Andrea Lazzeri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6923511/publications.pdf

Version: 2024-02-01

57758 64796 7,627 169 44 79 citations h-index g-index papers 176 176 176 7316 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Immiscible <scp>PHB/PB</scp> <scp>S</scp> and <scp>PHB/PBSA</scp> blends: morphology, phase composition and modelling of elastic modulus. Polymer International, 2022, 71, 47-56.	3.1	17
2	Essential Work of Fracture and Evaluation of the Interfacial Adhesion of Plasticized PLA/PBSA Blends with the Addition of Wheat Bran By-Product. Polymers, 2022, 14, 615.	4.5	9
3	A Brief Review of Poly (Butylene Succinate) (PBS) and Its Main Copolymers: Synthesis, Blends, Composites, Biodegradability, and Applications. Polymers, 2022, 14, 844.	4.5	101
4	Improvement of the PLA Crystallinity and Heat Distortion Temperature Optimizing the Content of Nucleating Agents and the Injection Molding Cycle Time. Polymers, 2022, 14, 977.	4.5	26
5	Cellulose-based fiber spinning processes using ionic liquids. Cellulose, 2022, 29, 3079-3129.	4.9	47
6	Chitin Nanofibril-Nanolignin Complexes as Carriers of Functional Molecules for Skin Contact Applications. Nanomaterials, 2022, 12, 1295.	4.1	12
7	Influence of Functional Bio-Based Coatings Including Chitin Nanofibrils or Polyphenols on Mechanical Properties of Paper Tissues. Polymers, 2022, 14, 2274.	4.5	4
8	Analytical Modeling of Stress Relaxation and Evaluation of the Activation Volume Variation: Effect of Temperature and Plasticizer Content for Poly(3-hydroxybutyrate-3-hydroxyvalerate). ACS Omega, 2022, 7, 23662-23672.	3.5	1
9	Design of a pilot-scale microwave heated chemical vapor infiltration plant: An innovative approach. Journal of the European Ceramic Society, 2021, 41, 3019-3029.	5.7	3
10	A study on the effect of carbon nanotube surface modification on mechanical and thermal properties of CNT/HDPE nanocomposite. Journal of Thermoplastic Composite Materials, 2021, 34, 203-220.	4.2	15
11	Investigation of electric fieldâ€aligned edgeâ€oxidized graphene oxide nanoplatelets in polyethersulfone matrix in terms of pure water permeation and dye rejection. Polymers for Advanced Technologies, 2021, 32, 1531-1547.	3.2	7
12	Utilization of coffee silverskin in the production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biopolymer-based thermoplastic biocomposites for food contact applications. Composites Part A: Applied Science and Manufacturing, 2021, 140, 106172.	7.6	27
13	Thermoplastic Blends Based on Poly(Butylene Succinate-co-Adipate) and Different Collagen Hydrolysates from Tanning Industry: lâ€"Processing and Thermo-mechanical Properties. Journal of Polymers and the Environment, 2021, 29, 392-403.	5.0	18
14	Poly(lactic acid) (PLA)/Poly(butylene succinate-co-adipate) (PBSA) Compatibilized Binary Biobased Blends: Melt Fluidity, Morphological, Thermo-Mechanical and Micromechanical Analysis. Polymers, 2021, 13, 218.	4.5	45
15	Biobased and Eco-Compatible Beauty Films Coated with Chitin Nanofibrils, Nanolignin and Vitamin E. Cosmetics, 2021, 8, 27.	3.3	18
16	Immunomodulatory Activity of Electrospun Polyhydroxyalkanoate Fiber Scaffolds Incorporating Olive Leaf Extract. Applied Sciences (Switzerland), 2021, 11, 4006.	2.5	13
17	Compatibilization of Poly(Lactic Acid) (PLA)/Plasticized Cellulose Acetate Extruded Blends through the Addition of Reactively Extruded Comb Copolymers. Molecules, 2021, 26, 2006.	3.8	12
18	On the Use of Paper Sludge as Filler in Biocomposites for Injection Moulding. Materials, 2021, 14, 2688.	2.9	6

