Thomas Garm Pedersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6925151/publications.pdf

Version: 2024-02-01

215 papers

6,556 citations

94433 37 h-index 76900 **74** g-index

218 all docs

218 docs citations

218 times ranked

7433 citing authors

#	Article	IF	CITATIONS
1	An exact and compact formula for the optical intersubband response of finite-barrier quantum wells, wires and dots. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 423, 127821.	2.1	1
2	Exciton absorption, band structure, and optical emission in biased bilayer graphene. Physical Review B, 2022, 105, .	3.2	6
3	On the Two-Dimensional Quantum Confined Stark Effect in Strong Electric Fields. SIAM Journal on Mathematical Analysis, 2022, 54, 2114-2127.	1.9	2
4	lonization rate and Stark shift of a one-dimensional model of the hydrogen molecular ion. European Journal of Physics, 2021, 42, 025403.	0.6	1
5	Plasmons and magnetoplasmon resonances in nanorings. Physical Review B, 2021, 103, .	3.2	3
6	Two-Dimensional Materials with Giant Optical Nonlinearities near the Theoretical Upper Limit. ACS Nano, 2021, 15, 7155-7167.	14.6	29
7	Optical emission from light-like and particle-like excitons in monolayer transition metal dichalcogenides. Physical Review B, 2021, 103, .	3.2	9
8	Calculation of the nonlinear response functions of intraexciton transitions in two-dimensional transition metal dichalcogenides. Physical Review B, 2021, 103, .	3.2	8
9	Recent progress of the Computational 2D Materials Database (C2DB). 2D Materials, 2021, 8, 044002.	4.4	218
10	Excitonic two-photon absorption in monolayer transition metal dichalcogenides: Impact of screening and trigonal warping. Physical Review B, 2021, 104, .	3.2	0
11	Dynamic polarizability of low-dimensional excitons. Physical Review B, 2021, 104, .	3.2	5
12	Efficient ionization of two-dimensional excitons by intense single-cycle terahertz pulses. Physical Review B, 2021, 104, .	3.2	0
13	Nonlinear excitonic spin Hall effect in monolayer transition metal dichalcogenides. 2D Materials, 2020, 7, 015003.	4.4	4
14	Magnetoplasmon resonances in nanoparticles. Physical Review B, 2020, 102, .	3.2	3
15	Anisotropic Stark shift, field-induced dissociation, and electroabsorption of excitons in phosphorene. Physical Review B, 2020, 102, .	3.2	10
16	A library of ab initio Raman spectra for automated identification of 2D materials. Nature Communications, 2020, 11, 3011.	12.8	43
17	Graphene fractals: Energy gap and spin polarization. Physical Review B, 2020, 101, .	3.2	6
18	Hypergeometric resummation approach to dissociation and Stark effect in non-rigid dipolar molecules. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 175101.	1.5	2

