysical Research E: Planets, 2018, 123, 2151-2161.	3.6	14
39	Ultraviolet imager on Venus orbiter Akatsuki and its initial results. Earth, Planets and Space, 2018, 70, 23.	2.5	34
40	Mean winds at the cloud top of Venus obtained from two-wavelength UV imaging by Akatsuki. Earth, Planets and Space, 2018, 70, .	2.5	52
41	Venus looks different from day to night across wavelengths: morphology from Akatsuki multispectral images. Earth, Planets and Space, 2018, 70, 24.	2.5	31
42	Large stationary gravity wave in the atmosphere of Venus. Nature Geoscience, 2017, 10, 85-88.	12.9	99
43	The thermal structure of the Venus atmosphere: Intercomparison of Venus Express and ground based observations of vertical temperature and density profiles. Icarus, 2017, 294, 124-155.	2.5	34
44	Venus's winds and temperatures during the MESSENGER's flyby: An approximation to a threeâ€dimensional instantaneous state of the atmosphere. Geophysical Research Letters, 2017, 44, 3907-3915.	4.0	18
45	The Atmospheric Dynamics of Venus. Space Science Reviews, 2017, 212, 1541-1616.	8.1	95
46	Equatorial jet in the lower to middle cloud layer of Venus revealed by Akatsuki. Nature Geoscience, 2017, 10, 646-651.	12.9	35
47	Vertical structure of the axiâ€asymmetric temperature disturbance in the Venusian polar atmosphere: Comparison between radio occultation measurements and GCM results. Journal of Geophysical Research E: Planets, 2017, 122, 1687-1703.	3.6	16
48	Topographical and Local Time Dependence of Large Stationary Gravity Waves Observed at the Cloud Top of Venus. Geophysical Research Letters, 2017, 44, 12,098.	4.0	46
49	Scattering Properties of the Venusian Clouds Observed by the UV Imager on board Akatsuki. Astronomical Journal, 2017, 154, 44.	4.7	27
50	Overview of Akatsuki data products: definition of data levels, method and accuracy of geometric correction. Earth, Planets and Space, 2017, 69, .	2.5	20
51	Initial performance of the radio occultation experiment in the Venus orbiter mission Akatsuki. Earth, Planets and Space, 2017, 69, .	2.5	60
52	Absolute calibration of brightness temperature of the Venus disk observed by the Longwave Infrared Camera onboard Akatsuki. Earth, Planets and Space, 2017, 69, .	2.5	21
53	Performance of Akatsuki/IR2 in Venus orbit: the first year. Earth, Planets and Space, 2017, 69, .	2.5	28
54	Stationary waves and slowly moving features in the night upper clouds of Venus. Nature Astronomy, 2017, 1, .	10.1	35

TAKESHI IMAMURA

#	Article	IF	CITATIONS
55	Sensitivity of net thermal flux to the abundance of trace gases in the lower atmosphere of Venus. Journal of Geophysical Research E: Planets, 2016, 121, 1737-1752.	3.6	15
56	The puzzling Venusian polar atmospheric structure reproduced by a general circulation model. Nature Communications, 2016, 7, 10398.	12.8	37
57	AKATSUKI returns to Venus. Earth, Planets and Space, 2016, 68, .	2.5	89
58	Convective generation and vertical propagation of fast gravity waves on Mars: One- and two-dimensional modeling. Icarus, 2016, 267, 51-63.	2.5	26
59	Internal structure of a coronal mass ejection revealed by Akatsuki radio occultation observations. Journal of Geophysical Research: Space Physics, 2015, 120, 5318-5328.	2.4	11
60	Long-term variations of the UV contrast on Venus observed by the Venus Monitoring Camera on board Venus Express. Icarus, 2015, 253, 1-15.	2.5	36
61	Vertical propagation of planetary-scale waves in variable background winds in the upper cloud region of Venus. Icarus, 2015, 248, 560-568.	2.5	31
62	Vertical Wavenumber Spectra of Gravity Waves in the Venus Atmosphere Obtained from Venus Express Radio Occultation Data: Evidence for Saturation. Journals of the Atmospheric Sciences, 2015, 72, 2318-2329.	1.7	28
63	Venus' clouds as inferred from the phase curves acquired by IR1 and IR2 on board Akatsuki. Icarus, 2015, 248, 213-220.	2.5	13
64	OUTFLOW STRUCTURE OF THE QUIET SUN CORONA PROBED BY SPACECRAFT RADIO SCINTILLATIONS IN STRONG SCATTERING. Astrophysical Journal, 2014, 788, 117.	4.5	31
65	RADIAL DISTRIBUTION OF COMPRESSIVE WAVES IN THE SOLAR CORONA REVEALED BY <i>AKATSUKI </i> RADIO OCCULTATION OBSERVATIONS. Astrophysical Journal, 2014, 797, 51.	4.5	40
66	ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. II. LAMB, SURFACE, AND CENTRIFUGAL WAVES. Astrophysical Journal, Supplement Series, 2014, 213, 18.	7.7	34
67	Return to Venus of the Japanese Venus Climate Orbiter AKATSUKI. Acta Astronautica, 2014, 93, 384-389.	3.2	24
68	Cloud top structure of Venus revealed by Subaru/COMICS mid-infrared images. Icarus, 2014, 243, 386-399.	2,5	16
69	ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. I. ACOUSTIC AND INERTIA-GRAVITY WAVES. Astrophysical Journal, Supplement Series, 2014, 213, 17.	7.7	30
70	Inverse insolation dependence of Venus' cloud-level convection. Icarus, 2014, 228, 181-188.	2.5	47
71	A method to estimate optical distortion using planetary images. Planetary and Space Science, 2013, 86, 86-90.	1.7	8
72	Longâ€ŧerm variation in the cloudâ€ŧracked zonal velocities at the cloud top of Venus deduced from Venus Express VMC images. Journal of Geophysical Research E: Planets, 2013, 118, 37-46.	3.6	67