#	Article	IF	CITATIONS
19	Study on the preferential distribution of acetyl tributyl citrate in poly(lactic) acid-poly(butylene) Tj ETQq1 1 0.784:	314 rgBT 4.8	Overlock 10
20	Monomers, Materials and Energy from Coffee By-Products: A Review. Sustainability, 2021, 13, 6921.	3.2	20
21	Electrosprayed Shrimp and Mushroom Nanochitins on Cellulose Tissue for Skin Contact Application. Molecules, 2021, 26, 4374.	3.8	14
22	Volume Change during Creep and Micromechanical Deformation Processes in PLA–PBSA Binary Blends. Polymers, 2021, 13, 2379.	4.5	13
23	Silver Nanoparticle-Coated Polyhydroxyalkanoate Based Electrospun Fibers for Wound Dressing Applications. Materials, 2021, 14, 4907.	2.9	11
24	Dispersion of Micro Fibrillated Cellulose (MFC) in Poly(lactic acid) (PLA) from Lab-Scale to Semi-Industrial Processing Using Biobased Plasticizers as Dispersing Aids. Chemistry, 2021, 3, 896-915.	2.2	6
25	Chitin Nanofibril Application in Tympanic Membrane Scaffolds to Modulate Inflammatory and Immune Response. Pharmaceutics, 2021, 13, 1440.	4.5	17
26	Chain Extension of Poly(Lactic Acid) (PLA)–Based Blends and Composites Containing Bran with Biobased Compounds for Controlling Their Processability and Recyclability. Polymers, 2021, 13, 3050.	4.5	16
27	Liquid and Solid Functional Bio-Based Coatings. Polymers, 2021, 13, 3640.	4.5	17
28	Rosmarinic Acid and Ulvan from Terrestrial and Marine Sources in Anti-Microbial Bionanosystems and Biomaterials. Applied Sciences (Switzerland), 2021, 11, 9249.	2.5	10
29	Analysis of the Damage Mechanism around the Crack Tip for Two Rubber-Toughened PLA-Based Blends. Polymers, 2021, 13, 4053.	4.5	13
30	Analysis, Development, and Scaling-Up of Poly(lactic acid) (PLA) Biocomposites with Hazelnuts Shell Powder (HSP). Polymers, 2021, 13, 4080.	4.5	9
31	Fully Biobased Reactive Extrusion of Biocomposites Based on PLA Blends and Hazelnut Shell Powders (HSP). Chemistry, 2021, 3, 1464-1480.	2.2	4
32	Electrospinning Piezoelectric Fibers for Biocompatible Devices. Advanced Healthcare Materials, 2020, 9, e1901287.	7.6	90
33	A proposal to modify the Kelly-Tyson equation to calculate the interfacial shear strength (IFSS) of composites with low aspect ratio fibers. Composites Science and Technology, 2020, 186, 107920.	7.8	44
34	Electric field induced alignment of graphene oxide nanoplatelets in polyethersulfone matrix. Nanotechnology, 2020, 31, 155701.	2.6	20
35	Distribution depth of stone consolidants applied on-site: Analytical modelling with field and lab cross-validation. Construction and Building Materials, 2020, 259, 120394.	7.2	8
36	Intelligent non-colorimetric indicators for the perishable supply chain by non-wovens with photo-programmed thermal response. Nature Communications, 2020, 11, 5991.	12.8	21

#	Article	IF	CITATIONS
37	Effect of a Bio-Based Dispersing Aid (Einar \hat{A}^{\otimes} 101) on PLA-Arbocel \hat{A}^{\otimes} Biocomposites: Evaluation of the Interfacial Shear Stress on the Final Mechanical Properties. Biomolecules, 2020, 10, 1549.	4.0	7
38	On the Use of Biobased Waxes to Tune Thermal and Mechanical Properties of Polyhydroxyalkanoates–Bran Biocomposites. Polymers, 2020, 12, 2615.	4.5	18
39	Evaluation of Mussel Shells Powder as Reinforcement for PLA-Based Biocomposites. International Journal of Molecular Sciences, 2020, 21, 5364.	4.1	22
40	Bio-Based Packaging: Materials, Modifications, Industrial Applications and Sustainability. Polymers, 2020, 12, 1558.	4. 5	209
41	Fracture behavior and mechanical, thermal, and rheological properties of biodegradable films extruded by flat die and calender. Journal of Polymer Science, 2020, 58, 3264-3282.	3.8	13