#	Article	IF	CITATIONS
19	Analytical quantitative semiclassical approach to the Lo Surdo–Stark effect and ionization in two-dimensional excitons. Physical Review B, 2020, 102, .	3.2	5
20	Finiteâ€Difference Timeâ€Domain Simulation of Strongâ€Field Ionization: A Perfectly Matched Layer Approach. Physica Status Solidi (B): Basic Research, 2020, 257, 1900467.	1.5	3
21	Interlayer excitons in van der Waals heterostructures: Binding energy, Stark shift, and field-induced dissociation. Scientific Reports, 2020, 10, 5537.	3.3	46
22	Theory of electron energy-loss spectroscopy in atomically thin metallic films. Physical Review Research, 2020, 2, .	3.6	6
23	Field-induced dissociation of two-dimensional excitons in transition metal dichalcogenides. Physical Review B, 2019, 100, .	3.2	21
24	Franz-Keldysh effect and electric field-induced second harmonic generation in graphene: From one-dimensional nanoribbons to two-dimensional sheet. Physical Review B, 2019, 99, .	3.2	2
25	Giant Stark effect in coupled quantum wells: Analytical model. Physical Review B, 2019, 100, .	3.2	3
26	Stark effect in spherical quantum dots. Physical Review A, 2019, 99, .	2.5	13
27	Yukawa model of screening in low-dimensional excitons: diagonalization, perturbation, variation, and resummation analysis. Journal of Physics Communications, 2019, 3, 035021.	1.2	1
28	Iterative approach to arbitrary nonlinear optical response functions of graphene. Physical Review B, 2019, 99, .	3.2	4
29	Tuning of impurity-bound interlayer complexes in a van der Waals heterobilayer. 2D Materials, 2019, 6, 035032.	4.4	17
30	Lithographic band structure engineering of graphene. Nature Nanotechnology, 2019, 14, 340-346.	31.5	82
31	Monolayer transition metal dichalcogenides in strong magnetic fields: Validating the Wannier model using a microscopic calculation. Physical Review B, 2019, 99, .	3.2	13
32	Plasmon enhanced light scattering into semiconductors by aperiodic metal nanowire arrays. Optics Express, 2019, 27, 14308.	3.4	2
33	Plasmons in ultra-thin gold slabs with quantum spill-out: Fourier modal method, perturbative approach, and analytical model. Optics Express, 2019, 27, 36941.	3.4	6
34	Magnetoexcitons and Faraday rotation in single-walled carbon nanotubes and graphene nanoribbons. Physical Review B, 2018, 97, .	3.2	8
35	Optical third harmonic generation in black phosphorus. Physical Review B, 2018, 97, .	3.2	15
36	Sum rules for zeros and intersections of Bessel functions from quantum mechanical perturbation theory. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 1837-1841.	2.1	4

#	Article	IF	CITATIONS
37	Dissociation of two-dimensional excitons in monolayer WSe2. Nature Communications, 2018, 9, 1633.	12.8	116
38	Quantum spill-out in few-nanometer metal gaps: Effect on gap plasmons and reflectance from ultrasharp groove arrays. Physical Review B, 2018, 97, .	3.2	22
39	Nonlinear optical response of doped monolayer and bilayer graphene: Length gauge tight-binding model. Physical Review B, 2018, 98, .	3.2	18
40	Linear and nonlinear optical and spin-optical response of gapped and proximitized graphene. Physical Review B, 2018, 98, .	3.2	7
41	Gauge invariance of excitonic linear and nonlinear optical response. Physical Review B, 2018, 97, .	3.2	25
42	Fast summation of divergent series and resurgent transseries from Meijer- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>G</mml:mi></mml:math> approximants. Physical Review D, 2018, 97, .	4.7	40
43	Quantum spill-out in few-nanometer metal gaps: Effect on gap plasmons and reflectance from ultrasharp groove arrays in silver. , 2018, , .		O
44	Model dielectric function for 2D semiconductors including substrate screening. Scientific Reports, 2017, 7, 39844.	3.3	100
45	High-order harmonic generation from gapped graphene: Perturbative response and transition to nonperturbative regime. Physical Review B, 2017, 95, .	3.2	45
46	Stark effect in finite-barrier quantum wells, wires, and dots. New Journal of Physics, 2017, 19, 043011.	2.9	10
47	Linear and nonlinear optical response of one-dimensional semiconductors: finite-size and Franz–Keldysh effects. Journal of Physics Condensed Matter, 2017, 29, 165702.	1.8	2
48	Excitonic optical response of carbon chains confined in single-walled carbon nanotubes. Physical Review B, 2017, 96, .	3.2	8
49	Layered van der Waals crystals with hyperbolic light dispersion. Nature Communications, 2017, 8, 320.	12.8	79
50	Stark effect and polarizability of graphene quantum dots. Physical Review B, 2017, 96, .	3.2	11
51	Electron trajectories and magnetotransport in nanopatterned graphene under commensurability conditions. Physical Review B, 2017, 96, .	3.2	18
52	Nonlocal plasmonic response of doped and optically pumped graphene, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2<td>l:m8.2<td>ทl:r<u>ช</u>รub></td></td></mml:mn></mml:msub></mml:math>	l:m 8. 2 <td>ทl:r<u>ช</u>รub></td>	ท l:r<u>ช</u>ร ub>
53	Linear and nonlinear optical response of crystals using length and velocity gauges: Effect of basis truncation. Physical Review B, 2017, 96, .	3.2	46
54	Analytical Dirac model of graphene rings, dots, and antidots in magnetic fields. Physical Review B, 2017, 95, .	3.2	15