#	Article	IF	CITATIONS
73	Vertical Wavenumber Spectra of Gravity Waves in the Martian Atmosphere Obtained from Mars Global Surveyor Radio Occultation Data. Journals of the Atmospheric Sciences, 2012, 69, 2906-2912.	1.7	33
74	Small-scale temperature fluctuations seen by the VeRa Radio Science Experiment on Venus Express. Icarus, 2012, 221, 471-480.	2.5	55
75	Automated cloud tracking system for the Akatsuki Venus Climate Orbiter data. Icarus, 2012, 217, 661-668.	2.5	30
76	Characteristic features in Venus' nightside cloud-top temperature obtained by Akatsuki/LIR. Icarus, 2012, 219, 502-504.	2.5	13
77	Horizontal structure of planetary-scale waves at the cloud top of Venus deduced from Galileo SSI images with an improved cloud-tracking technique. Planetary and Space Science, 2012, 60, 207-216.	1.7	43
78	Overview of Venus orbiter, Akatsuki. Earth, Planets and Space, 2011, 63, 443-457.	2.5	72
79	LIR: Longwave Infrared Camera onboard the Venus orbiter Akatsuki. Earth, Planets and Space, 2011, 63, 1009-1018.	2.5	47
80	Radio occultation experiment of the Venus atmosphere and ionosphere with the Venus orbiter Akatsuki. Earth, Planets and Space, 2011, 63, 493-501.	2.5	25
81	Properties of solar wind turbulence from radio occultation experiments with the NOZOMI spacecraft. Astronomy Reports, 2010, 54, 1032-1041.	0.9	7
82	Studying the Lunar Ionosphere with SELENE Radio Science Experiment. Space Science Reviews, 2010, 154, 305-316.	8.1	18
83	Lightning Detection by LAC Onboard the Japanese Venus Climate Orbiter, Planet-C. Space Science Reviews, 2008, 137, 317-334.	8.1	23
84	Planet-C: Venus Climate Orbiter mission of Japan. Planetary and Space Science, 2007, 55, 1831-1842.	1.7	67
85	The structure of Venus' middle atmosphere and ionosphere. Nature, 2007, 450, 657-660.	27.8	109
86	Longwave Infrared Camera onboard the Venus Climate Orbiter. Advances in Space Research, 2007, 40, 861-868.	2.6	32
87	Low temperature direct bonding of flip-chip mounting VCSEL to Si substrate. , 2006, , .		0
88	Meridional Propagation of Planetary-Scale Waves in Vertical Shear: Implication for the Venus Atmosphere. Journals of the Atmospheric Sciences, 2006, 63, 1623-1636.	1.7	34
89	Radio science investigations by VeRa onboard the Venus Express spacecraft. Planetary and Space Science, 2006, 54, 1315-1335.	1.7	80
90	Phase scintillation observation during coronal sounding experiments with NOZOMI spacecraft. Astronomy and Astrophysics, 2005, 439, 1165-1169.	5.1	20

#	Article	IF	CITATIONS
91	Polynuclear growth model with external source and random matrix model with deterministic source. Physical Review E, 2005, 71, 041606.	2.1	16
92	Fluctuations of the One-Dimensional Polynuclear Growth Model in Half-Space. Journal of Statistical Physics, 2004, 115, 749-803.	1.2	54
93	The Lateral Transport of Zonal Momentum Due to Kelvin Waves in a Meridional Circulation. Journals of the Atmospheric Sciences, 2004, 61, 1966-1975.	1.7	7
94	Microphysics of Venusian Clouds in Rising Tropical Air. Journals of the Atmospheric Sciences, 2001, 58, 3597-3612.	1.7	57
95	Venus cloud formation in the meridional circulation. Journal of Geophysical Research, 1998, 103, 31349-31366.	3.3	43
96	Momentum balance of the Venusian midlatitude mesosphere. Journal of Geophysical Research, 1997, 102, 6615-6620.	3.3	25
97	A Sensitivity Study to Infer Tropospheric Ozone from Atmospheric Thermal Emission at 9.6μm Wavelength Measured with a Nadir View from a Satellite. Journal of the Meteorological Society of Japan, 1995, 73, 255-258.	1.8	0
98	Radiative damping of gravity waves in the terrestrial planetary atmospheres. Geophysical Research Letters, 1995, 22, 267-270.	4.0	22
99	Gravity Wave Characteristics Derived from Structured Atomic Oxygen Profile and Multiple Es Layers Journal of Geomagnetism and Geoelectricity. 1995, 47, 961-972.	0.9	5