
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/692491/publications.pdf Version: 2024-02-01

LUDGEN ROHD

#	Article	IF	CITATIONS
1	Allosteric interference in oncogenic FLI1 and ERG transactions by mithramycins. Structure, 2021, 29, 404-412.e4.	3.3	5
2	Himalaquinones A–G, Angucyclinone-Derived Metabolites Produced by the Himalayan Isolate <i>Streptomyces</i> sp. PU-MM59. Journal of Natural Products, 2021, 84, 1930-1940.	3.0	7
3	Endophytes of Brazilian Medicinal Plants With Activity Against Phytopathogens. Frontiers in Microbiology, 2021, 12, 714750.	3.5	13
4	Mithramycin and Analogs for Overcoming Cisplatin Resistance in Ovarian Cancer. Biomedicines, 2021, 9, 70.	3.2	7
5	Landomycins as glutathione-depleting agents and natural fluorescent probes for cellular Michael adduct-dependent quinone metabolism. Communications Chemistry, 2021, 4, .	4.5	9
6	Dihydroisocoumarins produced by Diaporthe cf. heveae LGMF1631 inhibiting citrus pathogens. Folia Microbiologica, 2020, 65, 381-392.	2.3	5
7	Discovery of a Cryptic Intermediate in Late Steps of Mithramycin Biosynthesis. Angewandte Chemie - International Edition, 2020, 59, 826-832.	13.8	11
8	Discovery of a Cryptic Intermediate in Late Steps of Mithramycin Biosynthesis. Angewandte Chemie, 2020, 132, 836-842.	2.0	2
9	Mithramycin 2′-Oximes with Improved Selectivity, Pharmacokinetics, and Ewing Sarcoma Antitumor Efficacy. Journal of Medicinal Chemistry, 2020, 63, 14067-14086.	6.4	8
10	Post-PKS enzyme complexes. MedChemComm, 2019, 10, 1855-1866.	3.4	4
11	Vochysiamides A and B: Two new bioactive carboxamides produced by the new species Diaporthe vochysiae. FA¬toterapA¬A¢, 2019, 138, 104273.	2.2	27
12	Bioanalytical method for quantitative determination of mithramycin analogs in mouse plasma by HPLC–QTOF. Biomedical Chromatography, 2019, 33, e4544.	1.7	2
13	How mithramycin stereochemistry dictates its structure and DNA binding function. MedChemComm, 2019, 10, 735-741.	3.4	10
14	Secondary metabolites produced by the citrus phytopathogen Phyllosticta citricarpa. Journal of Antibiotics, 2019, 72, 306-310.	2.0	11
15	Secondary metabolites produced by Microbacterium sp. LGMB471 with antifungal activity against the phytopathogen Phyllosticta citricarpa. Folia Microbiologica, 2019, 64, 453-460.	2.3	16
16	Bioprospecting of Diaporthe terebinthifolii LGMF907 for antimicrobial compounds. Folia Microbiologica, 2018, 63, 499-505.	2.3	28
17	Phaeophleospora vochysiae Savi & Glienke sp. nov. Isolated from Vochysia divergens Found in the Pantanal, Brazil, Produces Bioactive Secondary Metabolites. Scientific Reports, 2018, 8, 3122.	3.3	17
18	Self-Resistance during Muraymycin Biosynthesis: a Complementary Nucleotidyltransferase and Phosphotransferase with Identical Modification Sites and Distinct Temporal Order. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	16

#	Article	IF	CITATIONS
19	Development of Mithramycin Analogues with Increased Selectivity toward ETS Transcription Factor Expressing Cancers. Journal of Medicinal Chemistry, 2018, 61, 8001-8016.	6.4	21
20	Abstract B043: Mithramycin-SA analogues with reduced toxicity for the treatment of ETS transcription factor-driven tumors. , 2018, , .		1
21	One-Pot Enzymatic Total Synthesis of Presteffimycinone, an Early Intermediate of the Anthracycline Antibiotic Steffimycin Biosynthesis. Organic Letters, 2017, 19, 540-543.	4.6	7
22	Evidence that oxidative dephosphorylation by the nonheme Fe(<scp>II</scp>), αâ€ketoglutarate: <scp>UMP</scp> oxygenase occurs by stereospecific hydroxylation. FEBS Letters, 2017, 591, 468-478.	2.8	11
23	Rapid generation of hydrogen peroxide contributes to the complex cell death induction by the angucycline antibiotic landomycin E. Free Radical Biology and Medicine, 2017, 106, 134-147.	2.9	27
24	Structural Basis for EarP-Mediated Arginine Glycosylation of Translation Elongation Factor EF-P. MBio, 2017, 8, .	4.1	24
25	Two Cooperative Glycosyltransferases Are Responsible for the Sugar Diversity of Saquayamycins Isolated from <i>Streptomyces</i> sp. KY 40-1. ACS Chemical Biology, 2017, 12, 2529-2534.	3.4	32
26	Formation of an Angular Aromatic Polyketide from a Linear Anthrene Precursor via Oxidative Rearrangement. Cell Chemical Biology, 2017, 24, 881-891.e4.	5.2	21
