
Stephanie Ruf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6926517/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Riboswitch-mediated inducible expression of an astaxanthin biosynthetic operon in plastids. Plant Physiology, 2022, 188, 637-652.	4.8	20
2	Efficient control of western flower thrips by plastid-mediated RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120081119.	7.1	26
3	Improving plant drought tolerance and growth under water limitation through combinatorial engineering of signalling networks. Plant Biotechnology Journal, 2021, 19, 74-86.	8.3	31
4	Lycopene β-cyclase expression influences plant physiology, development, and metabolism in tobacco plants. Journal of Experimental Botany, 2021, 72, 2544-2569.	4.8	21
5	Correction of frameshift mutations in the <i>atpB</i> gene by translational recoding in chloroplasts of <i>Oenothera</i> and tobacco. Plant Cell, 2021, 33, 1682-1705.	6.6	6
6	Chloroplast Transformation in <i>Arabidopsis</i> . Current Protocols, 2021, 1, e103.	2.9	8
7	Contributions of the international plant science community to the fight against infectious diseases in humans—part 2: Affordable drugs in edible plants for endemic and reâ€emerging diseases. Plant Biotechnology Journal, 2021, 19, 1921-1936.	8.3	31
8	Contributions of the international plant science community to the fight against human infectious diseases – part 1: epidemic and pandemic diseases. Plant Biotechnology Journal, 2021, 19, 1901-1920.	8.3	44
9	Knockdown of the plastid-encoded acetyl-CoA carboxylase gene uncovers functions in metabolism and development. Plant Physiology, 2021, 185, 1091-1110.	4.8	15
10	Plastid Transformation in Tomato: A Vegetable Crop and Model Species. Methods in Molecular Biology, 2021, 2317, 217-228.	0.9	2
11	The availability of neither D2 nor CP43 limits the biogenesis of photosystem II in tobacco. Plant Physiology, 2021, 185, 1111-1130.	4.8	6
12	Multi-gene metabolic engineering of tomato plants results in increased fruit yield up to 23%. Scientific Reports, 2020, 10, 17219.	3.3	15
13	The Functions of Chloroplast Glutamyl-tRNA in Translation and Tetrapyrrole Biosynthesis. Plant Physiology, 2020, 183, 263-276.	4.8	13
14	A highly efficient sulfadiazine selection system for the generation of transgenic plants and algae. Plant Biotechnology Journal, 2019, 17, 638-649.	8.3	41
15	High-efficiency generation of fertile transplastomic Arabidopsis plants. Nature Plants, 2019, 5, 282-289.	9.3	65
16	Stabilization and translation of synthetic operonâ€derived <scp>mRNA</scp> s in chloroplasts by sequences representing <scp>PPR</scp> proteinâ€binding sites. Plant Journal, 2018, 94, 8-21.	5.7	40
17	Horizontal Transfer of a Synthetic Metabolic Pathway between Plant Species. Current Biology, 2017, 27, 3034-3041.e3.	3.9	62
18	The plastid-encoded Psal subunit stabilizes photosystem I during leaf senescence in tobacco. Journal of Experimental Botany, 2017, 68, 1137-1155.	4.8	31