#	Article	lF	CITATIONS
55	On the existence of impurity bound excitons in one-dimensional systems with zero range interactions. Journal of Mathematical Physics, 2017, 58, 052106.	1.1	1
56	Floquet-Bloch shifts in two-band semiconductors interacting with light. Physical Review A, 2017, 95, .	2.5	17
57	Nonlinear optical response of relativistic energy bands: Application to phosphorene. Physical Review B, 2017, 95, .	3.2	16
58	Optics of multiple grooves in metal: transition from high scattering to strong absorption. Journal of Nanophotonics, 2017, 11 , 1 .	1.0	4
59	Optics of multiple grooves in metal: transition from high scattering to strong absorption. , 2017, , .		O
60	Nonlinear photocurrents in two-dimensional systems based on graphene and boron nitride. Physical Review B, 2016, 94, .	3.2	34
61	Magnetic edge states and magnetotransport in graphene antidot barriers. Physical Review B, 2016, 94, .	3.2	9
62	Exciton Stark shift and electroabsorption in monolayer transition-metal dichalcogenides. Physical Review B, 2016, 94, .	3.2	61
63	Stark effect in low-dimensional hydrogen. Physical Review A, 2016, 93, .	2.5	36
64	Limitations of effective medium theory in multilayer graphite/hBN heterostructures. Physical Review B, $2016, 94, .$	3.2	13
65	Boron and nitrogen doping in graphene antidot lattices. Physical Review B, 2016, 93, .	3.2	7
66	Hypergeometric resummation of self-consistent sunset diagrams for steady-state electron-boson quantum many-body systems out of equilibrium. Physical Review B, 2016, 94, .	3.2	17
67	Exciton ionization in multilayer transition-metal dichalcogenides. New Journal of Physics, 2016, 18, 073043.	2.9	39
68	High-output LED-based light engine for profile lighting fixtures with high color uniformity using freeform reflectors. Applied Optics, 2016, 55, 1356.	2.1	3
69	Stability and magnetization of free-standing and graphene-embedded iron membranes. Physical Review B, 2015, 91, .	3.2	16
70	Intense and tunable second-harmonic generation in biased bilayer graphene. Physical Review B, 2015, 91,	3.2	39
71	Spin relaxation in hydrogenated graphene. Physical Review B, 2015, 92, .	3.2	15
72	Intraband effects in excitonic second-harmonic generation. Physical Review B, 2015, 92, .	3.2	55