27	Antibacterial Activity of Endophytic Actinomycetes Isolated from the Medicinal Plant Vochysia divergens (Pantanal, Brazil). Frontiers in Microbiology, 2017, 8, 1642.	3.5	60
28	Synthesis of Psoralidin derivatives and their anticancer activity: first synthesis of Lespeflorin I1. Tetrahedron, 2016, 72, 3324-3334.	1.9	18
29	Structures of mithramycin analogues bound to DNA and implications for targeting transcription factor FL11. Nucleic Acids Research, 2016, 44, 8990-9004.	14.5	27
30	Disruption of de Novo Adenosine Triphosphate (ATP) Biosynthesis Abolishes Virulence in <i>Cryptococcus neoformans</i> . ACS Infectious Diseases, 2016, 2, 651-663.	3.8	16
31	Insights into Complex Oxidation during BE-7585A Biosynthesis: Structural Determination and Analysis of the Polyketide Monooxygenase BexE. ACS Chemical Biology, 2016, 11, 1137-1147.	3.4	10
32	Dimerization and DNA recognition rules of mithramycin and its analogues. Journal of Inorganic Biochemistry, 2016, 156, 40-47.	3.5	15
33	Strukturelle Charakterisierung von O―und Câ€glycosylierenden Varianten der Landomycinâ€Clycosyltransferase LanGT2. Angewandte Chemie, 2015, 127, 2853-2857.	2.0	4
34	Arginine-rhamnosylation as new strategy to activate translation elongation factor P. Nature Chemical Biology, 2015, 11, 266-270.	8.0	116
35	Structural Insight into MtmC, a Bifunctional Ketoreductase-Methyltransferase Involved in the Assembly of the Mithramycin Trisaccharide Chain. Biochemistry, 2015, 54, 2481-2489.	2.5	8
36	Structural Characterization of O―and Câ€Glycosylating Variants of the Landomycin Glycosyltransferase LanGT2. Angewandte Chemie - International Edition, 2015, 54, 2811-2815.	13.8	26

#	Article	IF	CITATIONS
37	N-methylphenylalanyl-dehydrobutyrine diketopiperazine, an A-factor mimic that restores antibiotic biosynthesis and morphogenesis in Streptomyces globisporus 1912-B2 and Streptomyces griseus 1439. Journal of Antibiotics, 2015, 68, 9-14.	2.0	29
38	Microbispora sp. LGMB259 Endophytic Actinomycete Isolated from Vochysia divergens (Pantanal,) Tj ETQq0 0 0 r 345-354.	gBT /Over 2.2	rlock 10 Tf 50 40
39	Enzymatic Methylation and Structure–Activityâ€Relationship Studies on Polycarcin V, a Gilvocarcinâ€Type Antitumor Agent. ChemBioChem, 2014, 15, 2729-2735.	2.6	8
40	Activation and silencing of secondary metabolites in Streptomyces albus and Streptomyces lividans after transformation with cosmids containing the thienamycin gene cluster from Streptomyces cattleya. Archives of Microbiology, 2014, 196, 345-355.	2.2	31
41	Facile Chemoenzymatic Strategies for the Synthesis and Utilization of <i>S</i> â€Adenosylâ€ <scp>L</scp> â€Methionine Analogues. Angewandte Chemie - International Edition, 2014, 53, 3965-3969.	13.8	120
42	Ericifolin: a novel antitumor compound from allspice that silences androgen receptor in prostate cancer. Carcinogenesis, 2013, 34, 1822-1832.	2.8	29
43	Engineering the Biosynthesis of the Polyketide-Nonribosomal Peptide Collismycin A for Generation of Analogs with Neuroprotective Activity. Chemistry and Biology, 2013, 20, 1022-1032.	6.0	35
44	Semi‣ynthetic Mithramycin <scp>SA</scp> Derivatives with Improved AntiCancer Activity. Chemical Biology and Drug Design, 2013, 81, 615-624.	3.2	20
45	Molecular Insight into Substrate Recognition and Catalysis of Baeyer–Villiger Monooxygenase MtmOIV, the Key Frame-Modifying Enzyme in the Biosynthesis of Anticancer Agent Mithramycin. ACS Chemical Biology, 2013, 8, 2466-2477.	3.4	36
46	Baeyer–Villiger C–C Bond Cleavage Reaction in Gilvocarcin and Jadomycin Biosynthesis. Journal of the American Chemical Society, 2012, 134, 18181-18184.	13.7	85
47	Elucidation of post-PKS tailoring steps involved in landomycin biosynthesis. Organic and Biomolecular Chemistry, 2012, 10, 4256.	2.8	16
48	Roles of the Synergistic Reductive <i>O</i> -Methyltransferase GilM and of <i>O</i> -Methyltransferase GilMT in the Gilvocarcin Biosynthetic Pathway. Journal of the American Chemical Society, 2012, 134, 12402-12405.	13.7	18
49	Saquayamycins G–K, Cytotoxic Angucyclines from <i>Streptomyces</i> sp. Including Two Analogues Bearing the Aminosugar Rednose. Journal of Natural Products, 2012, 75, 1383-1392.	3.0	36
50	Cooperation of Two Bifunctional Enzymes in the Biosynthesis and Attachment of Deoxysugars of the Antitumor Antibiotic Mithramycin. Angewandte Chemie - International Edition, 2012, 51, 10638-10642.	13.8	27
