
Ulrich Steidl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6921109/publications.pdf Version: 2024-02-01

HIDICH STEIDI

#	Article	IF	CITATIONS
1	Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nature Cell Biology, 2016, 18, 607-618.	10.3	519
2	Lymphoid cell growth and transformation are suppressed by a key regulatory element of the gene encoding PU.1. Nature Genetics, 2006, 38, 27-37.	21.4	200
3	Mutational Cooperativity Linked to Combinatorial Epigenetic Gain of Function in Acute Myeloid Leukemia. Cancer Cell, 2015, 27, 502-515.	16.8	191
4	Dual inhibition of MDMX and MDM2 as a therapeutic strategy in leukemia. Science Translational Medicine, 2018, 10, .	12.4	187
5	Stem and progenitor cells in myelodysplastic syndromes show aberrant stage-specific expansion and harbor genetic and epigenetic alterations. Blood, 2012, 120, 2076-2086.	1.4	181
6	Myelodysplastic syndrome progression to acute myeloid leukemia at the stem cell level. Nature Medicine, 2019, 25, 103-110.	30.7	169
7	Essential role of Jun family transcription factors in PU.1 knockdown–induced leukemic stem cells. Nature Genetics, 2006, 38, 1269-1277.	21.4	167
8	Overexpression of IL-1 receptor accessory protein in stem and progenitor cells and outcome correlation in AML and MDS. Blood, 2012, 120, 1290-1298.	1.4	165
9	U2AF1 mutations induce oncogenic IRAK4 isoforms and activate innate immune pathways in myeloid malignancies. Nature Cell Biology, 2019, 21, 640-650.	10.3	165
10	New IDH1 mutant inhibitors for treatment of acute myeloid leukemia. Nature Chemical Biology, 2015, 11, 878-886.	8.0	151
11	IL8-CXCR2 pathway inhibition as a therapeutic strategy against MDS and AML stem cells. Blood, 2015, 125, 3144-3152.	1.4	149
12	Eltrombopag inhibits the proliferation of leukemia cells via reduction of intracellular iron and induction of differentiation. Blood, 2012, 120, 386-394.	1.4	146
13	Direct Activation of BAX by BTSA1 Overcomes Apoptosis Resistance in Acute Myeloid Leukemia. Cancer Cell, 2017, 32, 490-505.e10.	16.8	128
14	Effect of the nonpeptide thrombopoietin receptor agonist Eltrombopag on bone marrow cells from patients with acute myeloid leukemia and myelodysplastic syndrome. Blood, 2009, 114, 3899-3908.	1.4	119
15	Minimal PU.1 reduction induces a preleukemic state and promotes development of acute myeloid leukemia. Nature Medicine, 2015, 21, 1172-1181.	30.7	112
16	A distal single nucleotide polymorphism alters long-range regulation of the PU.1 gene in acute myeloid leukemia. Journal of Clinical Investigation, 2007, 117, 2611-2620.	8.2	109
17	Lactate-mediated epigenetic reprogramming regulates formation of human pancreatic cancer-associated fibroblasts. ELife, 2019, 8, .	6.0	103
18	Effect of transcription-factor concentrations on leukemic stem cells. Blood, 2005, 106, 1519-1524.	1.4	93

