Jillian L Dempsey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6921695/publications.pdf

Version: 2024-02-01

86 papers

7,008 citations

34 h-index 82 g-index

88 all docs 88 docs citations

88 times ranked 8046 citing authors

#	Article	IF	CITATIONS
1	The ligand-to-metal charge transfer excited state of [Re(dmpe)3]2+. Photosynthesis Research, 2022, 151, 155-161.	2.9	4
2	Mixed Tin-Titanium Oxides by Atomic Layer Deposition on Planar Substrates: Physical and Electronic Structure. Applied Surface Science, 2022, 573, 151564.	6.1	2
3	A compendium and meta-analysis of flatband potentials for TiO2, ZnO, and SnO2 semiconductors in aqueous media. Chemical Physics Reviews, 2022, 3, .	5.7	9
4	Unraveling Changes to PbS Nanocrystal Surfaces Induced by Thiols. Chemistry of Materials, 2022, 34, 1710-1721.	6.7	12
5	Ultrathin Tin-Doped Titanium Oxide by Atomic Layer Deposition on a Mesoporous Substrate: Physical/Electronic Structure, Spectroelectrochemistry, and Interfacial Charge Transfer. Journal of Physical Chemistry C, 2022, 126, 5265-5282.	3.1	2
6	Assessment of Photoreleasable Linkers and Light-Capturing Antennas on a Photoresponsive Cobalamin Scaffold. Journal of Organic Chemistry, 2022, 87, 5076-5084.	3.2	3
7	Role of Axial Ligation in Gating the Reactivity of Dimethylplatinum(III) Diimine Radical Cations. Organometallics, 2021, 40, 333-345.	2.3	O
8	Molecular-Level Insight into Semiconductor Nanocrystal Surfaces. Journal of the American Chemical Society, 2021, 143, 1251-1266.	13.7	61
9	Redox-Induced Structural Reorganization Dictates Kinetics of Cobalt(III) Hydride Formation via Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2021, 143, 3393-3406.	13.7	24
10	A Vision for Sustainable Energy: The Center for Hybrid Approaches in Solar Energy to Liquid Fuels (CHASE). Electrochemical Society Interface, 2021, 30, 65-68.	0.4	6
11	Revealing the Molecular Identity of Defect Sites on PbS Quantum Dot Surfaces with Redox-Active Chemical Probes. Chemistry of Materials, 2021, 33, 2655-2665.	6.7	11
12	Interfacial Electron Transfer through Ultrathin ALD TiO <i>_x</i> Layers: A Comparative Study of TiO ₂ /TiO <i></i> and SnO ₂ /TiO <i>_x</i> Core/Shell Nanocrystals. Journal of Physical Chemistry C, 2021, 125, 12937-12959.	3.1	4
13	Determining the Overpotential of Electrochemical Fuel Synthesis Mediated by Molecular Catalysts: Recommended Practices, Standard Reduction Potentials, and Challenges. ChemElectroChem, 2021, 8, 4161-4180.	3.4	31
14	Effects of Ligand Shell Composition on Surface Reduction in PbS Quantum Dots. Chemistry of Materials, 2021, 33, 8612-8622.	6.7	10
15	A stable dye-sensitized photoelectrosynthesis cell mediated by a NiO overlayer for water oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12564-12571.	7.1	32
16	Enabling Aqueous NiO Photocathodes by Passivating Surface Sites That Facilitate Proton-Coupled Charge Transfer. ACS Applied Energy Materials, 2020, 3, 10702-10713.	5.1	10
17	Quantitative Effects of Disorder on Chemically Modified Amorphous Carbon Electrodes. ACS Applied Energy Materials, 2020, 3, 8038-8047.	5.1	8
18	Redox mediators accelerate electrochemically-driven solubility cycling of molecular transition metal complexes. Chemical Science, 2020, 11, 9836-9851.	7.4	10