#	Article	IF	CITATIONS
73	Excitonic lifetimes and optical response of carbon nanotubes modulated by electrostatic gating. Physical Review B, 2015, 92, .	3.2	1
74	Observation of excitonic resonances in the second harmonic spectrum of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2<td>nl:m8.2<td>ml:m8ub></td></td></mml:mn></mml:msub></mml:math>	n l:m8 .2 <td>ml:m8ub></td>	ml:m8ub>
75	Nonperturbative Quantum Physics from Low-Order Perturbation Theory. Physical Review Letters, 2015, 115, 143001.	7.8	51
76	Self-consistent model of edge doping in graphene. Physical Review B, 2015, 91, .	3.2	5
77	Bandgap scaling in bilayer graphene antidot lattices. Journal of Physics Condensed Matter, 2015, 27, 225502.	1.8	1
78	Analytical models of optical response in one-dimensional semiconductors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 1785-1790.	2.1	7
79	Directly patterned TiO2 nanostructures for efficient light harvesting in thin film solar cells. Journal Physics D: Applied Physics, 2015, 48, 365101.	2.8	9
80	Rapid fabrication and trimming of nanostructured backside reflectors for enhanced optical absorption in a-Si:H solar cells. Applied Physics A: Materials Science and Processing, 2015, 120, 417-425.	2.3	6
81	Electronic and optical properties of graphene antidot lattices: comparison of Dirac and tight-binding models. Journal of Physics Condensed Matter, 2014, 26, 265301.	1.8	17
82	Light trapping in guided modes of thin-film silicon-on-silver waveguides by scattering from a nanostrip. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 2036.	2.1	6
83	Nanoimprinted backside reflectors for a-Si:H thin-film solar cells: Critical role of absorber front textures. Optics Express, 2014, 22, A651.	3.4	12
84	Light trapping in thin-film solar cells: the role of guided modes. , 2014, , .		0
85	Plasmon–Phonon Coupling in Large-Area Graphene Dot and Antidot Arrays Fabricated by Nanosphere Lithography. Nano Letters, 2014, 14, 2907-2913.	9.1	111
86	Dirac model of electronic transport in graphene antidot barriers. Journal of Physics Condensed Matter, 2014, 26, 335301.	1.8	17
87	Theory of excitonic second-harmonic generation in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">MoS</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> . Physical Review B. 2014. 89.	3.2	121
88	Optical absorption of amorphous silicon on anodized aluminum substrates for solar cell applications. Optics Communications, 2014, 315, 17-25.	2.1	9
89	Second harmonic generation in carbon nanotubes induced by transversal electrostatic field. Journal of Physics Condensed Matter, 2013, 25, 325301.	1.8	1
90	Analysis of plasmonic properties of heavily doped semiconductors using full band structure calculations. Journal of Applied Physics, 2013, 113, .	2.5	24

#	Article	IF	Citations
91	Large and stable band gaps in spin-polarized graphene antidot lattices. Physical Review B, 2013, 88, .	3.2	29
92	Tuning Plasmon Resonances for Light Coupling into Silicon: a "Rule of Thumb―for Experimental Design. Plasmonics, 2013, 8, 79-84.	3.4	7
93	Self-consistent tight-binding model of B and N doping in graphene. Physical Review B, 2013, 87, .	3.2	24
94	Hofstadter butterflies and magnetically induced band-gap quenching in graphene antidot lattices. Physical Review B, 2013, 87, .	3.2	26
95	Opimization of imprintable nanostructured a-Si solar cells: FDTD study. Optics Express, 2013, 21, A208.	3.4	10
96	Diffractive coupling and plasmon-enhanced photocurrent generation in silicon. Optics Express, 2013, 21, A774.	3.4	7
97	Pore size dependence of diffuse light scattering from anodized aluminum solar cell backside reflectors. Optics Express, 2013, 21, A84.	3.4	30
98	Polarizability of nanowires at surfaces: exact solution for general geometry. Optics Express, 2012, 20, 3663.	3.4	3
99	Optical Hall conductivity in bulk and nanostructured graphene beyond the Dirac approximation. Physical Review B, 2012, 86, .	3.2	9
100	Graphene antidot lattice waveguides. Physical Review B, 2012, 86, .	3.2	43
101	Dirac model of an isolated graphene antidot in a magnetic field. Physical Review B, 2012, 85, .	3.2	15
102	Polarizability of supported metal nanoparticles: Mehler-Fock approach. Journal of Applied Physics, 2012, 112, 064312.	2.5	10
103	Indirect optical absorption in silicon via thin-film surface plasmon. Journal of Applied Physics, 2012, 112, .	2.5	24
104	Transport in graphene antidot barriers and tunneling devices. Journal of Applied Physics, 2012, 112, 113715.	2.5	15
105	Modelling amorphous silicon with hydrogenated defects: GW treatment of the ST12 phase. Journal of Physics Condensed Matter, 2012, 24, 325803.	1.8	2
106	Biexciton binding energy in fractional dimensional semiconductors. Physical Review B, 2012, 85, .	3.2	20
107	Band gaps in graphene via periodic electrostatic gating. Physical Review B, 2012, 85, .	3.2	20
108	Optical absorption of charged excitons in semiconducting carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 936-939.	2.7	3