#	Article	IF	CITATIONS
19	Stem and progenitor cell alterations in myelodysplastic syndromes. Blood, 2017, 129, 1586-1594.	1.4	93
20	Satb1 regulates the self-renewal of hematopoietic stem cells by promoting quiescence and repressing differentiation commitment. Nature Immunology, 2013, 14, 437-445.	14.5	92
21	LSD1 inhibition exerts its antileukemic effect by recommissioning PU.1- and C/EBPα-dependent enhancers in AML. Blood, 2018, 131, 1730-1742.	1.4	92
22	Pharmacological inhibition of the transcription factor PU.1 in leukemia. Journal of Clinical Investigation, 2017, 127, 4297-4313.	8.2	89
23	A small-molecule allosteric inhibitor of BAX protects against doxorubicin-induced cardiomyopathy. Nature Cancer, 2020, 1, 315-328.	13.2	78
24	Phase 1 Trial of ALRN-6924, a Dual Inhibitor of MDMX and MDM2, in Patients with Solid Tumors and Lymphomas Bearing Wild-type <i>TP53</i> . Clinical Cancer Research, 2021, 27, 5236-5247.	7.0	74
25	Phase I trial of a novel stapled peptide ALRN-6924 disrupting MDMX- and MDM2-mediated inhibition of <i>WT p53</i> in patients with solid tumors and lymphomas Journal of Clinical Oncology, 2017, 35, 2505-2505.	1.6	71
26	Antisense STAT3 inhibitor decreases viability of myelodysplastic and leukemic stem cells. Journal of Clinical Investigation, 2018, 128, 5479-5488.	8.2	68
27	A novel murine model of myeloproliferative disorders generated by overexpression of the transcription factor NF-E2. Journal of Experimental Medicine, 2012, 209, 35-50.	8.5	67
28	Role of Transcription Factors C/EBPa and PU.1 in Normal Hematopoiesis and Leukemia. International Journal of Hematology, 2005, 81, 368-377.	1.6	66
29	Ascorbic acid–induced TET activation mitigates adverse hydroxymethylcytosine loss in renal cell carcinoma. Journal of Clinical Investigation, 2019, 129, 1612-1625.	8.2	64
30	Epigenetically Aberrant Stroma in MDS Propagates Disease via Wnt/β-Catenin Activation. Cancer Research, 2017, 77, 4846-4857.	0.9	61
31	IL1RAP potentiates multiple oncogenic signaling pathways in AML. Journal of Experimental Medicine, 2018, 215, 1709-1727.	8.5	61
32	Single-molecule imaging of transcription dynamics in somatic stem cells. Nature, 2020, 583, 431-436.	27.8	61
33	Concise Review: Preleukemic Stem Cells: Molecular Biology and Clinical Implications of the Precursors to Leukemia Stem Cells. Stem Cells Translational Medicine, 2013, 2, 143-150.	3.3	58
34	H1 linker histones silence repetitive elements by promoting both histone H3K9 methylation and chromatin compaction. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14251-14258.	7.1	57
35	Phase II Study of the ALK5 Inhibitor Galunisertib in Very Low-, Low-, and Intermediate-Risk Myelodysplastic Syndromes. Clinical Cancer Research, 2019, 25, 6976-6985.	7.0	55
36	Altered hydroxymethylation is seen at regulatory regions in pancreatic cancer and regulates oncogenic pathways. Genome Research, 2017, 27, 1830-1842.	5.5	51

#	Article	IF	CITATIONS
37	Selective Activity of the Histone Deacetylase Inhibitor AR-42 against Leukemia Stem Cells: A Novel Potential Strategy in Acute Myelogenous Leukemia. Molecular Cancer Therapeutics, 2014, 13, 1979-1990.	4.1	49
38	PAK1 is a therapeutic target in acute myeloid leukemia and myelodysplastic syndrome. Blood, 2015, 126, 1118-1127.	1.4	49
39	Thrombopoietin receptor–independent stimulation of hematopoietic stem cells by eltrombopag. Science Translational Medicine, 2018, 10, .	12.4	48
40	Reduced <i>DOCK4</i> expression leads to erythroid dysplasia in myelodysplastic syndromes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6359-68.	7.1	45
41	Dynamic Regulation of Long-Chain Fatty Acid Oxidation by a Noncanonical Interaction between the MCL-1 BH3 Helix and VLCAD. Molecular Cell, 2018, 69, 729-743.e7.	9.7	45
42	Aberrant Epigenetic and Genetic Marks Are Seen in Myelodysplastic Leukocytes and Reveal Dock4 as a Candidate Pathogenic Gene on Chromosome 7q. Journal of Biological Chemistry, 2011, 286, 25211-25223.	3.4	41
43	Cytokine-Regulated Phosphorylation and Activation of TET2 by JAK2 in Hematopoiesis. Cancer Discovery, 2019, 9, 778-795.	9.4	41
44	H2.0-like Homeobox Regulates Early Hematopoiesis and Promotes Acute Myeloid Leukemia. Cancer Cell, 2012, 22, 194-208.	16.8	39
45	DNMT3A and TET2 in the Pre-Leukemic Phase of Hematopoietic Disorders. Frontiers in Oncology, 2016, 6, 187.	2.8	38
46	HSC commitment–associated epigenetic signature is prognostic in acute myeloid leukemia. Journal of Clinical Investigation, 2014, 124, 1158-1167.	8.2	38
47	Efficacy of ALK5 inhibition in myelofibrosis. JCI Insight, 2017, 2, e90932.	5.0	37
48	Multi-parameter fluorescence-activated cell sorting and analysis of stem and progenitor cells in myeloid malignancies. Best Practice and Research in Clinical Haematology, 2010, 23, 391-401.	1.7	36
49	Pexmetinib: A Novel Dual Inhibitor of Tie2 and p38 MAPK with Efficacy in Preclinical Models of Myelodysplastic Syndromes and Acute Myeloid Leukemia. Cancer Research, 2016, 76, 4841-4849.	0.9	32
50	ASXL1 mutations are associated with distinct epigenomic alterations that lead to sensitivity to venetoclax and azacytidine. Blood Cancer Journal, 2021, 11, 157.	6.2	27
51	The DNA dioxygenase Tet1 regulates H3K27 modification and embryonic stem cell biology independent of its catalytic activity. Nucleic Acids Research, 2022, 50, 3169-3189.	14.5	27
52	Differential gene expression of bone marrow-derived CD34+ cells is associated with survival of patients suffering from myelodysplastic syndrome. International Journal of Hematology, 2009, 89, 173-187.	1.6	25
53	Mechanisms and therapeutic prospects of thrombopoietin receptor agonists. Seminars in Hematology, 2019, 56, 262-278.	3.4	25
54	ZNF143 protein is an important regulator of the myeloid transcription factor C/EBPα. Journal of Biological Chemistry, 2017, 292, 18924-18936.	3.4	20