42	Bio-Based Electrospun Fibers for Wound Healing. Journal of Functional Biomaterials, 2020, 11, 67.	4.4	123
43	Preparation and Compatibilization of PBS/Whey Protein Isolate Based Blends. Molecules, 2020, 25, 3313.	3.8	13
44	Electrospun ZnO/Poly(Vinylidene Fluoride-Trifluoroethylene) Scaffolds for Lung Tissue Engineering. Tissue Engineering - Part A, 2020, 26, 1312-1331.	3.1	34
45	Electrosprayed Chitin Nanofibril/Electrospun Polyhydroxyalkanoate Fiber Mesh as Functional Nonwoven for Skin Application. Journal of Functional Biomaterials, 2020, 11, 62.	4.4	42
46	Constrained Amorphous Interphase in Poly(<scp> </scp> -lactic acid): Estimation of the Tensile Elastic Modulus. ACS Omega, 2020, 5, 20890-20902.	3.5	25
47	Lithium niobate nanoparticles as biofunctional interface material for inner ear devices. Biointerphases, 2020, 15, 031004.	1.6	28
48	Thermal, Mechanical and Micromechanical Analysis of PLA/PBAT/POE-g-GMA Extruded Ternary Blends. Frontiers in Materials, 2020, 7, .	2.4	35
49	Pullulan for Advanced Sustainable Body- and Skin-Contact Applications. Journal of Functional Biomaterials, 2020, 11, 20.	4.4	58
50	Sustainable Micro and Nano Additives for Controlling the Migration of a Biobased Plasticizer from PLA-Based Flexible Films. Polymers, 2020, 12, 1366.	4.5	36
51	Properties and Skin Compatibility of Films Based on Poly(Lactic Acid) (PLA) Bionanocomposites Incorporating Chitin Nanofibrils (CN). Journal of Functional Biomaterials, 2020, 11, 21.	4.4	36
52	Skin-Compatible Biobased Beauty Masks Prepared by Extrusion. Journal of Functional Biomaterials, 2020, 11, 23.	4.4	27
53	Bioartificial Sponges for Auricular Cartilage Engineering. Lecture Notes in Bioengineering, 2020, , 191-209.	0.4	1
54	Overview of Agro-Food Waste and By-Products Valorization for Polymer Synthesis and Modification for Bio-Composite Production. Proceedings (mdpi), 2020, 69, .	0.2	5

#	Article	IF	CITATIONS
55	Inspecting adhesion and cohesion of protectives and consolidants in sandstones of architectural heritage by X-ray microscopy methods. Materials Characterization, 2019, 156, 109853.	4.4	8
56	Whey and molasses as inexpensive raw materials for parallel production of biohydrogen and polyesters via a two-stage bioprocess: New routes towards a circular bioeconomy. Journal of Biotechnology, 2019, 303, 37-45.	3.8	22
57	Multifunctional Coatings for Robotic Implanted Device. International Journal of Molecular Sciences, 2019, 20, 5126.	4.1	8
58	Flat Die Extruded Biocompatible Poly(Lactic Acid) (PLA)/Poly(Butylene Succinate) (PBS) Based Films. Polymers, 2019, 11, 1857.	4.5	41
59	Thermo-Mechanical Properties of PLA/Short Flax Fiber Biocomposites. Applied Sciences (Switzerland), 2019, 9, 3797.	2.5	63
60	Chitin Nanofibrils in Poly(Lactic Acid) (PLA) Nanocomposites: Dispersion and Thermo-Mechanical Properties. International Journal of Molecular Sciences, 2019, 20, 504.	4.1	81
61	Improved Impact Properties in Poly(lactic acid) (PLA) Blends Containing Cellulose Acetate (CA) Prepared by Reactive Extrusion. Materials, 2019, 12, 270.	2.9	25
62	Chitin Nanofibrils and Nanolignin as Functional Agents in Skin Regeneration. International Journal of Molecular Sciences, 2019, 20, 2669.	4.1	70
63	Processing and mechanical performances of Poly(Butylene Succinate–co–Adipate) (PBSA) and raw hydrolyzed collagen (HC) thermoplastic blends. Polymer Testing, 2019, 77, 105900.	4.8	29