#	Article	IF	CITATIONS
109	Clar sextets in square graphene antidot lattices. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 967-970.	2.7	7
110	Tight-binding study of the magneto-optical properties of gapped graphene. Physical Review B, 2011, 84, .	3.2	25
111	Clar Sextet Analysis of Triangular, Rectangular, and Honeycomb Graphene Antidot Lattices. ACS Nano, 2011, 5, 523-529.	14.6	93
112	Screening in graphene antidot lattices. Physical Review B, 2011, 84, .	3.2	13
113	Optical transmission through two-dimensional arrays of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>β </mml:mi> </mml:math> -Sn nanoparticles. Physical Review B, 2011, 84, .	3.2	10
114	Dyadic Green's functions of thin films: Applications within plasmonic solar cells. Physical Review B, 2011, 83, .	3.2	18
115	Quasiparticle electronic and optical properties of the Si–Sn system. Journal of Physics Condensed Matter, 2011, 23, 345501.	1.8	16
116	Indirect near-field absorption mediated by localized surface plasmons. Physical Review B, 2011, 84, .	3.2	12
117	Compact lens with circular spot profile for square die LEDs in multi-LED projectors. Applied Optics, 2011, 50, 4860.	2.1	9
118	Reliability of point source approximations in compact LED lens designs. Optics Express, 2011, 19, A1190.	3.4	21
119	Exact polarizability and plasmon resonances of partly buried nanowires. Optics Express, 2011, 19, 22775.	3.4	4
120	Nanoparticle plasmon resonances in the near-static limit. Optics Letters, 2011, 36, 713.	3.3	7
121	Optical properties and size/shape dependence of \hat{l}_{\pm} -Sn nanocrystals by tight binding. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1002-1005.	0.8	10
122	Publisher's Note: Indirect near-field absorption mediated by localized surface plasmons [Phys. Rev. $B84$, 165447 (2011)]. Physical Review B, 2011, 84, .	3.2	0
123	Variational quantum Monte Carlo study of charged excitons in fractional dimensional space. Physical Review B, 2011, 84, .	3.2	14
124	Er sensitization by a thin Si layer: Interaction-distance dependence. Physical Review B, 2011, 84, .	3.2	6
125	Electrostatic plasmon resonances of metal nanoparticles in stratified geometries. , 2010, , .		O
126	On localized surface plasmons of metallic tin nanoparticles in silicon. Physica Status Solidi - Rapid Research Letters, 2010, 4, 292-294.	2.4	11

