
Dave Kelly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6926339/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel <i>TFL1</i> gene induces flowering in the mast seeding alpine snow tussock, <i>Chionochloa pallens</i> (Poaceae). Molecular Ecology, 2022, 31, 822-838.	3.9	2
2	Invasive species and thermal squeeze: distribution of two invasive predators and drivers of ship rat (Rattus rattus) invasion in mid-elevation Fuscospora forest. Biological Invasions, 2022, 24, 2547-2559.	2.4	3
3	Mast seeding: the devil (and the delight) is in the detail. New Phytologist, 2021, 229, 1829-1831.	7.3	6
4	Climate warming causes mast seeding to break down by reducing sensitivity to weather cues. Global Change Biology, 2021, 27, 1952-1961.	9.5	29
5	Molecular control of the floral transition in the mast seeding plant Celmisia lyallii (Asteraceae). Molecular Ecology, 2021, 30, 1846-1863.	3.9	9
6	Effects of changes in bird community composition and species abundance on plant reproduction, through pollination and seed dispersal. Ibis, 2021, 163, 875-889.	1.9	4
7	Excluding mammalian predators increases bird densities and seed dispersal in fenced ecosanctuaries. Ecology, 2021, 102, e03340.	3.2	5
8	Delayed fertilization facilitates flowering time diversity in Fagaceae. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20210115.	4.0	11
9	Studying the genetic basis of masting. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20210116.	4.0	15
10	Big impacts from small abstractions: The effects of surface water abstraction on freshwater fish assemblages. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 159-172.	2.0	7
11	Climate Change Strengthens Selection for Mast Seeding in European Beech. Current Biology, 2020, 30, 3477-3483.e2.	3.9	31
12	Nutrient scarcity cannot cause mast seeding. Nature Plants, 2020, 6, 760-762.	9.3	13
13	Does masting scale with plant size? High reproductive variability and low synchrony in small and unproductive individuals. Annals of Botany, 2020, 126, 971-979.	2.9	28
14	Do body mass and habitat factors predict trophic position in temperate stream fishes?. Freshwater Science, 2020, 39, 405-414.	1.8	4
15	Climate warming disrupts mast seeding and its fitness benefits in European beech. Nature Plants, 2020, 6, 88-94.	9.3	86
16	Molecular control of masting: an introduction to an epigenetic summer memory. Annals of Botany, 2020, 125, 851-858.	2.9	11
17	Long seed dispersal distances by an inquisitive flightless rail (<i>Gallirallus australis</i>) are reduced by interaction with humans. Royal Society Open Science, 2019, 6, 190397.	2.4	7
18	An avian seed dispersal paradox: New Zealand's extinct megafaunal birds did not disperse large seeds. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180352.	2.6	12

#	Article	IF	CITATIONS
19	Effects of seed dispersal and microsite features on seedling establishment in New Zealand fleshyâ€fruited perennial mountain plants. Austral Ecology, 2018, 43, 775-785.	1.5	2
20	Responsiveness of fish mass–abundance relationships and trophic metrics to flood disturbance, stream size, land cover and predator taxa presence in headwater streams. Ecology of Freshwater Fish, 2018, 27, 999-1014.	1.4	14
21	Species-specific male pollinators found for three native New Zealand greenhood orchids (Pterostylis) Tj ETQq1	1 0.784314 0.6	4 rgBT /Overlo
22	Introduction of mammalian seed predators and the loss of an endemic flightless bird impair seed dispersal of the New Zealand tree <i>Elaeocarpus dentatus</i> . Ecology and Evolution, 2018, 8, 5992-6004.	1.9	14
23	Food plants and foraging distances for the native bee Lasioglossum sordidum in Christchurch Botanic Gardens. , 2018, 42, .		4