STEPHANIE RUF

#	Article	IF	CITATIONS
19	Loopholes for smuggling DNA into pollen. Nature Plants, 2017, 3, 918-919.	9.3	7
20	Shine-Dalgarno Sequences Play an Essential Role in the Translation of Plastid mRNAs in Tobacco. Plant Cell, 2017, 29, 3085-3101.	6.6	40
21	A bifunctional aminoglycoside acetyltransferase/phosphotransferase conferring tobramycin resistance provides an efficient selectable marker for plastid transformation. Plant Molecular Biology, 2017, 93, 269-281.	3.9	20
22	Production of dengue virus envelope protein domain III-based antigens in tobacco chloroplasts using inducible and constitutive expression systems. Plant Molecular Biology, 2016, 91, 497-512.	3.9	33
23	Transfer of the cytochrome P450-dependent dhurrin pathway from <i>Sorghum bicolor</i> into <i>Nicotiana tabacum</i> chloroplasts for light-driven synthesis. Journal of Experimental Botany, 2016, 67, 2495-2506.	4.8	57
24	Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science, 2015, 347, 991-994.	12.6	353
25	Plastid Transformation in Tomato. Methods in Molecular Biology, 2014, 1132, 265-276.	0.9	11
26	Synthetic Lethality in the Tobacco Plastid Ribosome and Its Rescue at Elevated Growth Temperatures. Plant Cell, 2014, 26, 765-776.	6.6	24
27	Dual targeting of a mature plastoglobulin/fibrillin fusion protein to chloroplast plastoglobules and thylakoids in transplastomic tobacco plants. Plant Molecular Biology, 2013, 81, 13-25.	3.9	43
28	Design of chimeric expression elements that confer highâ€ l evel gene activity in chromoplasts. Plant Journal, 2013, 73, 368-379.	5.7	53
29	Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E623-32.	7.1	179
30	Reverse genetics in complex multigene operons by coâ€ŧransformation of the plastid genome and its application to the open reading frame previously designated <i>psbN</i> . Plant Journal, 2013, 75, 1062-1074.	5.7	33
31	The Contributions of Wobbling and Superwobbling to the Reading of the Genetic Code. PLoS Genetics, 2012, 8, e1003076.	3.5	90
32	The Plastid Genome-Encoded Ycf4 Protein Functions as a Nonessential Assembly Factor for Photosystem I in Higher Plants Â. Plant Physiology, 2012, 159, 579-591.	4.8	79
33	Identification of <i>cis</i> â€elements conferring high levels of gene expression in nonâ€green plastids. Plant Journal, 2012, 72, 115-128.	5.7	60
34	In Vivo Analysis of RNA Editing in Plastids. Methods in Molecular Biology, 2011, 718, 137-150.	0.9	7
35	Optimization of the expression of the HIV fusion inhibitor cyanovirinâ€N from the tobacco plastid genome. Plant Biotechnology Journal, 2011, 9, 599-608.	8.3	57
36	Biolistic coâ€transformation of the nuclear and plastid genomes. Plant Journal, 2011, 67, 941-948.	5.7	33

STEPHANIE RUF

#	Article	IF	CITATIONS
37	Chloramphenicol acetyltransferase as selectable marker for plastid transformation. Plant Molecular Biology, 2011, 76, 443-451.	3.9	60
38	Y3IP1, a Nucleus-Encoded Thylakoid Protein, Cooperates with the Plastid-Encoded Ycf3 Protein in Photosystem I Assembly of Tobacco and <i>Arabidopsis</i> Â Â. Plant Cell, 2010, 22, 2838-2855.	6.6	72
39	Insensitivity of chloroplast gene expression to DNA methylation. Molecular Genetics and Genomics, 2009, 282, 17-24.	2.1	26
40	Isolation of highly active photosystem II core complexes with a His-tagged Cyt b559 subunit from transplastomic tobacco plants. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 1501-1509.	1.0	23
41	Faithful transcription initiation from a mitochondrial promoter in transgenic plastids. Nucleic Acids Research, 2007, 35, 7256-7266.	14.5	20
42	Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant Journal, 2007, 49, 276-288.	5.7	182
43	Determining the transgene containment level provided by chloroplast transformation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6998-7002.	7.1	226
44	A leaf-based regeneration and transformation system for maize (Zea mays L.). Transgenic Research, 2007, 16, 437-448.	2.4	59
45	Tobacco plastid ribosomal protein S18 is essential for cell survival. Nucleic Acids Research, 2006, 34, 4537-4545.	14.5	170
46	Constancy of organellar genome copy numbers during leaf development and senescence in higher plants. Molecular Genetics and Genomics, 2006, 275, 185-192.	2.1	52
47	Identification of small non-coding RNAs from mitochondria and chloroplasts. Nucleic Acids Research, 2006, 34, 3842-3852.	14.5	161
48	Plastid protein synthesis is required for plant development in tobacco. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15730-15735.	7.1	108
49	High-frequency gene transfer from the chloroplast genome to the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8828-8833.	7.1	274
50	Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nature Biotechnology, 2001, 19, 870-875.	17.5	453
51	The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant Journal, 2000, 22, 97-104.	5.7	341
52	A Small Chloroplast-Encoded Protein as a Novel Architectural Component of the Light-Harvesting Antenna. Journal of Cell Biology, 2000, 149, 369-378.	5.2	78
53	Targeted Inactivation of a Tobacco Intron–containing Open Reading Frame Reveals a Novel Chloroplast-encoded Photosystem I–related Gene. Journal of Cell Biology, 1997, 139, 95-102.	5.2	145