#	Article	IF	CITATIONS
127	Correlation and dimensional effects of trions in carbon nanotubes. Physical Review B, 2010, 81, .	3.2	38
128	Tuning the plasmon resonance of metallic tin nanocrystals inÂSi-based materials. Applied Physics A: Materials Science and Processing, 2010, 100, 31-37.	2.3	14
129	Tight-binding parameterization of \hat{l}_{\pm} -Sn quasiparticle band structure. Journal of Physics and Chemistry of Solids, 2010, 71, 18-23.	4.0	11
130	Bandgap opening in graphene induced by patterned hydrogen adsorption. Nature Materials, 2010, 9, 315-319.	27.5	1,344
131	Calculation of optical matrix elements in carbon nanotubes. Physical Review B, 2010, 81, .	3. 2	17
132	Electrostatic plasmon resonances of metal nanospheres in layered geometries. Physical Review B, 2010, 81, .	3.2	15
133	Erbium diffusion in silicon dioxide. Applied Physics Letters, 2010, 97, 141903.	3.3	19
134	Excitons on the surface of a sphere. Physical Review B, 2010, 81, .	3.2	4
135	Dimensional and correlation effects of charged excitons in low-dimensional semiconductors. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 474031.	2.1	5
136	Guidelines for 1D-periodic surface microstructures for antireflective lenses. Optics Express, 2010, 18, 26245.	3.4	9
137	Systematic tight-binding study of optical second-harmonic generation in carbon nanotubes. Physical Review B, 2009, 79, .	3. 2	20
138	Universal analytic expression of electric-dipole matrix elements for carbon nanotubes. Physical Review B, 2009, 80, .	3.2	19
139	Stability of singlet and triplet trions in carbon nanotubes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 1478-1481.	2.1	28
140	Densityâ€functional based tightâ€binding modelling of ZnO structures. Physica Status Solidi (B): Basic Research, 2009, 246, 354-360.	1.5	3
141	Spectroscopic second-harmonic generation from silicon-on-insulator wafers. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 917.	2.1	5
142	Optical response and excitons in gapped graphene. Physical Review B, 2009, 79, .	3.2	72
143	Electronic properties of graphene antidot lattices. New Journal of Physics, 2009, 11, 095020.	2.9	143
144	Density functional study of graphene antidot lattices: Roles of geometrical relaxation and spin. Physical Review B, 2009, 80, .	3.2	56

#	Article	IF	CITATIONS
145	Quasiparticle properties of graphene antidot lattices. Physical Review B, 2009, 80, .	3.2	37
146	<i>Ab initio</i> calculation of electronic and optical properties of metallic tin. Journal of Physics Condensed Matter, 2009, 21, 115502.	1.8	19
147	Secondâ€harmonic generation from ZnO nanowires. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2671-2674.	0.8	17
148	Theoretical analysis of the Faraday effect in zigzag carbon nanotubes. Physical Review B, 2008, 77, .	3.2	12
149	Optical properties of graphene antidot lattices. Physical Review B, 2008, 77, .	3.2	109
150	Graphene Antidot Lattices: Designed Defects and Spin Qubits. Physical Review Letters, 2008, 100, 136804.	7.8	451
151	Linear optical and quadratic electro-optic response of carbon nanotubes: universal analytic expressions for arbitrary chirality. Journal of Physics Condensed Matter, 2008, 20, 275211.	1.8	6
152	Quantized electron states in nearly depleted hexagonal nanowires. Nanotechnology, 2008, 19, 115704.	2.6	3
153	Theoretical study of quadratic electro-optic effect in semiconducting zigzag carbon nanotubes. Physical Review B, 2007, 76, .	3.2	8
154	Optical second harmonic generation from Wannier excitons. Europhysics Letters, 2007, 78, 27005.	2.0	12
155	Energy transfer from polyfluorene based polymer to europium complex. EPJ Applied Physics, 2007, 37, 57-59.	0.7	3
156	Exact polarizability of low-dimensional excitons. Solid State Communications, 2007, 141, 569-572.	1.9	27
157	Analytic approach to the linear susceptibility of zigzag carbon nanotubes. Physical Review B, 2006, 74, .	3.2	13
158	Optical excitations in C60/PPV composites. Journal of Non-Crystalline Solids, 2006, 352, 2488-2491.	3.1	2
159	Epitaxial growth of Al on Si(111) with Cu buffer layers. Surface Science, 2006, 600, 610-616.	1.9	3
160	The Faraday effect revisited: General theory. Journal of Mathematical Physics, 2006, 47, 013511.	1,1	18
161	Surface and interface resonances in second harmonic generation from metallic quantum wells onSi(111). Physical Review B, 2006, 73, .	3.2	4
162	Theoretical study of conjugated porphyrin polymers. Thin Solid Films, 2005, 477, 182-186.	1.8	10

