Namita Agrawal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6921682/publications.pdf

Version: 2024-02-01

		471509	454955
38	1,897	17	30
papers	citations	h-index	g-index
38	38	38	2884
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Metabolism in Huntington's disease: a major contributor to pathology. Metabolic Brain Disease, 2022, 37, 1757-1771.	2.9	16
2	Management of altered metabolic activity in <i>Drosophila</i> model of Huntington's disease by curcumin. Experimental Biology and Medicine, 2022, 247, 152-164.	2.4	8
3	Pan-neuronal expression of human mutant huntingtin protein in Drosophila impairs immune response of hemocytes. Journal of Neuroimmunology, 2022, 363, 577801.	2.3	2
4	An In Vitro and In Vivo Study of the Efficacy and Toxicity of Plant-Extract-Derived Silver Nanoparticles. Journal of Functional Biomaterials, 2022, 13, 54.	4.4	11
5	Combating silver nanoparticleâ€mediated toxicity in <scp><i>Drosophila melanogaster</i></scp> with curcumin. Journal of Applied Toxicology, 2021, 41, 1188-1199.	2.8	6
6	Serine residues 13 and 16 are key modulators of mutant huntingtin induced toxicity in Drosophila. Experimental Neurology, 2021, 338, 113463.	4.1	7
7	Melatonin and curcumin reestablish disturbed circadian gene expressions and restore locomotion ability and eclosion behavior in <i>Drosophila</i> model of Huntington's disease. Chronobiology International, 2021, 38, 61-78.	2.0	15
8	Deciphering the key mechanisms leading to alteration of lipid metabolism in Drosophila model of Huntington's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166127.	3.8	10
9	Wing patterning in faster developing Drosophila is associated with high ecdysone titer and wingless expression. Mechanisms of Development, 2020, 163, 103626.	1.7	7
10	Discriminatory alteration of carbohydrate homeostasis by gold nanoparticles ingestion in <i>Drosophila</i> . Toxicology and Industrial Health, 2020, 36, 769-778.	1.4	2
11	An interplay between immune response and neurodegenerative disease progression: An assessment using Drosophila as a model. Journal of Neuroimmunology, 2020, 346, 577302.	2.3	11
12	Effects of flanking sequences and cellular context on subcellular behavior and pathology of mutant HTT. Human Molecular Genetics, 2020, 29, 674-688.	2.9	17
13	Model Organisms for In Vivo Assessment of Nanoparticles. , 2020, , 29-57.		3
14	Impact of Nanoparticles on Behavior and Physiology of Drosophila melanogaster., 2020,, 59-67.		2
15	Dose-Dependent Influence of Nanoparticles on Fertility and Survival. , 2020, , 69-78.		1
16	Effect of Nanoparticles on Maintenance of Metabolic Homeostasis. , 2020, , 79-87.		1
17	Nanoparticles: An Activator of Oxidative Stress. , 2020, , 89-106.		1
18	Safe Dose of Nanoparticles: A Boon for Consumer Goods and Biomedical Application. , 2020, , 107-122.		0

#	Article	IF	CITATIONS
19	Peripheral Expression of Mutant Huntingtin is a Critical Determinant of Weight Loss and Metabolic Disturbances in Huntington's Disease. Scientific Reports, 2019, 9, 10127.	3.3	21
20	Post-translational Modifications: A Mystery to Unravel Huntington's Disease Prognosis. , 2019, , 311-334.		0
21	Metabolic Alterations Amalgamated with Huntington's Disease. , 2019, , 163-183.		0
22	Defining the Akt1 interactome and its role in regulating the cell cycle. Scientific Reports, 2018, 8, 1303.	3.3	25
23	Sedentary behavior and altered metabolic activity by AgNPs ingestion in Drosophila melanogaster. Scientific Reports, 2017, 7, 15617.	3.3	42
24	Dose-dependent effect of silver nanoparticles (AgNPs) on fertility and survival of Drosophila: An in-vivo study. PLoS ONE, 2017, 12, e0178051.	2.5	57
25	Altered lipid metabolism in Drosophila model of Huntington's disease. Scientific Reports, 2016, 6, 31411.	3.3	28
26	Curcumin modulates cell death and is protective in Huntington's disease model. Scientific Reports, 2016, 6, 18736.	3.3	90
27	Comparative study of naturally occurring huntingtin fragments in Drosophila points to exon 1 as the most pathogenic species in Huntington's disease. Human Molecular Genetics, 2015, 24, 913-925.	2.9	72
28	Methylene Blue Modulates Huntingtin Aggregation Intermediates and Is Protective in Huntington's Disease Models. Journal of Neuroscience, 2012, 32, 11109-11119.	3.6	86
29	IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. Journal of Cell Biology, 2009, 187, 1083-1099.	5.2	343
30	Fat and Wingless signaling oppositely regulate epithelial cell-cell adhesion and distal wing development in Drosophila. Development (Cambridge), 2006, 133, 925-935.	2.5	51
31	Identification of combinatorial drug regimens for treatment of Huntington's disease using Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3777-3781.	7.1	150
32	SUMO Modification of Huntingtin and Huntington's Disease Pathology. Science, 2004, 304, 100-104.	12.6	627
33	The Leucine Zipper Motif of the Drosophila AF10 Homologue Can Inhibit PRE-Mediated Repression: Implications for Leukemogenic Activity of Human MLL-AF10 Fusions. Molecular and Cellular Biology, 2003, 23, 119-130.	2.3	31
34	Spatial regulation of DELTA expression mediates NOTCH signalling for segmentation of Drosophila legs. Mechanisms of Development, 2001, 105, 115-127.	1.7	20
35	Negative Regulation of Dorsoventral Signaling by the Homeotic Gene Ultrabithorax during Haltere Development in Drosophila. Developmental Biology, 1999, 212, 491-502.	2.0	39
36	Mitosis in neoplastic and hyperplastic imaginal discs of Drosophila. Journal of Genetics, 1997, 76, 209-220.	0.7	1

#	Article	IF	CITATIONS
37	Neoplastic Transformation and Aberrant Cell–Cell Interactions in Genetic Mosaics oflethal(2)giant larvae (lgl),a Tumor Suppressor Gene ofDrosophila. Developmental Biology, 1995, 172, 218-229.	2.0	71
38	Epithelial Hyperplasia of Imaginal Discs Induced by Mutations in Drosophila Tumor Suppressor Genes: Growth and Pattern Formation in Genetic Mosaics. Developmental Biology, 1995, 169, 387-398.	2.0	23