24	The effects of single aerial 1080 possum-control operations on common forest birds in the South Island, New Zealand. , 2018, 42, .		7
25	Do local landscape features affect wild pollinator abundance, diversity and community composition on Canterbury farms?. , 2018, 42, .		5
26	Longâ€distance dispersal of nonâ€native pine bark beetles from host resources. Ecological Entomology, 2017, 42, 173-183.	2.2	20
27	Interspecies interference and monitoring duration affect detection rates in chew cards. Austral Ecology, 2017, 42, 522-532.	1.5	9
28	Olfactory Cues, Visual Cues, and Semiochemical Diversity Interact During Host Location by Invasive Forest Beetles. Journal of Chemical Ecology, 2017, 43, 17-25.	1.8	43
29	Trends in the detections of a large frugivore (Hemiphaga novaeseelandiae) and fleshy-fruited seed dispersal over three decades. , 2017, , 41-46.		3
30	Quantifying seed dispersal by birds and possums in a lowland New Zealand forest. , 2017, 41, .		4
31	Mechanisms of mast seeding: resources, weather, cues, and selection. New Phytologist, 2016, 212, 546-562.	7.3	245
32	Introduced blackbirds and song thrushes: useful substitutes for lost mid-sized native frugivores, or weed vectors?. , 2016, 40, 80-87.		14
33	The compounding effects of high pollen limitation, selfing rates and inbreeding depression leave a New Zealand tree with few viable offspring. Annals of Botany, 2015, 116, 833-843.	2.9	17
34	Modelling <i>Tradescantia fluminensis</i> to assess long term survival. PeerJ, 2015, 3, e1013.	2.0	3
35	Unrecognized impact of a biocontrol agent on the spread rate of an invasive thistle. Ecological Applications, 2014, 24, 1178-1187.	3.8	25
36	Of mast and mean: differentialâ€ŧemperature cue makes mast seeding insensitive to climate change. Ecology Letters, 2013, 16, 90-98.	6.4	195

#	Article	IF	CITATIONS
37	Flowering in snow tussock (Chionochloa spp.) is influenced by temperature and hormonal cues. Functional Plant Biology, 2012, 39, 38.	2.1	18
38	Dependence on sunbird pollination for fruit set in three West African montane mistletoe species. Journal of Tropical Ecology, 2012, 28, 205-213.	1.1	12
39	Do larger frugivores move seeds further? Body size, seed dispersal distance, and a case study of a large, sedentary pigeon. Journal of Biogeography, 2012, 39, 1973-1983.	3.0	99
40	Alpine flora may depend on declining frugivorous parrot for seed dispersal. Biological Conservation, 2012, 147, 133-142.	4.1	49
41	An episodic model of honeydew production in scale insects. Austral Ecology, 2012, 37, 308-312.	1.5	0
42	Abundance, phenology and impact of biocontrol agents on nodding thistle (<i>Carduus nutans</i>) in Canterbury 35 years into a biocontrol programme. New Zealand Journal of Agricultural Research, 2011, 54, 1-13.	1.6	5
43	Frugivore loss limits recruitment of large-seeded trees. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 3345-3354.	2.6	121
44	The Need to Quantify Ecosystem Services Provided by Birds. Auk, 2011, 128, 1-14.	1.4	256
45	Futile Selfing in the Trees <i>Fuchsia excorticata</i> (Onagraceae) and <i>Sophora microphylla</i> (Fabaceae): Inbreeding Depression over 11 Years. International Journal of Plant Sciences, 2011, 172, 191-198.	1.3	32
46	Physical and anthropogenic factors predict distribution of the invasive weed <i>Tradescantia fluminensis</i> . Austral Ecology, 2011, 36, 621-627.	1.5	6
47	Testing for Janzen-Connell Effects in a West African Montane Forest. Biotropica, 2011, 43, 77-83.	1.6	22
48	Cascading Effects of Bird Functional Extinction Reduce Pollination and Plant Density. Science, 2011, 331, 1068-1071.	12.6	235