64	Effect of the Addition of Natural Rice Bran Oil on the Thermal, Mechanical, Morphological and Viscoelastic Properties of Poly(Lactic Acid). Sustainability, 2019, 11, 2783.	3.2	5
65	Cosmetic Packaging to Save the Environment: Future Perspectives. Cosmetics, 2019, 6, 26.	3.3	53
66	Rubber Toughening of Polylactic Acid (PLA) with Poly(butylene adipate-co-terephthalate) (PBAT): Mechanical Properties, Fracture Mechanics and Analysis of Ductile-to-Brittle Behavior while Varying Temperature and Test Speed. European Polymer Journal, 2019, 115, 125-137.	5.4	97
67	Thermal and Mechanical Properties of Biocomposites Made of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Potato Pulp Powder. Polymers, 2019, 11, 308.	4.5	25
68	Hydroxytyrosol rich-mixture from olive mill wastewater and production of green products by feeding Rhodopseudomonas sp. S16-FVPT5 with the residual effluent. Journal of Biotechnology, 2019, 295, 28-36.	3.8	12
69	Thermal, Mechanical, Viscoelastic and Morphological Properties of Poly(lactic acid) based Biocomposites with Potato Pulp Powder Treated with Waxes. Materials, 2019, 12, 990.	2.9	24
70	Chitosan and nano-structured chitin for biobased anti-microbial treatments onto cellulose based materials. European Polymer Journal, 2019, 113, 328-339.	5.4	39
71	Thermal, Mechanical, and Rheological Properties of Biocomposites Made of Poly(lactic acid) and Potato Pulp Powder. International Journal of Molecular Sciences, 2019, 20, 675.	4.1	29
72	Evaluation of Mechanical and Interfacial Properties of Bio-Composites Based on Poly(Lactic Acid) with Natural Cellulose Fibers. International Journal of Molecular Sciences, 2019, 20, 960.	4.1	71

#	Article	IF	CITATIONS
73	Constrained Amorphous Interphase and Mechanical Properties of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate). Frontiers in Chemistry, 2019, 7, 790.	3.6	17
74	Rigid filler toughening in PLA-Calcium Carbonate composites: Effect of particle surface treatment and matrix plasticization. European Polymer Journal, 2019, 113, 78-88.	5.4	70
75	Processability and Degradability of PHA-Based Composites in Terrestrial Environments. International Journal of Molecular Sciences, 2019, 20, 284.	4.1	63
76	Chitin nanofibrils in renewable materials for packaging and personal care applications. Advanced Materials Letters, 2019, 10, 425-430.	0.6	12
77	Photofermentative Poly-3-Hydroxybutyrate Production by Rhodopseudomonas sp. S16-VOGS3 in a Novel Outdoor 70-L Photobioreactor. Sustainability, 2018, 10, 3133.	3.2	21
78	Poly(lactic acid) (PLA) Based Tear Resistant and Biodegradable Flexible Films by Blown Film Extrusion. Materials, 2018, 11, 148.	2.9	78
79	Novel Sustainable Composites Based on Poly(hydroxybutyrate-co-hydroxyvalerate) and Seagrass Beach-CAST Fibers: Performance and Degradability in Marine Environments. Materials, 2018, 11, 772.	2.9	41
80	Preparation of Water Suspensions of Nanocalcite for Cultural Heritage Applications. Nanomaterials, 2018, 8, 254.	4.1	11
81	Effect of different nucleating agent on crystallinity and properties of polylactic acid. AIP Conference Proceedings, 2018, , .	0.4	1
82	Preparation of Innovative Skin Compatible Films to Release Polysaccharides for Biobased Beauty Masks. Cosmetics, 2018, 5, 70.	3.3	22
83	Poly(lactic acid) plasticized with lowâ€molecularâ€weight polyesters: structural, thermal and biodegradability features. Polymer International, 2017, 66, 761-769.	3.1	23
84	Effect of nucleating agents on crystallinity and properties of poly (lactic acid) (PLA). European Polymer Journal, 2017, 93, 822-832.	5.4	113
