David W C Macmillan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/692251/publications.pdf

Version: 2024-02-01

87 papers 32,234 citations

64 h-index 89 g-index

97 all docs

97 docs citations

97 times ranked 13980 citing authors

#	Article	IF	CITATIONS
1	Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chemical Reviews, 2013, 113, 5322-5363.	47.7	7,226
2	Photoredox Catalysis in Organic Chemistry. Journal of Organic Chemistry, 2016, 81, 6898-6926.	3.2	2,156
3	Merging Photoredox Catalysis with Organocatalysis: The Direct Asymmetric Alkylation of Aldehydes. Science, 2008, 322, 77-80.	12.6	2,023
4	The merger of transition metal and photocatalysis. Nature Reviews Chemistry, 2017, $1, .$	30.2	1,591
5	Merging photoredox with nickel catalysis: Coupling of α-carboxyl sp ³ -carbons with aryl halides. Science, 2014, 345, 437-440.	12.6	1,309
6	Discovery of an α-Amino C–H Arylation Reaction Using the Strategy of Accelerated Serendipity. Science, 2011, 334, 1114-1117.	12.6	858
7	Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis. Chemical Reviews, 2022, 122, 1485-1542.	47.7	660
8	Alcohols as alkylating agents in heteroarene C–H functionalization. Nature, 2015, 525, 87-90.	27.8	581
9	Native functionality in triple catalytic cross-coupling: sp ³ C–H bonds as latent nucleophiles. Science, 2016, 352, 1304-1308.	12.6	501
10	Photoredox Activation for the Direct \hat{l}^2 -Arylation of Ketones and Aldehydes. Science, 2013, 339, 1593-1596.	12.6	491
11	Enantioselective α-Benzylation of Aldehydes via Photoredox Organocatalysis. Journal of the American Chemical Society, 2010, 132, 13600-13603.	13.7	480
12	Switching on elusive organometallic mechanisms with photoredox catalysis. Nature, 2015, 524, 330-334.	27.8	474
13	Carboxylic Acids as A Traceless Activation Group for Conjugate Additions: A Three-Step Synthesis of $(\hat{A}\pm)$ -Pregabalin. Journal of the American Chemical Society, 2014, 136, 10886-10889.	13.7	472
14	Aryl amination using ligand-free Ni(II) salts and photoredox catalysis. Science, 2016, 353, 279-283.	12.6	472
15	Decarboxylative Arylation of α-Amino Acids via Photoredox Catalysis: A One-Step Conversion of Biomass to Drug Pharmacophore. Journal of the American Chemical Society, 2014, 136, 5257-5260.	13.7	463
16	Silyl Radical Activation of Alkyl Halides in Metallaphotoredox Catalysis: A Unique Pathway for Cross-Electrophile Coupling. Journal of the American Chemical Society, 2016, 138, 8084-8087.	13.7	463
17	The direct arylation of allylic sp3 C–H bonds via organic and photoredox catalysis. Nature, 2015, 519, 74-77.	27.8	429
18	Enantioselective Decarboxylative Arylation of \hat{l}_{\pm} -Amino Acids via the Merger of Photoredox and Nickel Catalysis. Journal of the American Chemical Society, 2016, 138, 1832-1835.	13.7	425