49	Importance of individual and environmental variation for invasive species spread: a spatial integral projection model. Ecology, 2011, 92, 86-97.	3.2	67
50	Optimal management strategies to control local population growth or population spread may not be the same. Ecological Applications, 2010, 20, 1148-1161.	3.8	63
51	Shipment and storage effects on the terminal velocity of seeds. Ecological Research, 2010, 25, 83-92.	1.5	9
52	The parasitoids of seed predators attacking snow tussocks, <i>Chionochloa</i> spp. (Poaceae). New Zealand Journal of Zoology, 2010, 37, 19-33.	1.1	3
53	Mast seeding, predator satiation, and temperature cues in <i>Chionochloa</i> (Poaceae). Population Ecology, 2008, 50, 343-355.	1.2	51
54	An intercontinental comparison of the dynamic behavior of mast seeding communities. Population Ecology, 2008, 50, 329-342.	1.2	54

#	Article	IF	CITATIONS
55	Dispersal and demography contributions to population spread of <i>Carduus nutans </i> in its native and invaded ranges. Journal of Ecology, 2008, 96, 687-697.	4.0	77
56	Assessing pollination and fruit dispersal in <i>Fuchsia excorticata</i> (Onagraceae). New Zealand Journal of Botany, 2008, 46, 299-314.	1.1	14
57	Description, phenology and biology of <i>Zelostemma chionochloae</i> Buhl sp. nov., a platygastrid parasitoid of <i>Eucalyptodiplosis chionochloae</i> (Diptera: Cecidomyiidae) in New Zealand. New Zealand Journal of Zoology, 2008, 35, 255-264.	1.1	6
58	Separating host-tree and environmental determinants of honeydew production by Ultracoelostoma scale insects in a Nothofagus forest. Ecological Entomology, 2007, 32, 338-348.	2.2	8
59	Description of <i>Eucalyptodiplosis chionochloae</i> sp. nov., a cecidomyiid feeding on inflorescences of <i>Chionochloa</i> (Poaceae) in New Zealand. New Zealand Journal of Zoology, 2007, 34, 107-115.	1.1	20
60	What limits a rare alpine plant species? Comparative demography of three endemic species of Myosotis (Boraginaceae). Austral Ecology, 2007, 32, 155-168.	1.5	16
61	Mistletoe fruit-colour polymorphism and differential success in a habitat mosaic. Austral Ecology, 2007, 32, 509-514.	1.5	6
62	ls the pollenâ€ i imited mistletoe <i>Peraxilla tetrapetala</i> (Loranthaceae) also seed limited?. Austral Ecology, 2007, 32, 850-857.	1.5	21
63	The carbon costs for host trees of a phloem-feeding herbivore. Journal of Ecology, 2007, 95, 603-613.	4.0	39
64	Does Height Off the Ground Affect Bird Visitation and Fruit Set in the Pollen-Limited Mistletoe Peraxilla tetrapetala (Loranthaceae)?. Biotropica, 2007, 40, 070602084016002-???.	1.6	2
65	The architecture of New Zealand's divaricate shrubs in relation to light adaptation. New Zealand Journal of Botany, 2006, 44, 171-186.	1.1	21
66	Assessing the benefits of frugivory for seed germination: the importance of the deinhibition effect. Functional Ecology, 2006, 20, 58-66.	3.6	164
67	Testing the resource-matching hypothesis in the mast seeding tree Nothofagus truncata (Fagaceae). Austral Ecology, 2006, 31, 366-375.	1.5	104
68	Effectiveness of short-tongued bees as pollinators of apparently ornithophilous New Zealand mistletoes. Austral Ecology, 2005, 30, 298-309.	1.5	34
69	Forest edges benefit adults, but not seedlings, of the mistletoe Alepis flavida (Loranthaceae). Journal of Ecology, 2005, 93, 79-86.	4.0	23
70	CONTEXT-DEPENDENT BIOLOGICAL CONTROL OF AN INVASIVE THISTLE. Ecology, 2005, 86, 3174-3181.	3.2	114
71	Is dispersal easier than pollination? Two tests in New Zealand Loranthaceae. New Zealand Journal of Botany, 2004, 42, 89-103.	1.1	54
72	Modeling for Management of Invasive Species: Musk Thistle (Carduus nutans) in New Zealand ¹ . Weed Technology, 2004, 18, 1338-1341.	0.9	24