85	Reactively extruded ecocomposites based on poly(lactic acid)/bisphenol A polycarbonate blends reinforced with regenerated cellulose microfibers. Composites Science and Technology, 2017, 139, 127-137.	7.8	31
86	Pore Size Distribution and Blend Composition Affect In Vitro Prevascularized Bone Matrix Formation on Poly(Vinyl Alcohol)/Gelatin Sponges. Macromolecular Materials and Engineering, 2017, 302, 1700300.	3.6	14
87	Effects of waviness on fiber-length distribution and interfacial shear strength of natural fibers reinforced composites. Composites Science and Technology, 2017, 152, 129-138.	7.8	41
88	Exploitation of Arundo donax L. Hydrolysis Residue for the Green Synthesis of Flexible Polyurethane Foams. BioResources, 2017, 12, .	1.0	26
89	New Bio-Composites Based on Polyhydroxyalkanoates and Posidonia oceanica Fibres for Applications in a Marine Environment. Materials, 2017, 10, 326.	2.9	57
90	Processing Routes for the Preparation of Poly(Lactic Acid)/Cellulose-Nanowhisker Nanocomposites for Packaging Applications. Polymers and Polymer Composites, 2016, 24, 341-346.	1.9	16

#	Article	IF	CITATIONS
91	Recyclability of PET/WPI/PE Multilayer Films by Removal of Whey Protein Isolate-Based Coatings with Enzymatic Detergents. Materials, 2016, 9, 473.	2.9	33
92	State of the Art in the Development and Properties of Protein-Based Films and Coatings and Their Applicability to Cellulose Based Products: An Extensive Review. Coatings, 2016, 6, 1.	2.6	164
93	Coâ€agent mediated functionalization of <scp>LDPE</scp> / <scp>iPP</scp> mixtures for compatibilization of <scp>WEEE</scp> â€recovered polyvinylchloride. Polymer International, 2016, 65, 621-630.	3.1	2
94	The decoration of multi-walled carbon nanotubes with nickel oxide nanoparticles using chemical method. International Nano Letters, 2016, 6, 183-190.	5.0	29
95	Effect of Potato Pulp Filler on the Mechanical Properties and Water Vapor Transmission Rate of Thermoplastic WPI/PBS Blends. Polymer-Plastics Technology and Engineering, 2016, 55, 510-517.	1.9	17
96	Cultural Heritage Documentation and Conservation: Three-Dimensional (3D) Laser Scanning and Geographical Information System (GIS) Techniques for Thematic Mapping of Facade Stonework of St. Nicholas Church (Pisa, Italy). International Journal of Architectural Heritage, 2016, 10, 9-19.	3.1	71
97	Composition dependence of the synergistic effect of nucleating agent and plasticizer in poly(lactic) Tj ETQq $1\ 1\ 0$).784314 2.1	rgBT/Overlo
98	Thermal Properties of Plasticized Poly (Lactic Acid) (PLA) Containing Nucleating Agent. International Journal of Chemical Engineering and Applications (IJCEA), 2016, 7, 85-88.	0.3	30
99	A study on the dependence of structure of multi-walled carbon nanotubes on acid treatment. Journal of Nanostructure in Chemistry, 2015, 5, 287-293.	9.1	36
100	Optimizing the lignin based synthesis of flexible polyurethane foams employing reactive liquefying agents. Polymer International, 2015, 64, 1235-1244.	3.1	35
101	An Innovative Device to Convert Olive Mill Wastewater into a Suitable Effluent for Feeding Purple Non-Sulfur Photosynthetic Bacteria. Resources, 2015, 4, 621-636.	3.5	2
102	Comparison of Precipitated Calcium Carbonate/Polylactic Acid and Halloysite/Polylactic Acid Nanocomposites. Journal of Nanomaterials, 2015, 2015, 1-11.	2.7	16
103	Intralesional administration of L19-IL2/L19-TNF in stage III or stage IVM1a melanoma patients: results of a phase II study. Cancer Immunology, Immunotherapy, 2015, 64, 999-1009.	4.2	138
