Attila Becskei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6922995/publications.pdf

Version: 2024-02-01

471509 345221 3,566 36 17 36 citations h-index g-index papers 40 40 40 3452 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Determinants of the temperature adaptation of mRNA degradation. Nucleic Acids Research, 2022, 50, 1092-1110.	14.5	7
2	Gene Families With Stochastic Exclusive Gene Choice Underlie Cell Adhesion in Mammalian Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 642212.	3.7	6
3	Tuning up Transcription Factors for Therapy. Molecules, 2020, 25, 1902.	3.8	11
4	Contribution of RNA Degradation to Intrinsic and Extrinsic Noise in Gene Expression. Cell Reports, 2019, 26, 3752-3761.e5.	6.4	63
5	Synthetic Transcription Factors Switch from Local to Long-Range Control during Cell Differentiation. ACS Synthetic Biology, 2019, 8, 223-231.	3.8	4
6	Stochastic Gene Choice during Cellular Differentiation. Cell Reports, 2018, 24, 3503-3512.	6.4	19
7	Measurement of bistability in a multidimensional parameter space. Integrative Biology (United) Tj ETQq $1\ 1\ 0.78$	4314 rgBT 1.3	Oyerlock 10
8	Measurement of <i>In Vivo</i> Protein Binding Affinities in a Signaling Network with Mass Spectrometry. ACS Synthetic Biology, 2017, 6, 1305-1314.	3.8	7
9	An open-loop approach to calculate noise-induced transitions. Journal of Theoretical Biology, 2017, 415, 145-157.	1.7	5
10	Multiplexed gene control reveals rapid mRNA turnover. Science Advances, 2017, 3, e1700006.	10.3	78
11	Impact of Methods on the Measurement of mRNA Turnover. International Journal of Molecular Sciences, 2017, 18, 2723.	4.1	51
12	Protein Dimerization Generates Bistability in Positive Feedback Loops. Cell Reports, 2016, 16, 1204-1210.	6.4	32
13	Contribution of Bistability and Noise to Cell Fate Transitions Determined by Feedback Opening. Journal of Molecular Biology, 2016, 428, 4115-4128.	4.2	13
14	Identification of optimal parameter combinations for the emergence of bistability. Physical Biology, 2015, 12, 066011.	1.8	5
15	Expression feels two pulses. Nature, 2015, 527, 46-47.	27.8	0
16	Quantification of pre-mRNA escape rate and synergy in splicing. Nucleic Acids Research, 2014, 42, 12847-12860.	14.5	13
17	Myoblasts Inhibit Prostate Cancer Growth by Paracrine Secretion of Tumor Necrosis Factor-α. Journal of Urology, 2013, 189, 1952-1959.	0.4	19
18	Stochastic signalling rewires the interaction map of a multiple feedback network during yeast evolution. Nature Communications, 2012, 3, 682.	12.8	37

#	Article	IF	CITATIONS
19	Modeling of chromosomal epigenetic silencing processes. Transcription, 2011, 2, 173-178.	3.1	3
20	Construction of cis-Regulatory Input Functions of Yeast Promoters. Methods in Molecular Biology, 2011, 734, 45-61.	0.9	2
21	The cost of feedback control. Nature, 2010, 467, 163-164.	27.8	8
22	Spatial Epigenetic Control of Mono- and Bistable Gene Expression. PLoS Biology, 2010, 8, e1000332.	5.6	44
23	Linearization through distortion: a new facet of negative feedback in signalling. Molecular Systems Biology, 2009, 5, 255.	7.2	4
24	Control and signal processing by transcriptional interference. Molecular Systems Biology, 2009, 5, 300.	7.2	22
25	Synergy of Repression and Silencing Gradients Along the Chromosome. Journal of Molecular Biology, 2009, 387, 826-839.	4.2	11
26	Contribution of ILâ€12R mediated feedback loop to Th1 cell differentiation. FEBS Letters, 2007, 581, 5199-5206.	2.8	44
27	Contributions of low molecule number and chromosomal positioning to stochastic gene expression. Nature Genetics, 2005, 37, 937-944.	21.4	291
28	Enhancement of cellular memory by reducing stochastic transitions. Nature, 2005, 435, 228-232.	27.8	476
29	Quantitative models of nuclear transport. Current Opinion in Cell Biology, 2005, 17, 27-34.	5.4	30
30	A System of Counteracting Feedback Loops Regulates Cdc42p Activity during Spontaneous Cell Polarization. Developmental Cell, 2005, 9, 565-571.	7.0	131
31	Amplitude control of cell-cycle waves by nuclear import. Nature Cell Biology, 2004, 6, 451-457.	10.3	17
32	The strategy for coupling the RanGTP gradient to nuclear protein export. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1717-1722.	7.1	39
33	Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO Journal, 2001, 20, 2528-2535.	7.8	614
34	Engineering stability in gene networks by autoregulation. Nature, 2000, 405, 590-593.	27.8	1,385
35	\hat{l}^2 -Amyloid ($1\hat{a}$ €"42) peptide impairs blood-brain barrier function after intracarotid infusion in rats. Neuroscience Letters, 1998, 253, 139-141.	2.1	65
36	Suggested binding mechanism of the HIV-gp120 to its CD4 receptor. Computational and Theoretical Chemistry, 1996, 367, 159-186.	1.5	6