#	Article	IF	CITATIONS
19	O–H hydrogen bonding promotes H-atom transfer from α C–H bonds for C-alkylation of alcohols. Science, 2015, 349, 1532-1536.	12.6	414
20	Photosensitized, energy transfer-mediated organometallic catalysis through electronically excited nickel(II). Science, 2017, 355, 380-385.	12.6	398
21	Selective sp3 C–H alkylation via polarity-match-based cross-coupling. Nature, 2017, 547, 79-83.	27.8	396
22	Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds. Science, 2017, 358, 1182-1187.	12.6	394
23	Enantioselective Organocatalytic α-Fluorination of Aldehydes. Journal of the American Chemical Society, 2005, 127, 8826-8828.	13.7	393
24	Merging Photoredox and Nickel Catalysis: Decarboxylative Cross-Coupling of Carboxylic Acids with Vinyl Halides. Journal of the American Chemical Society, 2015, 137, 624-627.	13.7	380
25	Photoredox \hat{l} ±-Vinylation of \hat{l} ±-Amino Acids and <i>N</i> -Aryl Amines. Journal of the American Chemical Society, 2014, 136, 11602-11605.	13.7	374
26	Direct arylation of strong aliphatic C–H bonds. Nature, 2018, 560, 70-75.	27.8	373
27	Metallaphotoredox-catalysed sp3–sp3 cross-coupling of carboxylic acids with alkyl halides. Nature, 2016, 536, 322-325.	27.8	347
28	Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis. Journal of the American Chemical Society, 2015, 137, 5654-5657.	13.7	320
29	A radical approach to the copper oxidative addition problem: Trifluoromethylation of bromoarenes. Science, 2018, 360, 1010-1014.	12.6	319
30	Oxalates as Activating Groups for Alcohols in Visible Light Photoredox Catalysis: Formation of Quaternary Centers by Redox-Neutral Fragment Coupling. Journal of the American Chemical Society, 2015, 137, 11270-11273.	13.7	304
31	Decarboxylative sp3 C–N coupling via dual copper and photoredox catalysis. Nature, 2018, 559, 83-88.	27.8	303
32	The Evolution of High-Throughput Experimentation in Pharmaceutical Development and Perspectives on the Future. Organic Process Research and Development, 2019, 23, 1213-1242.	2.7	279
33	Merging Photoredox and Nickel Catalysis: The Direct Synthesis of Ketones by the Decarboxylative Arylation of αâ€Oxo Acids. Angewandte Chemie - International Edition, 2015, 54, 7929-7933.	13.8	276
34	Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials. Nature Chemistry, 2018, 10, 205-211.	13.6	272
35	A General Strategy for Organocatalytic Activation of C–H Bonds via Photoredox Catalysis: Direct Arylation of Benzylic Ethers. Journal of the American Chemical Society, 2014, 136, 626-629.	13.7	254
36	Direct Aldehyde C–H Arylation and Alkylation via the Combination of Nickel, Hydrogen Atom Transfer, and Photoredox Catalysis. Journal of the American Chemical Society, 2017, 139, 11353-11356.	13.7	229