51	Angucyclines: Biosynthesis, mode-of-action, new natural products, and synthesis. Natural Product Reports, 2012, 29, 264-325.	10.3	280
52	Pyramidamycins A-D and 3-hydroxyquinoline-2-carboxamide; cytotoxic benzamides from Streptomyces sp. DGC1. Journal of Antibiotics, 2012, 65, 615-622.	2.0	29
53	Amalgamation of Nucleosides and Amino Acids in Antibiotic Biosynthesis: Discovery of an <scp>l</scp> -Threonine:Uridine-5′-Aldehyde Transaldolase. Journal of the American Chemical Society, 2012, 134, 18514-18517.	13.7	59
54	A Novel Mithramycin Analogue with High Antitumor Activity and Less Toxicity Generated by Combinatorial Biosynthesis. Journal of Medicinal Chemistry, 2012, 55, 5813-5825.	6.4	71

#	Article	IF	CITATIONS
55	Delineation of gilvocarcin, jadomycin, and landomycin pathways through combinatorial biosynthetic enzymology. Current Opinion in Chemical Biology, 2012, 16, 150-161.	6.1	26
56	Elucidating the Biosynthetic Pathway for the Polyketide-Nonribosomal Peptide Collismycin A: Mechanism for Formation of the 2,2′-bipyridyl Ring. Chemistry and Biology, 2012, 19, 399-413.	6.0	46
57	Tailoring Enzymes Involved in the Biosynthesis of Angucyclines Contain Latent Context-Dependent Catalytic Activities. Chemistry and Biology, 2012, 19, 647-655.	6.0	26
58	Ketoolivosyl-tetracenomycin C: A new ketosugar bearing tetracenomycin reveals new insight into the substrate flexibility of glycosyltransferase ElmGT. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2247-2250.	2.2	12
59	Enzymatic Total Synthesis of Defucogilvocarcinâ€M and Its Implications for Gilvocarcin Biosynthesis. Angewandte Chemie - International Edition, 2012, 51, 1216-1220.	13.8	52
60	Characterization of the Terminal Activation Step Catalyzed by Oxygenase CmmOIV of the Chromomycin Biosynthetic Pathway fromStreptomyces griseus. Biochemistry, 2011, 50, 1421-1428.	2.5	4
61	Landomycins Pâ^'W, Cytotoxic Angucyclines from <i>Streptomyces cyanogenus</i> S-136. Journal of Natural Products, 2011, 74, 2-11.	3.0	44
62	Characterization of the TDP-d-ravidosamine biosynthetic pathway: one-pot enzymatic synthesis of TDP-d-ravidosamine from thymidine-5-phosphate and glucose-1-phosphate. Organic and Biomolecular Chemistry, 2011, 9, 1799.	2.8	14
63	11-Deoxylandomycinone and landomycins X-Z, new cytotoxic angucyclin(on)es from a Streptomyces cyanogenus K62 mutant strain. Journal of Antibiotics, 2011, 64, 141-150.	2.0	37
64	Investigating Mithramycin Deoxysugar Biosynthesis: Enzymatic Total Synthesis of TDPâ€ <scp>D</scp> â€Olivose. ChemBioChem, 2011, 12, 2568-2571.	2.6	18
65	Engineered Biosynthesis of Gilvocarcin Analogues with Altered Deoxyhexopyranose Moieties. Applied and Environmental Microbiology, 2011, 77, 435-441.	3.1	31
66	Mithramycin Is a Gene-Selective Sp1 Inhibitor That Identifies a Biological Intersection between Cancer and Neurodegeneration. Journal of Neuroscience, 2011, 31, 6858-6870.	3.6	114
67	Characterization of LipL as a Non-heme, Fe(II)-dependent α-Ketoglutarate:UMP Dioxygenase That Generates Uridine-5′-aldehyde during A-90289 Biosynthesis*. Journal of Biological Chemistry, 2011, 286, 7885-7892.	3.4	47
68	Nanoparticulate formulations of mithramycin analogs for enhanced cytotoxicity. International Journal of Nanomedicine, 2011, 6, 2757.	6.7	24
69	The Crystal Structure and Mechanism of an Unusual Oxidoreductase, GilR, Involved in Gilvocarcin V Biosynthesis. Journal of Biological Chemistry, 2011, 286, 23533-23543.	3.4	21
70	Inhibition of Sp1-dependent transcription and antitumor activity of the new aureolic acid analogues mithramycin SDK and SK in human ovarian cancer xenografts. Gynecologic Oncology, 2010, 118, 182-188.	1.4	54
71	Cloning and Characterization of the Ravidomycin and Chrysomycin Biosynthetic Gene Clusters. ChemBioChem, 2010, 11, 523-532.	2.6	44
72	Activating Stress-Activated Protein Kinase–Mediated Cell Death and Inhibiting Epidermal Growth Factor Receptor Signaling: A Promising Therapeutic Strategy for Prostate Cancer. Molecular Cancer Therapeutics, 2010, 9, 2488-2496.	4.1	22

#	Article	IF	CITATIONS
73	Type II PKS. , 2010, , 227-303.		9
74	Enzymatic Total Synthesis of Rabelomycin, an Angucycline Group Antibiotic. Organic Letters, 2010, 12, 2814-2817.	4.6	33