#	Article	IF	CITATIONS
163	Quantum size effects in ZnO nanowires. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 4026-4030.	0.8	13
164	Diffusion voltage in polymer light emitting diodes measured with electric field induced second harmonic generation. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 3993-3996.	0.8	0
165	Biexcitons in Carbon Nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2005, 13, 33-39.	2.1	1
166	Stability and Signatures of Biexcitons in Carbon Nanotubes. Nano Letters, 2005, 5, 291-294.	9.1	63
167	Density-functional-based tight-binding calculation of excitons in conjugated polymers. Physical Review B, 2004, 69, .	3.2	15
168	One-Dimensional Models of Excitons in Carbon Nanotubes. Few-Body Systems, 2004, 34, 155.	1.5	14
169	Density-functional-based tight-binding approach to phonon spectra of conjugated polymers. Physica Status Solidi (B): Basic Research, 2004, 241, 1005-1016.	1.5	2
170	Exciton effects in carbon nanotubes. Carbon, 2004, 42, 1007-1010.	10.3	66
171	Density-functional-based tight-binding approach to polarons in conjugated polymers. Computational Materials Science, 2004, 30, 212-216.	3.0	5
172	Applicability of stretched exponential functions for describing dynamics in disordered solid materials., 2004, 5521, 181.		1
173	Characterisation of Au films on Si() -Au by photoemission and optical second-harmonic generation. Surface Science, 2003, 523, 21-29.	1.9	13
174	Self-consistent model of high-field electro-optics in conjugated polymers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 99, 563-566.	3.5	1
175	Optical second-harmonic generation and photoemission from Al quantum wells on Si(111) 7×7. Thin Solid Films, 2003, 443, 78-83.	1.8	4
176	Variational approach to excitons in carbon nanotubes. Physical Review B, 2003, 67, .	3.2	170
177	Analytic calculation of the optical properties of graphite. Physical Review B, 2003, 67, .	3.2	57
178	Electro-optic response of chromophores in a viscoelastic polymer matrix to a combined dc and ac poling field. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 2179.	2.1	11
179	Analytic and numerical electro-optic models of poly(para-phenylene). Synthetic Metals, 2003, 138, 329-332.	3.9	1
180	Ab initio tight-binding study of exciton optical and electro-optic properties of conjugated polymers. Computational Materials Science, 2003, 27, 123-127.	3.0	5

#	Article	IF	Citations
181	Orientational dynamics in dye-doped organic electro-optic materials. Journal of Applied Physics, 2003, 94, 6263-6268.	2.5	9
182	Epitaxial growth of thin Ag and Au films on Si(111) using thin copper silicide buffer layers. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1431-1435.	2.1	7
183	Tight-binding theory of Faraday rotation in graphite. Physical Review B, 2003, 68, .	3.2	20
184	Analytic expressions for linear optical susceptibilities of conjugated polymers. Physical Review B, 2003, 67, .	3.2	7
185	Analytic Franz–Keldysh effect in one-dimensional polar semiconductors. Journal of Physics Condensed Matter, 2003, 15, 3813-3819.	1.8	4
186	Combined ac and dc electro-optic response of an azo-dye containing viscoelastic polymer matrix., 2003,,.		0
187	Free-carrier and exciton Franz-Keldysh theory for one-dimensional semiconductors. Physical Review B, 2002, 65, .	3.2	29
188	dc and ac Electro-optic response of chromophores in a viscoelastic polymer matrix: analytical model. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 2622.	2.1	12
189	Thin noble metal films on Si (111) investigated by optical second-harmonic generation and photoemission. Applied Physics B: Lasers and Optics, 2002, 74, 677-682.	2.2	1
190	Theoretical and experimental studies of photoemission from Al quantum wells on Si(). Surface Science, 2002, 516, 127-133.	1.9	10
191	Optical matrix elements in tight-binding calculations. Physical Review B, 2001, 63, .	3.2	93
192	Description of the photorefractive response in polymers. Optics Letters, 2001, 26, 226.	3.3	2
193	Optical second-harmonic generation and photoemission from quantum well states in thin Ag films on Si(1 1 1). Surface Science, 2001, 482-485, 735-739.	1.9	20
194	Analytical modeling of two beam coupling during grating translation in photorefractive media. Optics Communications, 2001, 192, 377-385.	2.1	10
195	Rotational diffusion model of orientational enhancement in AC field biased photorefractive polymers. Optical Materials, 2001, 18, 95-98.	3.6	2
196	Mathematical properties of the rotational diffusion equation. Journal of Physics A, 2001, 34, 6531-6542.	1.6	0
197	On light induced charge transport in photorefractive polymers. , 2001, , .		0
198	Optical second-harmonic generation as a probe of quantum well states in ultrathin Au and Ag films deposited on Si(111). Thin Solid Films, 2000, 364, 86-90.	1.8	6