#	Article	IF	CITATIONS
37	The merger of decatungstate and copper catalysis to enable aliphatic C(sp3)–H trifluoromethylation. Nature Chemistry, 2020, 12, 459-467.	13.6	226
38	Enantioselective Organocatalysis Using SOMO Activation. Science, 2007, 316, 582-585.	12.6	200
39	Alcohols as Latent Coupling Fragments for Metallaphotoredox Catalysis: sp ³ –sp ² Cross-Coupling of Oxalates with Aryl Halides. Journal of the American Chemical Society, 2016, 138, 13862-13865.	13.7	196
40	A General Small-Scale Reactor To Enable Standardization and Acceleration of Photocatalytic Reactions. ACS Central Science, 2017, 3, 647-653.	11.3	195
41	Microenvironment mapping via Dexter energy transfer on immune cells. Science, 2020, 367, 1091-1097.	12.6	188
42	Copper-mediated synthesis of drug-like bicyclopentanes. Nature, 2020, 580, 220-226.	27.8	174
43	Mechanistic Analysis of Metallaphotoredox C–N Coupling: Photocatalysis Initiates and Perpetuates Ni(I)/Ni(III) Coupling Activity. Journal of the American Chemical Society, 2020, 142, 15830-15841.	13.7	162
44	Metallaphotoredox-enabled deoxygenative arylation of alcohols. Nature, 2021, 598, 451-456.	27.8	159
45	Amine α-heteroarylation via photoredox catalysis: a homolytic aromatic substitution pathway. Chemical Science, 2014, 5, 4173-4178.	7.4	156
46	Direct, enantioselective \hat{l} ±-alkylation of aldehydes using simple olefins. Nature Chemistry, 2017, 9, 1073-1077.	13.6	153
47	Selective Hydrogen Atom Abstraction through Induced Bond Polarization: Direct αâ€Arylation of Alcohols through Photoredox, HAT, and Nickel Catalysis. Angewandte Chemie - International Edition, 2018, 57, 5369-5373.	13.8	151
48	Decarboxylative Trifluoromethylation of Aliphatic Carboxylic Acids. Journal of the American Chemical Society, 2018, 140, 6522-6526.	13.7	147
49	Enantioselective αâ€Alkylation of Aldehydes by Photoredox Organocatalysis: Rapid Access to Pharmacophore Fragments from β yanoaldehydes. Angewandte Chemie - International Edition, 2015, 54, 9668-9672.	13.8	144
50	Metallaphotoredox-Catalyzed Cross-Electrophile C _{sp} ³ –C _{sp} ³ Coupling of Aliphatic Bromides. Journal of the American Chemical Society, 2018, 140, 17433-17438.	13.7	139
51	Sulfonamidation of Aryl and Heteroaryl Halides through Photosensitized Nickel Catalysis. Angewandte Chemie - International Edition, 2018, 57, 3488-3492.	13.8	137
52	Metallaphotoredox Difluoromethylation of Aryl Bromides. Angewandte Chemie - International Edition, 2018, 57, 12543-12548.	13.8	136
53	Cross-Electrophile Coupling of Unactivated Alkyl Chlorides. Journal of the American Chemical Society, 2020, 142, 11691-11697.	13.7	131
54	Spin-Center Shift-Enabled Direct Enantioselective \hat{l}_{\pm} -Benzylation of Aldehydes with Alcohols. Journal of the American Chemical Society, 2018, 140, 3322-3330.	13.7	129

#	Article	IF	CITATIONS
55	Decarboxylative Hydroalkylation of Alkynes. Journal of the American Chemical Society, 2018, 140, 5701-5705.	13.7	127
56	Copper-Catalyzed Trifluoromethylation of Alkyl Bromides. Journal of the American Chemical Society, 2019, 141, 6853-6858.	13.7	114
57	Transient Absorption Spectroscopy Offers Mechanistic Insights for an Iridium/Nickel-Catalyzed C–O Coupling. Journal of the American Chemical Society, 2020, 142, 4555-4559.	13.7	110
58	Fragment Couplings via CO ₂ Extrusion–Recombination: Expansion of a Classic Bond-Forming Strategy via Metallaphotoredox. Journal of the American Chemical Society, 2015, 137, 11938-11941.	13.7	105
59	Decatungstate-Catalyzed C(⟨i⟩sp⟨ i⟩⟨sup⟩3⟨ sup⟩)â€"H Sulfinylation: Rapid Access to Diverse Organosulfur Functionality. Journal of the American Chemical Society, 2021, 143, 9737-9743.	13.7	91
60	Site-Selective Functionalization of Methionine Residues via Photoredox Catalysis. Journal of the American Chemical Society, 2020, 142, 21260-21266.	13.7	82
61	Nontraditional Fragment Couplings of Alcohols and Carboxylic Acids: C(<i>>sp</i> ³)–C(<i>>sp</i> ³) Cross-Coupling via Radical Sorting. Journal of the American Chemical Society, 2022, 144, 6185-6192.	13.7	80
62	Static to inducibly dynamic stereocontrol: The convergent use of racemic \hat{l}^2 -substituted ketones. Science, 2020, 369, 1113-1118.	12.6	79
63	A Metallaphotoredox Strategy for the Crossâ€Electrophile Coupling of αâ€Chloro Carbonyls with Aryl Halides. Angewandte Chemie - International Edition, 2019, 58, 14584-14588.	13.8	76
64	Catalyst-controlled oligomerization for the collective synthesis of polypyrroloindoline natural products. Nature Chemistry, 2017, 9, 1165-1169.	13.6	74
65	Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation. Nature Chemistry, 2021, 13, 902-908.	13.6	74
66	A Unified Approach to Decarboxylative Halogenation of (Hetero)aryl Carboxylic Acids. Journal of the American Chemical Society, 2022, 144, 8296-8305.	13.7	67
67	The Application of Pulse Radiolysis to the Study of Ni(I) Intermediates in Ni-Catalyzed Cross-Coupling Reactions. Journal of the American Chemical Society, 2021, 143, 9332-9337.	13.7	65
68	Metallaphotoredox aryl and alkyl radiomethylation for PET ligand discovery. Nature, 2021, 589, 542-547.	27.8	64
69	A biomimetic S _H 2 cross-coupling mechanism for quaternary sp ³ -carbon formation. Science, 2021, 374, 1258-1263.	12.6	64
70	Open-Shell Fluorination of Alkyl Bromides: Unexpected Selectivity in a Silyl Radical-Mediated Chain Process. Journal of the American Chemical Society, 2019, 141, 20031-20036.	13.7	63
71	Accelerating reaction generality and mechanistic insight through additive mapping. Science, 2022, 376, 532-539.	12.6	61
72	A general N-alkylation platform via copper metallaphotoredox and silyl radical activation of alkyl halides. CheM, 2021, 7, 1827-1842.	11.7	57