75	Delineating the earliest steps of gilvocarcin biosynthesis: role of GilP and GilQ in starter unit specificity. Organic and Biomolecular Chemistry, 2010, 8, 3851.	2.8	11
76	Abstract 4140: Inhibition of mTOR signaling by psoralidin in breast cancer. , 2010, , .		0
77	Abstract 4387: Reactive oxygen species-mediated cell death by psoralidin in prostate cancer cells. , 2010, , .		0
78	Abstract 4043: Targeting microRNA for the prevention and treatment of prostate cancer. , 2010, , .		0
79	Identification of urushiols as the major active principle of the Siddha herbal medicine <i>Semecarpus</i> Lehyam: Anti-tumor agents for the treatment of breast cancer. Pharmaceutical Biology, 2009, 47, 886-893.	2.9	8
80	Psoralidin, an Herbal Molecule, Inhibits Phosphatidylinositol 3-Kinase–Mediated Akt Signaling in Androgen-Independent Prostate Cancer Cells. Cancer Prevention Research, 2009, 2, 234-243.	1.5	31
81	Identification of a potent herbal molecule for the treatment of breast cancer. BMC Cancer, 2009, 9, 41.	2.6	6
82	Inactivation of the Ketoreductase gilU Gene of the Gilvocarcin Biosynthetic Gene Cluster Yields New Analogues with Partly Improved Biological Activity. ChemBioChem, 2009, 10, 278-286.	2.6	27
83	Elucidation of Oxygenation Steps during Oviedomycin Biosynthesis and Generation of Derivatives with Increased Antitumor Activity. ChemBioChem, 2009, 10, 296-303.	2.6	32
84	GilR, an Unusual Lactoneâ€Forming Enzyme Involved in Gilvocarcin Biosynthesis. ChemBioChem, 2009, 10, 1305-1308.	2.6	24
85	Crystal Structure of Baeyerâ^'Villiger Monooxygenase MtmOIV, the Key Enzyme of the Mithramycin Biosynthetic Pathway,. Biochemistry, 2009, 48, 4476-4487.	2.5	75
86	Total Synthesis of Psoralidin, an Anticancer Natural Product. Journal of Organic Chemistry, 2009, 74, 2750-2754.	3.2	59
87	An Audience Response System Strategy to Improve Student Motivation, Attention, and Feedback. American Journal of Pharmaceutical Education, 2009, 73, 21.	2.1	108
88	Glycosylated Derivatives of Steffimycin: Insights into the Role of the Sugar Moieties for the Biological Activity. ChemBioChem, 2008, 9, 624-633.	2.6	39
89	Generation of New Derivatives of the Antitumor Antibiotic Mithramycin by Altering the Glycosylation Pattern through Combinatorial Biosynthesis. ChemBioChem, 2008, 9, 2295-2304.	2.6	47
90	Mithramycin Analogues Generated by Combinatorial Biosynthesis Show Improved Bioactivity. Journal of Natural Products, 2008, 71, 199-207.	3.0	53

#	Article	IF	CITATIONS
91	Moromycins A and B, Isolation and Structure Elucidation of C-Glycosylangucycline-Type Antibiotics from Streptomyces sp. KY002. Journal of Natural Products, 2008, 71, 1569-1573.	3.0	31
92	Biosynthesis of elloramycin in Streptomyces olivaceus requires glycosylation by enzymes encoded outside the aglycon cluster. Microbiology (United Kingdom), 2008, 154, 781-788.	1.8	42
93	Multi-oxygenase Complexes of the Gilvocarcin and Jadomycin Biosyntheses. Journal of the American Chemical Society, 2007, 129, 3780-3781.	13.7	60
94	Generation of New Landomycins with Altered Saccharide Patterns through Over-expression of the Glycosyltransferase GenelanGT3 in the Biosynthetic Gene Cluster of Landomycin A inStreptomyces cyanogenus S-136. ChemBioChem, 2007, 8, 83-88.	2.6	51
95	Cryptophycin Anticancer Drugs Revisited. ACS Chemical Biology, 2006, 1, 747-750.	3.4	22
96	Insights in the glycosylation steps during biosynthesis of the antitumor anthracycline cosmomycin: characterization of two glycosyltransferase genes. Applied Microbiology and Biotechnology, 2006, 73, 122-131.	3.6	26
97	Inactivation of gilGT , Encoding a C―Glycosyltransferase, and gilOIII , Encoding a P450 Enzyme, Allows the Details of the Late Biosynthetic Pathway to Gilvocarcin V to be Delineated. ChemBioChem, 2006, 7, 1070-1077.	2.6	32
98	Premithramycinone G, an Early Shunt Product of the Mithramycin Biosynthetic Pathway Accumulated upon Inactivation of Oxygenase MtmOII. Angewandte Chemie - International Edition, 2006, 45, 5685-5689.	13.8	24
99	On the Acceptor Substrate of C-Glycosyltransferase UrdGT2: Three Prejadomycin C-Glycosides from an Engineered Mutant ofStreptomyces globisporus 1912 ΔlndE(urdGT2). Angewandte Chemie - International Edition, 2006, 45, 7842-7846.	13.8	36
100	Deoxysugar Transfer during Chromomycin A 3 Biosynthesis in Streptomyces griseus subsp. griseus : New Derivatives with Antitumor Activity. Applied and Environmental Microbiology, 2006, 72, 167-177.	3.1	48