#	Article	IF	CITATIONS
19	Tunneling and Thermally Activated Electron Transfer in Dye-Sensitized SnO ₂ TiO ₂ Core Shell Nanostructures. Journal of Physical Chemistry C, 2020, 124, 25148-25159.	3.1	10
20	Checking in with Women Materials Scientists During a Global Pandemic: May 2020. Chemistry of Materials, 2020, 32, 4859-4862.	6.7	3
21	Mechanistic basis for tuning iridium hydride photochemistry from H2 evolution to hydride transfer hydrodechlorination. Chemical Science, 2020, 11 , 6442 - 6449 .	7.4	14
22	Mapping the Topology of PbS Nanocrystals through Displacement Isotherms of Surface-Bound Metal Oleate Complexes. Chemistry of Materials, 2020, 32, 2561-2571.	6.7	48
23	Analysis of multi-electron, multi-step homogeneous catalysis by rotating disc electrode voltammetry: theory, application, and obstacles. Analyst, The, 2020, 145, 1258-1278.	3.5	10
24	Electrosynthetic Route to Cyclopentadienyl Rhenium Hydride Complexes Enabled by Electrochemical Investigations of their Redox-Induced Formation. Organometallics, 2020, 39, 1730-1743.	2.3	3
25	Atomic layer deposition of SnOx onto mesoporous, nanocrsytalline TiO2 and SnO2 thin films. Polyhedron, 2019, 171, 433-447.	2.2	9
26	Celebrating the Year of the Periodic Table: Emerging Investigators in Inorganic Chemistry. Inorganic Chemistry, 2019, 58, 10433-10435.	4.0	0
27	Delayed photoacidity produced through the triplet–triplet annihilation of a neutral pyranine derivative. Physical Chemistry Chemical Physics, 2019, 21, 16353-16358.	2.8	2
28	The Chemistry Women Mentorship Network (ChemWMN): A Tool for Creating Critical Mass in Academic Chemistry. Inorganic Chemistry, 2019, 58, 12493-12496.	4.0	14
29	The Chemistry Women Mentorship Network (ChemWMN): A Tool for Creating Critical Mass in Academic Chemistry. ACS Central Science, 2019, 5, 1625-1629.	11.3	3
30	The Chemistry Women Mentorship Network (ChemWMN): A Tool for Creating Critical Mass in Academic Chemistry. Chemistry of Materials, 2019, 31, 8239-8242.	6.7	1
31	On decomposition, degradation, and voltammetric deviation: the electrochemist's field guide to identifying precatalyst transformation. Chemical Society Reviews, 2019, 48, 2927-2945.	38.1	92
32	How a highly driven reaction hits the brakes. Science, 2019, 364, 436-437.	12.6	5
33	Decoding Proton-Coupled Electron Transfer with Potential–p <i>K</i> _a Diagrams: Applications to Catalysis. Inorganic Chemistry, 2019, 58, 6647-6658.	4.0	20
34	Proton-Coupled Electron Transfer Kinetics for the Photoinduced Generation of a Cobalt(III)-Hydride Complex. Inorganic Chemistry, 2019, 58, 16510-16517.	4.0	11
35	Impact of Background Oxygen Pressure on the Pulsed-Laser Deposition of ZnO Nanolayers and on Their Corresponding Performance as Electron Acceptors in PbS Quantum-Dot Solar Cells. ACS Applied Nano Materials, 2019, 2, 767-777.	5.0	6
36	Electron-Promoted X-Type Ligand Displacement at CdSe Quantum Dot Surfaces. Nano Letters, 2019, 19, 1151-1157.	9.1	32