#	Article	IF	CITATIONS
73	Decarboxylative Borylation and Cross-Coupling of (Hetero)aryl Acids Enabled by Copper Charge Transfer Catalysis. Journal of the American Chemical Society, 2022, 144, 6163-6172.	13.7	53
74	Rapid Optimization of Photoredox Reactions for Continuous-Flow Systems Using Microscale Batch Technology. ACS Central Science, 2021, 7, 1126-1134.	11.3	52
75	Selective Isomerization via Transient Thermodynamic Control: Dynamic Epimerization of <i>trans</i> to <i>cis</i> Diols. Journal of the American Chemical Society, 2022, 144, 93-98.	13.7	50
76	Sulfonamidation of Aryl and Heteroaryl Halides through Photosensitized Nickel Catalysis. Angewandte Chemie, 2018, 130, 3546-3550.	2.0	48
77	Metallaphotoredox Perfluoroalkylation of Organobromides. Journal of the American Chemical Society, 2020, 142, 19480-19486.	13.7	47
78	Deoxytrifluoromethylation of Alcohols. Journal of the American Chemical Society, 2022, 144, 11961-11968.	13.7	46
79	Selective Hydrogen Atom Abstraction through Induced Bond Polarization: Direct αâ€Arylation of Alcohols through Photoredox, HAT, and Nickel Catalysis. Angewandte Chemie, 2018, 130, 5467-5471.	2.0	42
80	μMap-Red: Proximity Labeling by Red Light Photocatalysis. Journal of the American Chemical Society, 2022, 144, 6154-6162.	13.7	42
81	HARC as an open-shell strategy to bypass oxidative addition in Ullmann–Goldberg couplings. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21058-21064.	7.1	36
82	Reactive intermediates for interactome mapping. Chemical Society Reviews, 2021, 50, 2911-2926.	38.1	35
83	Synthesis of Enantiopure Unnatural Amino Acids by Metallaphotoredox Catalysis. Organic Process Research and Development, 2021, 25, 1966-1973.	2.7	30
84	Decarboxylative Oxygenation via Photoredox Catalysis. Israel Journal of Chemistry, 2020, 60, 410-415.	2.3	29
85	Metallaphotoredox Difluoromethylation of Aryl Bromides. Angewandte Chemie, 2018, 130, 12723-12728.	2.0	28
86	A Metallaphotoredox Strategy for the Crossâ€Electrophile Coupling of αâ€Chloro Carbonyls with Aryl Halides. Angewandte Chemie, 2019, 131, 14726-14730.	2.0	19
87	Bioinspired Supercharging of Photoredox Catalysis for Applications in Energy and Chemical Manufacturing. Accounts of Chemical Research, 2022, 55, 1423-1434.	15.6	18