101	Combinatorial Biosynthesis of Antitumor Deoxysugar Pathways in Streptomyces griseus: Reconstitution of "Unnatural Natural Gene Clusters―for the Biosynthesis of Four 2,6-d-Dideoxyhexoses. Applied and Environmental Microbiology, 2006, 72, 6644-6652.	3.1	46
102	Novel GC-rich DNA-binding compound produced by a genetically engineered mutant of the mithramycin producer Streptomyces argillaceus exhibits improved transcriptional repressor activity: implications for cancer therapy. Nucleic Acids Research, 2006, 34, 1721-1734.	14.5	81
103	Isolation, Characterization, and Heterologous Expression of the Biosynthesis Gene Cluster for the Antitumor Anthracycline Steffimycin. Applied and Environmental Microbiology, 2006, 72, 4172-4183.	3.1	99
104	Deciphering the late steps in the biosynthesis of the anti-tumour indolocarbazole staurosporine: sugar donor substrate flexibility of the StaG glycosyltransferase. Molecular Microbiology, 2005, 58, 17-27.	2.5	114
105	Cytotoxic Activities of New Jadomycin Derivatives. Journal of Antibiotics, 2005, 58, 405-408.	2.0	43
106	Elucidation of the Glycosylation Sequence of Mithramycin Biosynthesis: Isolation of 3A-Deolivosylpremithramycin B and Its Conversion to Premithramycin B by Glycosyltransferase MtmGII. ChemBioChem, 2005, 6, 632-636.	2.6	29
107	Generation of Novel Landomycins M and O through Targeted Gene Disruption. ChemBioChem, 2005, 6, 675-678.	2.6	43
108	The Oxidative Ring Cleavage in Jadomycin Biosynthesis: A Multistep Oxygenation Cascade in a Biosynthetic Black Box, ChemBioChem, 2005, 6, 838-845,	2.6	58

#	Article	IF	CITATIONS
109	Investigation on Semecarpus Lehyam?a Siddha medicine for breast cancer. Planta, 2005, 220, 910-918.	3.2	37
110	Crystallization and X-ray diffraction properties of Baeyer–Villiger monooxygenase MtmOIV from the mithramycin biosynthetic pathway inStreptomyces argillaceus. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 1023-1026.	0.7	7
111	From The Cover: Combinatorial biosynthesis of antitumor indolocarbazole compounds. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 461-466.	7.1	228
112	Functional Analyses of Oxygenases in Jadomycin Biosynthesis and Identification of JadH as a Bifunctional Oxygenase/Dehydrase. Journal of Biological Chemistry, 2005, 280, 22508-22514.	3.4	67
113	Identification of the Function of GeneIndM2Encoding a Bifunctional Oxygenase-Reductase Involved in the Biosynthesis of the Antitumor Antibiotic Landomycin E byStreptomyces globisporus1912 Supports the Originally Assigned Structure for Landomycinone. Journal of Organic Chemistry, 2005, 70, 631-638.	3.2	52
114	Combining sugar biosynthesis genes for the generation of <scp>l</scp> - and <scp>d</scp> -amicetose and formation of two novel antitumor tetracenomycins. Chemical Communications, 2005, , 1604-1606.	4.1	57
115	Characterization of Kinetics and Products of the Baeyerâ^'Villiger Oxygenase MtmOIV, The Key Enzyme of the Biosynthetic Pathway toward the Natural Product Anticancer Drug Mithramycin from Streptomyces argillaceus. Journal of the American Chemical Society, 2005, 127, 17594-17595.	13.7	107
116	Tailoring modification of deoxysugars during biosynthesis of the antitumour drug chromomycin A3 by Streptomyces griseus ssp. griseus. Molecular Microbiology, 2004, 53, 903-915.	2.5	44
117	Rasagenthi lehyam (RL) a novel complementary and alternative medicine for prostate cancer. Cancer Chemotherapy and Pharmacology, 2004, 54, 7-15.	2.3	33
118	Function of lanGT3, a Glycosyltransferase Gene Involved in Landomycin A Biosynthesis. ChemBioChem, 2004, 5, 1567-1570.	2.6	29
119	Biosynthesis of the Antitumor Chromomycin A3 in Streptomyces griseus. Chemistry and Biology, 2004, 11, 21-32.	6.0	50
120	Generation of New Landomycins by Combinatorial Biosynthetic Manipulation of the LndGT4 Gene of the Landomycin E Cluster in S. globisporus. Chemistry and Biology, 2004, 11, 547-555.	6.0	63
121	Engineering Biosynthetic Pathways for Deoxysugars: Branched-Chain Sugar Pathways and Derivatives from the Antitumor Tetracenomycin. Chemistry and Biology, 2004, 11, 1709-1718.	6.0	73
122	The Dynamic Structure of Jadomycin B and the Amino Acid Incorporation Step of Its Biosynthesis. Journal of the American Chemical Society, 2004, 126, 4496-4497.	13.7	75