104	Synergistic Effects of Nucleating Agents and Plasticizers on the Crystallization Behavior of Poly(lactic acid). Molecules, 2015, 20, 1579-1593.	3.8	96
105	Ramie fibers in a comparison between chemical and microbiological retting proposed for application in biocomposites. Industrial Crops and Products, 2015, 75, 178-184.	5.2	35
106	Characterization of the Arundo Donax L. solid residue from hydrothermal conversion: Comparison with technical lignins and application perspectives. Industrial Crops and Products, 2015, 76, 1008-1024.	5.2	43
107	Flexible polyurethane foams green production employing lignin or oxypropylated lignin. European Polymer Journal, 2015, 64, 147-156.	5.4	150
108	Modification of the mechanical behavior in the glass transition region of poly(lactic acid) (PLA) through catalyzed reactive extrusion with poly(carbonate) (PC)., 2014,,.		1

#	Article	IF	CITATIONS
109	Cellulose Acetate Blends - Effect of Plasticizers on Properties and Biodegradability. Journal of Renewable Materials, 2014, 2, 35-41.	2,2	45
110	Effect of ageing time on mechanical properties of plasticized poly(hydroxybutyrate) (PHB). AIP Conference Proceedings, 2014 , , .	0.4	6
111	Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. EXPRESS Polymer Letters, 2014, 8, 791-808.	2.1	682
112	Dependence of the Pukánszky's interaction parameter B on the interface shear strength (IFSS) of nanofiller- and short fiber-reinforced polymer composites. Composites Science and Technology, 2014, 93, 106-113.	7.8	87
113	On the Role of Stearic Acid on the Surface Properties of Carbon Nanotubes. Particulate Science and Technology, 2014, 32, 554-559.	2.1	3
114	Compatibilization and property enhancement of poly(lactic acid)/polycarbonate blends through triacetin-mediated interchange reactions in the melt. Polymer, 2014, 55, 4498-4513.	3.8	75
115	Whey protein layer applied on biodegradable packaging film to improve barrier properties while maintaining biodegradability. Polymer Degradation and Stability, 2014, 108, 151-157.	5. 8	89
116	A phase II study of intratumoral application of L19IL2/L19TNF in melanoma patients in clinical stage III or stage IV M1a with presence of injectable cutaneous and/or subcutaneous lesions Journal of Clinical Oncology, 2014, 32, TPS9103-TPS9103.	1.6	4
117	Biocomposites based on lignin and plasticized poly(<scp>L</scp> â€lactic acid). Journal of Applied Polymer Science, 2013, 129, 202-214.	2.6	59
118	Design and Characterization of a Robotized Gearbox System Based on Voice Coil Actuators for a Formula SAE Race Car. IEEE/ASME Transactions on Mechatronics, 2013, 18, 53-61.	5.8	24
119	Green synthesis of flexible polyurethane foams from liquefied lignin. European Polymer Journal, 2013, 49, 1174-1184.	5.4	223
120	Processing and Validation of Whey-Protein-Coated Films and Laminates at Semi-Industrial Scale as Novel Recyclable Food Packaging Materials with Excellent Barrier Properties. Advances in Materials Science and Engineering, 2013, 2013, 1-10.	1.8	62
121	"Green―biocomposites based on cellulose diacetate and regenerated cellulose microfibers: Effect of plasticizer content on morphology and mechanical properties. Composites Part A: Applied Science and Manufacturing, 2012, 43, 2256-2268.	7.6	24
122	Properties of Whey-Protein-Coated Films and Laminates as Novel Recyclable Food Packaging Materials with Excellent Barrier Properties. International Journal of Polymer Science, 2012, 2012, 1-7.	2.7	121
123	Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding. Optics Letters, 2011, 36, 2557.	3.3	96