#	Article	IF	Citations
37	Bathochromic Shifts in Rhenium Carbonyl Dyes Induced through Destabilization of Occupied Orbitals. Inorganic Chemistry, 2018, 57, 5389-5399.	4.0	42
38	A Practical Beginner's Guide to Cyclic Voltammetry. Journal of Chemical Education, 2018, 95, 197-206.	2.3	2,137
39	Interfacial electron transfer yields in dye-sensitized NiO photocathodes correlated to excited-state dipole orientation of ruthenium chromophores. Canadian Journal of Chemistry, 2018, 96, 865-874.	1.1	11
40	PCET2018 Highlights: Proton-Coupled Electron Transfers for Energy Conversion Strategies. ACS Energy Letters, 2018, 3, 2477-2479.	17.4	3
41	Switching between Stepwise and Concerted Proton-Coupled Electron Transfer Pathways in Tungsten Hydride Activation. Journal of the American Chemical Society, 2018, 140, 14655-14669.	13.7	36
42	Exchange equilibria of carboxylate-terminated ligands at PbS nanocrystal surfaces. Physical Chemistry Chemical Physics, 2018, 20, 23649-23655.	2.8	29
43	Decoding Proton-Coupled Electron Transfer with Potential–p <i>K</i> _a Diagrams. Inorganic Chemistry, 2017, 56, 1225-1231.	4.0	68
44	Identification of an Electrode-Adsorbed Intermediate in the Catalytic Hydrogen Evolution Mechanism of a Cobalt Dithiolene Complex. Inorganic Chemistry, 2017, 56, 1988-1998.	4.0	29
45	Excited-State Proton-Coupled Electron Transfer: Different Avenues for Promoting Proton/Electron Movement with Solar Photons. ACS Energy Letters, 2017, 2, 1246-1256.	17.4	79
46	Cultivating Advanced Technical Writing Skills through a Graduate-Level Course on Writing Research Proposals. Journal of Chemical Education, 2017, 94, 696-702.	2.3	15
47	Electrochemical and spectroscopic methods for evaluating molecular electrocatalysts. Nature Reviews Chemistry, 2017, 1 , .	30.2	178
48	Reaction Parameters Influencing Cobalt Hydride Formation Kinetics: Implications for Benchmarking H ₂ -Evolution Catalysts. Journal of the American Chemical Society, 2017, 139, 239-244.	13.7	100
49	Hop to It. Biochemistry, 2017, 56, 5623-5624.	2.5	1
50	When Electrochemistry Met Methane: Rapid Catalyst Oxidation Fuels Hydrocarbon Functionalization. ACS Central Science, 2017, 3, 1137-1139.	11.3	10
51	Influence of Proton Acceptors on the Proton-Coupled Electron Transfer Reaction Kinetics of a Ruthenium–Tyrosine Complex. Journal of Physical Chemistry B, 2017, 121, 10530-10542.	2.6	15
52	Enhanced Performance in PbS Quantum Dots Solar Cells via Pulsed Laser Deposited ZnO Layer., 2017,,.		0
53	Gains and Losses in PbS Quantum Dot Solar Cells with Submicron Periodic Grating Structures. Journal of Physical Chemistry C, 2016, 120, 8005-8013.	3.1	6
54	Reaction Pathways of Hydrogen-Evolving Electrocatalysts: Electrochemical and Spectroscopic Studies of Proton-Coupled Electron Transfer Processes. ACS Catalysis, 2016, 6, 3644-3659.	11.2	117