123	Oxidative Rearrangement Processes in the Biosynthesis of Gilvocarcin V. Journal of the American Chemical Society, 2004, 126, 12262-12263.	13.7	45
124	CE-108, a New Macrolide Tetraene Antibiotic. Journal of Antibiotics, 2004, 57, 197-204.	2.0	26
125	DNA-Binding Properties of Cosmomycin D, an Anthracycline with Two Trisaccharide Chains. Journal of Antibiotics, 2004, 57, 647-654.	2.0	25
126	Urdamycin L: A Novel Metabolic Shunt Product that Provides Evidence for the Role of the urdM Gene in the Urdamycin A Biosynthetic Pathway of Streptomyces fradiae TÜ 2717. ChemBioChem, 2003, 4, 109-111.	2.6	51

#	Article	IF	CITATIONS
127	The <i>C</i> -Glycosyltransferase UrdGT2 Is Unselective toward <scp>d</scp> - and <scp>l</scp> -Configured Nucleotide-Bound Rhodinoses. Journal of the American Chemical Society, 2003, 125, 4678-4679.	13.7	81
128	Inhibition of c-src Transcription by Mithramycin:  Structureâ^'Activity Relationships of Biosynthetically Produced Mithramycin Analogues Using the c-src Promoter as Target. Biochemistry, 2003, 42, 8313-8324.	2.5	71
129	The Complete Gene Cluster of the Antitumor Agent Gilvocarcin V and Its Implication for the Biosynthesis of the Gilvocarcins. Journal of the American Chemical Society, 2003, 125, 7818-7819.	13.7	88
130	Mithramycin SK, A Novel Antitumor Drug with Improved Therapeutic Index, Mithramycin SA, and Demycarosyl-mithramycin SK:Â Three New Products Generated in the Mithramycin ProducerStreptomycesargillaceusthrough Combinatorial Biosynthesis. Journal of the American Chemical Society, 2003, 125, 5745-5753.	13.7	118
131	Oviedomycin, an Unusual Angucyclinone Encoded by Genes of the Oleandomycin-Producer Streptomyces antibioticus ATCC11891. Journal of Natural Products, 2002, 65, 779-782.	3.0	35
132	Modification of post-PKS tailoring steps through combinatorial biosynthesis. Natural Product Reports, 2002, 19, 542-580.	10.3	247
133	Digitoxosyltetracenomycin C and Glucosyltetracenomycin C, Two Novel Elloramycin Analogues Obtained by Exploring the Sugar Donor Substrate Specificity of Glycosyltransferase ElmGT. Journal of Natural Products, 2002, 65, 1685-1689.	3.0	50
134	Ketopremithramycins and Ketomithramycins, Four New Aureolic Acid-Type Compounds Obtained upon Inactivation of Two Genes Involved in the Biosynthesis of the Deoxysugar Moieties of the Antitumor Drug Mithramycin by <i>Streptomyces Argillaceus</i> , Reveal Novel Insights into Post-PKS Tailoring Steps of the Mithramycin Biosynthetic Pathway. Journal of the American Chemical Society, 2002, 124, 1606-1614.	13.7	66
135	Synthesis, Pharmacokinetics, Efficacy, and Rat Retinal Toxicity of a Novel Mitomycin C-Triamcinolone Acetonide Conjugate. Journal of Medicinal Chemistry, 2002, 45, 1122-1127.	6.4	25
136	Rationally Designed Glycosylated Premithramycins:  Hybrid Aromatic Polyketides Using Genes from Three Different Biosynthetic Pathways. Journal of the American Chemical Society, 2002, 124, 6056-6062.	13.7	82
137	The Biosynthetic Gene Cluster for the Antitumor Rebeccamycin. Chemistry and Biology, 2002, 9, 519-531.	6.0	198
138	Deoxysugar Methylation during Biosynthesis of the Antitumor Polyketide Elloramycin by Streptomyces olivaceus. Journal of Biological Chemistry, 2001, 276, 18765-18774.	3.4	57
139	Identification of a sugar flexible glycosyltransferase from Streptomyces olivaceus, the producer of the antitumor polyketide elloramycin. Chemistry and Biology, 2001, 8, 253-263.	6.0	82
140	Elucidation of the function of two glycosyltransferase genes (lanGT1 and lanGT4) involved in landomycin biosynthesis and generation of new oligosaccharide antibiotics. Chemistry and Biology, 2001, 8, 1239-1252.	6.0	52
141	The Novel Hybrid Antitumor Compound Premithramycinone H Provides Indirect Evidence for a Tricyclic Intermediate of the Biosynthesis of the Aureolic Acid Antibiotic Mithramycin. Angewandte Chemie - International Edition, 2000, 39, 796-799.	13.8	25
142	A New Role for Polyketides. Angewandte Chemie - International Edition, 2000, 39, 2847-2849.	13.8	108
143	Function of glycosyltransferase genes involved in urdamycin A biosynthesis. Chemistry and Biology, 2000, 7, 133-142.	6.0	83