124	Ventilatory and ECMO treatment of H1N1-induced severe respiratory failure: results of an Italian referral ECMO center. BMC Pulmonary Medicine, 2011, 11, 2.	2.0	53
125	Effect of nucleating agents on the molar mass distribution and its correlation with the isothermal crystallization behavior of poly(<scp>L</scp> â€lactic acid). Journal of Applied Polymer Science, 2011, 122, 3528-3536.	2.6	14
126	Structure and surface coverage of water-based stearate coatings on calcium carbonate nanoparticles. Journal of Colloid and Interface Science, 2011, 362, 67-73.	9.4	18

#	Article	IF	CITATIONS
127	Physicoâ€Mechanical Properties of Biodegradable Rubber Toughened Polymers. Macromolecular Symposia, 2011, 301, 82-89.	0.7	36
128	Advanced cyclic coding technique for long-range Raman DTS systems with meter-scale spatial resolution over standard SMF. , 2011, , .		11
129	The Role of Interfacial Interactions in the Toughening of Precipitated Calcium Carbonate–Polypropylene Nanocomposites. Composite Interfaces, 2010, 17, 533-549.	2.3	19
130	On the Coating of Precipitated Calcium Carbonate with Stearic Acid in Aqueous Medium. Langmuir, 2010, 26, 8474-8482.	3.5	94
131	SNR enhancement of Raman-based long-range distributed temperature sensors using cyclic Simplex codes. Electronics Letters, 2010, 46, 1221.	1.0	33
132	Electronic Control System of a Formula SAE Gearbox Using Electric Voice Coil Actuators., 2009,,.		1
133	Zirconium tin titanate (ZST) for miniaturized high impedance surfaces: Microwave dielectric properties and applications. Digest / IEEE Antennas and Propagation Society International Symposium, 2009, , .	0.0	0
134	Miniaturized high impedance surfaces with angular stability by using zirconium tin titanate substrates and convoluted FSS elements. Microwave and Optical Technology Letters, 2009, 51, 2753-2758.	1.4	10
135	A multinuclear solidâ€state magnetic resonance study of the interactions between the inorganic and organic coatings of BaSO ₄ submicronic particles. Magnetic Resonance in Chemistry, 2008, 46, 52-57.	1.9	6
136	Modeling and Development of a Microwave Heated Pilot Plant for the Production of SiC-Based Ceramic Matrix Composites. International Journal of Chemical Reactor Engineering, 2008, 6, .	1.1	2
137	Effect of both uncoated and coated calcium carbonate on fracture toughness of HDPE/CaCO3 nanocomposites. Journal of Applied Polymer Science, 2007, 104, 3688-3694.	2.6	76
138	On the use of dynamic mechanical thermal analysis (DMTA) for measuring glass transition temperature of polymer matrix fibre reinforced composites. Journal of Materials Science, 2006, 41, 6072-6076.	3.7	37
139	Filler toughening of plastics. Part 1â€"The effect of surface interactions on physico-mechanical properties and rheological behaviour of ultrafine CaCO3/HDPE nanocomposites. Polymer, 2005, 46, 827-844.	3.8	174
140	Simulation of the plastic behavior of amorphous glassy bis-phenol-A-polycarbonate. Journal of Chemical Physics, 2004, 121, 4941-4950.	3.0	16
141	Volume strain measurements on CACO3/polypropylene particulate composites: The effect of particle size. Journal of Applied Polymer Science, 2004, 91, 925-935.	2.6	81
142	New Epoxy Resins Cured with Tetraaminophenyladamantane (TAPA). Macromolecular Chemistry and Physics, 2004, 205, 2089-2096.	2.2	26
143	Dilatational shear bands in rubber-modified isotactic polypropylene. Materials & Design, 2004, 25, 247-250.	5.1	16
144	Deformation, yield and fracture of elastomer-modified polypropylene. Journal of Applied Polymer Science, 2003, 90, 3767-3779.	2.6	42