#	Article	IF	CITATIONS
55	Growth and Post-Deposition Treatments of SrTiO ₃ Films for Dye-Sensitized Photoelectrosynthesis Cell Applications. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12282-12290.	8.0	12
56	Reactivity of Proton Sources with a Nickel Hydride Complex in Acetonitrile: Implications for the Study of Fuel-Forming Catalysts. Inorganic Chemistry, 2016, 55, 5079-5087.	4.0	40
57	Linear Free Energy Relationships in the Hydrogen Evolution Reaction: Kinetic Analysis of a Cobaloxime Catalyst. ACS Catalysis, 2016, 6, 3326-3335.	11.2	89
58	Proton-Coupled Electron Transfer Reactions with Photometric Bases Reveal Free Energy Relationships for Proton Transfer. Journal of Physical Chemistry B, 2016, 120, 7896-7905.	2.6	11
59	Quantifying Ligand Exchange Reactions at CdSe Nanocrystal Surfaces. Chemistry of Materials, 2016, 28, 4762-4770.	6.7	154
60	Synthesis and electrochemical characterization of a tridentate Schiff-base ligated Fe(II) complex. Polyhedron, 2016, 114, 200-204.	2.2	10
61	Qualitative extension of the EC′ Zone Diagram to a molecular catalyst for a multi-electron, multi-substrate electrochemical reaction. Dalton Transactions, 2016, 45, 9970-9976.	3.3	37
62	Ligand steals spotlight from metal to orchestrate hydrogen production. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 478-479.	7.1	7
63	Charge Recombination Dynamics in Sensitized SnO ₂ /TiO ₂ Core/Shell Photoanodes. Journal of Physical Chemistry C, 2015, 119, 28353-28360.	3.1	59
64	Disparity in Optical Charge Generation and Recombination Processes in Upright and Inverted PbS Quantum-Dot Solar Cells. Journal of Physical Chemistry C, 2015, 119, 4606-4611.	3.1	1
65	Metal hydrides find the sweet spot. Nature Chemistry, 2015, 7, 101-102.	13.6	7
66	Electrode initiated proton-coupled electron transfer to promote degradation of a nickel(<scp>ii</scp>) coordination complex. Chemical Science, 2015, 6, 2827-2834.	7.4	55
67	Potential-Dependent Electrocatalytic Pathways: Controlling Reactivity with p <i>K</i> _a for Mechanistic Investigation of a Nickel-Based Hydrogen Evolution Catalyst. Journal of the American Chemical Society, 2015, 137, 13371-13380.	13.7	69
68	Electrochemical hydrogenation of a homogeneous nickel complex to form a surface adsorbed hydrogen-evolving species. Chemical Communications, 2015, 51, 5290-5293.	4.1	47
69	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup><mml:mrow></mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:msup> dimers in Zn <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>â°</mml:mo><mml:mi>x</mml:mi>xx</mml:mrow></mml:msub></mml:math>	3.2	40 ath>Mn <i>×</i>
70	quantum dots observed by time-resolved magnetophotoluminescence. Physical Review B, 2014, 89, Synthesis and photophysical characterization of porphyrin and porphyrin–Ru(ii) polypyridyl chromophore–catalyst assemblies on mesoporous metal oxides. Chemical Science, 2014, 5, 3115.	7.4	56
71	Electrochemical Reduction of Brønsted Acids by Glassy Carbon in Acetonitrile—Implications for Electrocatalytic Hydrogen Evolution. Inorganic Chemistry, 2014, 53, 8350-8361.	4.0	211
72	Photo-induced Proton-Coupled Electron Transfer Reactions of Acridine Orange: Comprehensive Spectral and Kinetics Analysis. Journal of the American Chemical Society, 2014, 136, 12221-12224.	13.7	67

#	Article	IF	Citations
73	Theoretical Modeling of Lowâ€Energy Electronic Absorption Bands in Reduced Cobaloximes. ChemPhysChem, 2014, 15, 2951-2958.	2.1	11
74	Evaluation of Homogeneous Electrocatalysts by Cyclic Voltammetry. Inorganic Chemistry, 2014, 53, 9983-10002.	4.0	403
75	Revealing the Relationship between Semiconductor Electronic Structure and Electron Transfer Dynamics at Metal Oxide–Chromophore Interfaces. Journal of Physical Chemistry C, 2013, 117, 25259-25268.	3.1	45
76	Photoconductive ZnO films with embedded quantum dot or ruthenium dye sensitizers. APL Materials, 2013, 1, .	5.1	4
77	Catalytic hydrogen evolution from a covalently linked dicobaloxime. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15589-15593.	7.1	102
78	Redox reactivity of photogenerated osmium(ii) complexes. Dalton Transactions, 2011, 40, 10633.	3.3	6
79	Kinetics of Electron Transfer Reactions of H ₂ -Evolving Cobalt Diglyoxime Catalysts. Journal of the American Chemical Society, 2010, 132, 1060-1065.	13.7	187
80	Proton-Coupled Electron Flow in Protein Redox Machines. Chemical Reviews, 2010, 110, 7024-7039.	47.7	270
81	Mechanism of H ₂ Evolution from a Photogenerated Hydridocobaloxime. Journal of the American Chemical Society, 2010, 132, 16774-16776.	13.7	211
82	Hydrogen Evolution Catalyzed by Cobaloximes. Accounts of Chemical Research, 2009, 42, 1995-2004.	15.6	946
83	Long-Lived and Efficient Emission from Mononuclear Amidophosphine Complexes of Copper. Inorganic Chemistry, 2007, 46, 7244-7246.	4.0	102
84	A RhIIâ^'AullBimetallic Core with a Direct Metalâ^'Metal Bond. Inorganic Chemistry, 2007, 46, 2362-2364.	4.0	47
85	Oxygen and hydrogen photocatalysis by two-electron mixed-valence coordination compounds. Coordination Chemistry Reviews, 2005, 249, 1316-1326.	18.8	103
86	Molecular Chemistry of Consequence to Renewable Energy. Inorganic Chemistry, 2005, 44, 6879-6892.	4.0	200