144	The NDP-sugar co-substrate concentration and the enzyme expression level influence the substrate specificity of glycosyltransferases: cloning and characterization of deoxysugar biosynthetic genes of the urdamycin biosynthetic gene cluster. Chemistry and Biology, 2000, 7, 821-831.	6.0	85

#	Article	IF	CITATIONS
145	Characterization of two glycosyltransferases involved in early glycosylation steps during biosynthesis of the antitumor polyketide mithramycin by Streptomyces argillaceus. Molecular Genetics and Genomics, 2000, 262, 991-1000.	2.4	55
146	Characterization of Two Polyketide Methyltransferases Involved in the Biosynthesis of the Antitumor Drug Mithramycin byStreptomyces argillaceus. Journal of Biological Chemistry, 2000, 275, 3065-3074.	3.4	65
147	Oxidative cleavage of premithramycin B is one of the last steps in the biosynthesis of the antitumor drug mithramycin. Chemistry and Biology, 1999, 6, 19-30.	6.0	78
148	Absolute configurations of Emycin D, E and F; mimicry of centrosymmetric space groups by mixtures of chiral stereoisomers. Acta Crystallographica Section B: Structural Science, 1999, 55, 607-616.	1.8	21
149	Analysis of two chromosomal regions adjacent to genes for a type II polyketide synthase involved in the biosynthesis of the antitumor polyketide mithramycin in Streptomyces argillaceus. Molecular Genetics and Genomics, 1999, 261, 216-225.	2.4	53
150	The Biosynthesis of Aureolic Acid Group Antibiotics. Bioorganic Chemistry, 1999, 27, 41-54.	4.1	61
151	The Structure of Mithramycin Reinvestigated. Journal of Natural Products, 1999, 62, 119-121.	3.0	76
152	Inactivation of theurdGT2Gene, Which Encodes a Glycosyltransferase Responsible for the C-Glycosyltransfer of Activatedd-Olivose, Leads to Formation of the Novel Urdamycins I, J, and K. Journal of the American Chemical Society, 1999, 121, 11058-11062.	13.7	68
153	Novel Hybrid Tetracenomycins through Combinatorial Biosynthesis Using a Glycosyltransferase Encoded by the elm Genes in Cosmid 16F4 and Which Shows a Broad Sugar Substrate Specificity. Journal of the American Chemical Society, 1998, 120, 10596-10601.	13.7	64
154	The structures of premithramycinone and demethylpremithramycinone, plausible early intermediates of the aureolic acid group antibiotic mithramycin. Chemical Communications, 1998, , 437-438.	4.1	25
155	Angucyclines: Total syntheses, new structures, and biosynthetic studies of an emerging new class of antibiotics. Topics in Current Chemistry, 1997, , 127-195.	4.0	156
156	Biosynthetic short activation of the 2,3,6-trideoxysugar l-rhodinose. Chemical Communications, 1997, , 973-974.	4.1	26
157	Chemical and biochemical aspects of deoxysugars and deoxysugar oligosaccharides. Topics in Current Chemistry, 1997, , 1-84.	4.0	170
158	Iterative type II polyketide synthases, cyclases and ketoreductases exhibit context-dependent behavior in the biosynthesis of linear and angular decapolyketides. Chemistry and Biology, 1997, 4, 433-443.	6.0	58
159	Biosynthesis of Taxol. Angewandte Chemie International Edition in English, 1997, 36, 2190-2195.	4.4	20
160	Tetracenomycin M, a Novel Genetically Engineered Tetracenomycin Resulting from a Combination of Mithramycin and Tetracenomycin Biosynthetic Genes. Chemistry - A European Journal, 1997, 3, 1675-1678.	3.3	34
161	Biosynthetic capacities of actinomycetes. 5. Dioxolides, novel secondary metabolites fromStreptomyces tendae. Journal of Basic Microbiology, 1996, 36, 19-25.	3.3	9
162	Biosynthetische Herkunft der Sauerstoffatome von Tetracenomycin C. Angewandte Chemie, 1995, 107, 643-645.	2.0	5

#	Article	IF	CITATIONS
163	Kombinatorische Biosynthese – eine Zukunftsstrategie?. Angewandte Chemie, 1995, 107, 963-967.	2.0	26
164	Neue, gentechnisch hergestellte Tetracenomycine. Angewandte Chemie, 1995, 107, 1214-1217.	2.0	13
165	Biosynthese neuartiger Emycine aus dem Mutantenâ€Stamm <i>Streptomyces cellulosae</i> ssp. <i>griseoincarnatus</i> 1114â€2. Angewandte Chemie, 1995, 107, 1757-1761.	2.0	10
166	Biosynthetic Origin of the Oxygen Atoms of Tetracenomycin C. Angewandte Chemie International Edition in English, 1995, 34, 565-567.	4.4	22
167	Combinatorial Biosynthesis–An Approach in the Near Future?. Angewandte Chemie International Edition in English, 1995, 34, 881-885.	4.4	55
168	Novel Genetically Engineered Tetracenomycins. Angewandte Chemie International Edition in English, 1995, 34, 1107-1110.	4.4	52