#	Article	IF	Citations
145	Fracture behaviour of isotactic polypropylene under static loading condition. Materials & Design, 2003, 24, 105-109.	5.1	28
146	Fracture mechanism under dynamic loading of elastomer-modified polypropylene. Materials Letters, 2003, 57, 2733-2741.	2.6	40
147	Hybrid PP–EPR–GF composites. Part II: fracture mechanisms. Plastics, Rubber and Composites, 2003, 32, 439-444.	2.0	3
148	Role of the interface on the deformation mechanism of glass fiber/polypropylene composites. Journal of Materials Science Letters, 2002, 21, 1007-1011.	0.5	11
149	Gelatin-Based Blends and Composites. Morphological and Thermal Mechanical Characterization. Biomacromolecules, 2001, 2, 806-811.	5.4	119
150	Physical-Mechanical and Thermal Properties of Polyethylene Toughened with Submicron BaSO4 Particles. Macromolecular Symposia, 2001, 169, 191-200.	0.7	4
151	A micromechanical model for multiple crazing in high impact polystyrene. Mechanics of Materials, 2001, 33, 155-175.	3.2	64
152	Hybrid PPâ€"EPRâ€"GF composites. Part 1 â€" Deformation mechanisms. Plastics, Rubber and Composites, 2001, 30, 370-376.	2.0	11
153	Ramie (Boehmeria nivea (L.) Gaud.) and Spanish Broom (Spartium junceum L.) fibres for composite materials: agronomical aspects, morphology and mechanical properties. Industrial Crops and Products, 2000, 11, 145-161.	5.2	127
154	Rubber toughening of plastics Part XIII Dilatational yielding in PA6.6/EPR blends. Journal of Materials Science, 2000, 35, 427-435.	3.7	15
155	Recent Developments in the Modeling of Dilatational Yielding in Toughened Plastics. ACS Symposium Series, 2000, , 14-35.	0.5	10
156	Reactive compatibilization and fracture behavior in nylon 6/VLDPE blends. Journal of Applied Polymer Science, 1999, 74, 3455-3468.	2.6	16
157	FATIGUE AND FRACTURE IN POLYACETAL RESINS. Fatigue and Fracture of Engineering Materials and Structures, 1997, 20, 1207-1216.	3.4	16
158	Influence of the constitutive characteristics of resins on the composite materials delamination. Engineering Fracture Mechanics, 1996, 55, 1001-1012.	4.3	2
159	Applications of a dilatational yielding model to rubber-toughened polymers. Polymer, 1995, 36, 2895-2902.	3.8	147
160	Dilatational bands in rubber-toughened polymers. Journal of Materials Science, 1993, 28, 6799-6808.	3.7	308
161	Studies of the corrosion protection of immersed metallic structures by sub-aquatic applications of epoxy coatings. Corrosion Science, 1993, 34, 1685-1696.	6.6	5
162	Toughness of epoxies modified by preformed acrylic rubber particles. Makromolekulare Chemie Macromolecular Symposia, 1991, 41, 179-194.	0.6	23

#	Article	IF	CITATIONS
163	Crosslink density and fracture toughness of epoxy resins. Journal of Materials Science, 1991, 26, 2348-2352.	3.7	227
164	Rubber toughening of plastics. Journal of Materials Science, 1989, 24, 2255-2261.	3.7	72
165	Fracture of ultrafine calcium carbonate/polypropylene composites. Polymer Composites, 1989, 10, 39-43.	4.6	102
166	Ternary blends in the toughening of epoxy resins. Polymer Composites, 1987, 8, 141-148.	4.6	8
167	Morphology and mechanical properties of amine-terminated butadiene-acrylonitrile/epoxy blends. Polymer Engineering and Science, 1986, 26, 63-73.	3.1	111
168	Modification of the Mechanical Behavior in the Glass Transition Region of Poly(lactic acid) (PLA) through Catalyzed Reactive Extrusion with Poly(carbonate) (PC). Advanced Materials Research, 0, 1119, 292-295.	0.3	0
169	OPTO-TECHNICAL MONITORING – A STANDARDIZED METHODOLOGY TO ASSESS THE TREATMENT OF HISTORICAL STONE SURFACES. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-2, 945-952.	0.2	5