#	Article	IF	CITATIONS
73	A revised Little Ice Age chronology of the Franz Josef Glacier, Westland, New Zealand. Journal of the Royal Society of New Zealand, 2004, 34, 381-394.	1.9	31
74	Population dynamics in mature stands of Hieracium pilosella in New Zealand. Plant Ecology, 2003, 166, 263-273.	1.6	10
75	Measuring mast seeding behavior: relationships among population variation, individual variation and synchrony. Journal of Theoretical Biology, 2003, 224, 107-114.	1.7	43
76	Dissecting components of population-level variation in seed production and the evolution of masting behavior. Oikos, 2003, 102, 581-591.	2.7	134
77	Motivation models fail to explain oviposition behaviour in the diamondback moth. Physiological Entomology, 2003, 28, 199-208.	1.5	12
78	Pollinator behaviour, not increased resources, boosts seed set on forest edges in a New Zealand Loranthaceous mistletoe. New Zealand Journal of Botany, 2003, 41, 277-286.	1.1	30
79	Snow Tussocks, Chaos, and the Evolution of Mast Seeding. American Naturalist, 2002, 160, 44-59.	2.1	135
80	MASTING BY EIGHTEEN NEW ZEALAND PLANT SPECIES: THE ROLE OF TEMPERATURE AS A SYNCHRONIZING CUE. Ecology, 2002, 83, 1214-1225.	3.2	254
81	Mast Seeding in Perennial Plants: Why, How, Where?. Annual Review of Ecology, Evolution, and Systematics, 2002, 33, 427-447.	6.7	795
82	Predator-mediated apparent competition between an introduced grass, Agrostis capillaris , and a native fern, Botrychium australe (Ophioglossaceae), in New Zealand. Oikos, 2002, 96, 102-109.	2.7	38
83	Moa ghosts exorcised? New Zealand's divaricate shrubs avoid photoinhibition. Functional Ecology, 2002, 16, 232-240.	3.6	58
84	Photoinhibition, acclimation and New Zealand's divarication plants: a reply to Lusk. Functional Ecology, 2002, 16, 860-862.	3.6	2
85	EVALUATING THE WIND POLLINATION BENEFITS OF MAST SEEDING. Ecology, 2001, 82, 117-126.	3.2	181
86	Pollinator limitation of seed set inFuchsia perscandens(Onagraceae) on Banks Peninsula, South Island, New Zealand. New Zealand Journal of Botany, 2001, 39, 559-565.	1.1	18
87	Heterogeneity in vertebrate and invertebrate herbivory and its consequences for New Zealand mistletoes. Austral Ecology, 2001, 26, 571-581.	1.5	20
88	Biology of insects that feed in the inflorescences of <i>Chionochloa</i> (Poaceae) in New Zealand and their relevance to mast seeding. New Zealand Journal of Zoology, 2001, 28, 89-101.	1.1	21
89	Evaluating the Wind Pollination Benefits of Mast Seeding. Ecology, 2001, 82, 117.	3.2	3
90	Predator satiation and extreme mast seeding in 11 species of Chionochloa (Poaceae). Oikos, 2000, 90, 477-488.	2.7	115

#	Article	IF	CITATIONS
91	Limited forest fragmentation improves reproduction in the declining New Zealand mistletoe Peraxilla tetrapetala (Loranthaceae). , 2000, , 241-252.		12
92	The importance of dispersal, disturbance, and competition for exotic plant invasions in Arthur's Pass National Park, New Zealand. New Zealand Journal of Botany, 2000, 38, 451-468.	1.1	42
93	Why is mast seeding in <i>Chionochloa rubra</i> (Poaceae) most extreme where seed predation is lowest?. New Zealand Journal of Botany, 2000, 38, 221-233.	1.1	18
94	Seed production in <i>Festuca novaeâ€zelandiae:</i> The effect of altitude and preâ€dispersal predation. New Zealand Journal of Botany, 1999, 37, 503-509.	1.1	15
95	Effects of Pollinator Loss on Endemic New Zealand Mistletoes (Loranthaceae). Conservation Biology, 1999, 13, 499-508.	4.7	79
96	Effect of climate change on mastâ€seeding species: frequency of mass flowering and escape from specialist insect seed predators. Global Change Biology, 1998, 4, 591-596.	9.5	126
97	Mast seeding and Lyme disease. Trends in Ecology and Evolution, 1998, 13, 506.	8.7	0