169	Biosyntheses of Novel Emycins from the Mutant StrainStreptomyces cellulosae ssp.griseoincarnatus 1114-2. Angewandte Chemie International Edition in English, 1995, 34, 1617-1621.	4.4	38
170	Identification of Streptomyces olivaceus Tü 2353 genes involved in the production of the polyketide elloramycin. Gene, 1995, 166, 121-126.	2.2	50
171	Biosynthetic Investigations on Pyridazomycin. Angewandte Chemie International Edition in English, 1994, 33, 1648-1651.	4.4	27
172	Biosynthetic studies on the xanthone antibiotics lysolipins X and I. Journal of Organic Chemistry, 1994, 59, 2064-2069.	3.2	49
173	Investigations of the biosynthesis and structural revision of landomycin A. Journal of Organic Chemistry, 1994, 59, 4211-4214.	3.2	78
174	Investigations on the biosynthesis of the angucycline group antibiotics aquayamycin and the urdamycins A and B. Results from the structural analysis of novel blocked mutant products. Journal of Organic Chemistry, 1993, 58, 2547-2551.	3.2	40
175	The structure of tetracenomycin C Journal of Antibiotics, 1992, 45, 1190-1192.	2.0	33
176	Biosynthetic origin of the oxygen atoms of aquayamycin: aspects for the biosynthesis of the urdamycin family and for aquayamycin-containing angucycline antibiotics in general. Journal of Organic Chemistry, 1992, 57, 1274-1276.	3.2	34
177	Angucycline group antibiotics. Natural Product Reports, 1992, 9, 103.	10.3	397
178	Biogenesis of the Carbon Skeleton of Glycerinopyrin: A New Biosynthetic Pathway for Pyrroles. Angewandte Chemie International Edition in English, 1991, 30, 183-185.	4.4	12
179	Structure-activity relationships of elloramycin and tetracenomycin C Journal of Antibiotics, 1990, 43, 1169-1178.	2.0	36
180	Landomycins, new angucycline antibiotics from Streptomyces sp. I. Structural studies on landomycins A-D Journal of Antibiotics, 1990, 43, 492-503.	2.0	117

#	Article	IF	CITATIONS
181	A Novel Type of Ring Contraction as Non-Enzymatic Step in the Later Stages of the Biosynthesis of Urdamycin H. Angewandte Chemie International Edition in English, 1990, 29, 1051-1053.	4.4	18
182	Eine neuartige Ringkontraktion als nichtâ€enzymatischer Schritt der spÄ æ n Urdamycinâ€Hâ€Biosynthese. Angewandte Chemie, 1990, 102, 1091-1092.	2.0	5
183	A novel type of non-enzymatic reaction during the late steps in the biosynthesis of the angucycline antibiotics urdamycins C and D. Journal of the Chemical Society Chemical Communications, 1990, , 113.	2.0	17
184	Biosynthetic formation of the S-methyl group of the angucycline antibiotic urdamycin E. Journal of the Chemical Society Chemical Communications, 1989, , 492.	2.0	21
185	Urdamycins, new angucycline antibiotics from Streptomyces fradiae. IV. Biosynthetic studies of urdamycins A-D Journal of Antibiotics, 1989, 42, 1151-1157.	2.0	44
186	Urdamycins, new angucycline antibiotics from Streptomyces fradiae. VI. Structure elucidation and biosynthetic investigations on urdamycin H Journal of Antibiotics, 1989, 42, 1482-1488.	2.0	16
187	Urdamycins, new angucycline antibiotics from Streptomyces fradiae. V. Derivatives of urdamycin A Journal of Antibiotics, 1989, 42, 299-311.	2.0	23
188	Metabolic products of microorganisms. 249. Tetracenomycins B3 and D3, key intermediates of the elloramycin and tetracenomycin C biosynthesis Journal of Antibiotics, 1988, 41, 1066-1073.	2.0	38
189	Urdamycins, new angucycline antibiotics from Streptomyces fradiae. III. The structures of urdamycins C and D Journal of Antibiotics, 1988, 41, 126-129.	2.0	17
190	Metabolic products of microorganisms. 240 Urdamycins, new angucycline antibiotics from Streptomyces fradiae. II Structural studies of urdamycins B to F Journal of Antibiotics, 1987, 40, 459-467.	2.0	64
191	Metabolic products of microorganisms. 234 Urdamycins, new angucycline antibiotics from Streptomyces fradiae. I Isolation, characterization and biological properties Journal of Antibiotics, 1986, 39, 1657-1669.	2.0	122
192	Elloramycins B, C, D, E and F: Minor congeners of the elloramycin producer Streptomyces olivaceus Journal of Antibiotics, 1986, 39, 856-859.	2.0	25
193	Metabolic products of microorganisms. 225. Elloramycin, a new anthracycline-like antibiotic from Streptomyces olivaceus. Isolation, characterization, structure and biological properties Journal of Antibiotics, 1985, 38, 1291-1301.	2.0	57