#	Article	IF	CITATIONS
199	Particle-in-a-box model of one-dimensional excitons in conjugated polymers. Physical Review B, 2000, 61, 10504-10510.	3.2	24
200	Particle-in-a-box model of exciton absorption and electroabsorption in conjugated polymers. Physical Review B, 2000, 62, 15424-15426.	3.2	4
201	Theory of second-harmonic generation from quantum well states in ultrathin metal films on semiconductors. Physical Review B, 2000, 61, 10255-10266.	3.2	4
202	Characterization of azobenzene chromophores for reversible optical data storage: molecular quantum calculations. Journal of Optics, 2000, 2, 272-278.	1.5	46
203	Optical second-harmonic generation from Ag quantum wells onSi(111)7×7:Experiment and theory. Physical Review B, 1999, 60, R13997-R14000.	3.2	17
204	Second-harmonic generation spectroscopy on quantum wells: Au on Si(111). Applied Physics B: Lasers and Optics, 1999, 68, 637-640.	2.2	16
205	Optical Second-Harmonic Generation from an Au Wedge on Si(111). Physica Status Solidi A, 1999, 175, 195-200.	1.7	2
206	Mean-field theory of optical storage in liquid crystalline side-chain polymers. Optical Materials, 1998, 9, 212-215.	3.6	2
207	Theoretical model of photoinduced anisotropy in liquid-crystalline azobenzene side-chain polyesters. Journal of the Optical Society of America B: Optical Physics, 1998, 15, 1120.	2.1	57
208	Cascading solution of the space-charge field problem in ac field biased photorefractive media. Journal of the Optical Society of America B: Optical Physics, 1998, 15, 1168.	2.1	2
209	Quantum theory and experimental studies of absorption spectra and photoisomerization of azobenzene polymers. Journal of the Optical Society of America B: Optical Physics, 1998, 15, 2721.	2.1	38
210	Mean-Field Theory of Photoinduced Formation of Surface Reliefs in Side-Chain Azobenzene Polymers. Physical Review Letters, 1998, 80, 89-92.	7.8	331
211	Mean-Field Theory of Photoinduced Molecular Reorientation in Azobenzene Liquid Crystalline Side-Chain Polymers. Physical Review Letters, 1997, 79, 2470-2473.	7.8	104
212	Intraparticle and interparticle radiative coupling in quantum dot arrays: influence of a magnetic field. Journal of the Optical Society of America B: Optical Physics, 1996, 13, 2121.	2.1	7
213	Exciton states in spherical parabolic GaAs quantum dots. Journal of Physics Condensed Matter, 1996, 8, 5725-5735.	1.8	25
214	Retarded electromagnetic response of a spherical quantum dot: A self-consistent field calculation. Physical Review B, 1995, 52, 4670-4673.	3.2	17
215	Local field calculation for a spherical semiconductor quantum dot with parabolic confinement. Physica Scripta, 1994, T54, 115-118.	2.5	7