98	Mast seeding and Lyme disease. Trends in Ecology and Evolution, 1998, 13, 506.	8.7	5
99	ESTIMATING BIOCONTROL AGENT IMPACT WITH MATRIX MODELS:CARDUUS NUTANSIN NEW ZEALAND. , 1998, 8, 824-832.		221
100	Can wind pollination provide a selective benefit to mast seeding inChionochloa macra(Poaceae) at Mt Hutt, New Zealand?. New Zealand Journal of Botany, 1998, 36, 637-643.	1.1	12
101	Self-compatibility in <i>Chionochloa pallens </i> and <i>C. macra </i> (Poaceae) confirmed by hand pollination of excised styles. New Zealand Journal of Botany, 1997, 35, 259-262.	1.1	5
102	Explosive flowering, nectar production, breeding systems, and pollinators of New Zealand mistletoes (Loranthaceae). New Zealand Journal of Botany, 1997, 35, 345-360.	1.1	43
103	Quantifying the Benefits of Mast Seeding on Predator Satiation and Wind Pollination in Chionochloa pallens (Poaceae). Oikos, 1997, 78, 143.	2.7	88
104	Quantifying the Impact of Competition and Spatial Heterogeneity on the Structure and Dynamics of a Four-Species Guild of Winter Annuals. American Naturalist, 1996, 147, 1-32.	2.1	200
105	The birds and the bees. Nature, 1996, 384, 615-615.	27.8	19
106	Survival and growth responses of native and introduced vines in New Zealand to light availability. New Zealand Journal of Botany, 1996, 34, 389-400.	1.1	49
107	Explosive New Zealand mistletoe. Nature, 1995, 378, 766-766.	27.8	31
108	Demography and conservation of <i>Botrychium australe</i> , a peculiar, sparse mycorrhizal fern. New Zealand Journal of Botany, 1994, 32, 393-400.	1.1	21

#	Article	IF	CITATIONS
109	The evolutionary ecology of mast seeding. Trends in Ecology and Evolution, 1994, 9, 465-470.	8.7	855
110	Special section—The Burrows Symposium. New Zealand Journal of Botany, 1994, 32, 345-347.	1.1	0
111	Towards a numerical definition for divaricate (interlaced small-leaved) shrubs. New Zealand Journal of Botany, 1994, 32, 509-518.	1.1	29
112	The reproductive biology of the New Zealand flora. Trends in Ecology and Evolution, 1993, 8, 442-447.	8.7	128
113	Mast seeding of <i>Chionochloa</i> (Poaceae) and pre-dispersal seed predation by a specialist fly (<i>Diplotoxa</i> , Diptera: Chloropidae). New Zealand Journal of Botany, 1992, 30, 125-133.	1.1	37
114	Water potentials in native woody vegetation during and after a drought in Canterbury. New Zealand Journal of Botany, 1992, 30, 81-94.	1.1	14
115	Vegetation of New Zealand. Trends in Ecology and Evolution, 1992, 7, 208-209.	8.7	0
116	Some woody vegetation samples may be stored for 24 hours without affecting measured water potential. New Zealand Journal of Botany, 1991, 29, 345-347.	1.1	1
117	Honeydew density in mixedNothofagusforest, Westland, New Zealand. New Zealand Journal of Botany, 1990, 28, 53-58.	1.1	13
118	On strict and facultative biennials. Oecologia, 1985, 67, 292-294.	2.0	53
119	Why are Biennials so Maligned?. American Naturalist, 1985, 125, 473-479.	2.1	19
120	SEEDS PER FRUIT AS A FUNCTION OF FRUITS PER PLANT IN 'DEPAUPERATE' ANNUALS AND BIENNIALS. New Phytologist, 1984, 96, 103-114.	7.3	30
121	Tradescantia fluminensisin a Manawatu (New Zealand) forest: I. Growth and effects on regeneration. New Zealand Journal of Botany, 1984, 22, 393-397.	1.1	37
122	<i>Tradescantia fluminensis</i> in a Manawatu (New Zealand) forest: II. Management by herbicides. New Zealand Journal of Botany, 1984, 22, 399-402.	1.1	7
123	Does habitat manipulation enhance native woody seedling recruitment in a dryland river floodplain?. New Zealand Journal of Ecology, 0, , .	1.1	0
124	Effects of competition and habitat heterogeneity on nativeâ€exotic plant richness relationships across spatial scales. Diversity and Distributions, 0, , .	4.1	2