#	Article	IF	CITATIONS
55	High burden of clonal hematopoiesis in first responders exposed to the World Trade Center disaster. Nature Medicine, 2022, 28, 468-471.	30.7	19
56	Runx1 promotes murine erythroid progenitor proliferation and inhibits differentiation by preventing Pu.1 downregulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17841-17847.	7.1	18
57	Targeting Immunophenotypic Markers on Leukemic Stem Cells: How Lessons from Current Approaches and Advances in the Leukemia Stem Cell (LSC) Model Can Inform Better Strategies for Treating Acute Myeloid Leukemia (AML). Cold Spring Harbor Perspectives in Medicine, 2020, 10, a036251.	6.2	17
58	MDMX acts as a pervasive preleukemic-to-acute myeloid leukemia transition mechanism. Cancer Cell, 2021, 39, 529-547.e7.	16.8	17
59	Case report of combination therapy with Azacytidine, Enasidenib and Venetoclax in primary refractory AML. Experimental Hematology and Oncology, 2021, 10, 1.	5.0	17
60	PAK Kinase Inhibition Has Therapeutic Activity in Novel Preclinical Models of Adult T-Cell Leukemia/Lymphoma. Clinical Cancer Research, 2019, 25, 3589-3601.	7.0	16
61	HIV portends a poor prognosis in myelodysplastic syndromes. Leukemia and Lymphoma, 2019, 60, 3529-3535.	1.3	15
62	STAT3 inhibition as a therapeutic strategy for leukemia. Leukemia and Lymphoma, 2018, 59, 2068-2074.	1.3	13
63	Stem cell mutations can be detected in myeloma patients years before onset of secondary leukemias. Blood Advances, 2019, 3, 3962-3967.	5.2	12
64	Eltrombopag for the treatment of thrombocytopenia in patients with malignant and non-malignant hematologic disorders. Expert Opinion on Drug Metabolism and Toxicology, 2013, 9, 1667-1675.	3.3	10
65	Transcriptional control of CBX5 by the RNA-binding proteins RBMX and RBMXL1 maintains chromatin state in myeloid leukemia. Nature Cancer, 2021, 2, 741-757.	13.2	10
66	Preleukemic and leukemic evolution at the stem cell level. Blood, 2021, 137, 1013-1018.	1.4	9
67	CDK6, a new target in MLL-driven leukemia. Blood, 2014, 124, 5-6.	1.4	8
68	Functionally Relevant RNA Helicase Mutations in Familial and Sporadic Myeloid Malignancies. Cancer Cell, 2015, 27, 609-611.	16.8	8
69	A myeloid tumor suppressor role for NOL3. Journal of Experimental Medicine, 2017, 214, 753-771.	8.5	8
70	Molecular Mechanism of Mutant CALR–Mediated Transformation. Cancer Discovery, 2016, 6, 344-346.	9.4	7
71	Aurora Kinase A Inhibition: A Mega-Hit for Myelofibrosis Therapy?. Clinical Cancer Research, 2019, 25, 4868-4870.	7.0	6
72	An Evolutionary Approach to Clonally Complex Hematologic Disorders. Blood Cancer Discovery, 2021, 2, 201-215.	5.0	6

#	Article	IF	CITATIONS
73	Targeting of MDS and AML Stem Cells Via Inhibition of STAT3 By Pyrimethamine. Blood, 2014, 124, 3602-3602.	1.4	6
74	Innate immune mediator, Interleukin-1 receptor accessory protein (IL1RAP), is expressed and pro-tumorigenic in pancreatic cancer. Journal of Hematology and Oncology, 2022, 15, .	17.0	6
75	Misidentification of MLL3 and other mutations in cancer due to highly homologous genomic regions. Leukemia and Lymphoma, 2019, 60, 3132-3137.	1.3	5
76	Eliminating Cancer Stem Cells in CML with Combination Transcriptional Therapy. Cell Stem Cell, 2016, 19, 6-8.	11.1	4
77	Transcriptional regulators CITED2 and PU.1 cooperate in maintaining hematopoietic stem cells. Experimental Hematology, 2019, 73, 38-49.e7.	0.4	4
78	HIV Is Associated with a High Rate of Unexplained Multilineage Cytopenias and Portends a Poor Prognosis in Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukemia (AML). Blood, 2016, 128, 4345-4345.	1.4	4
79	A synthetic lethal approach targeting mutant isocitrate dehydrogenase in acute myeloid leukemia. Nature Medicine, 2015, 21, 113-114.	30.7	3
80	Ectopic DNMT3B expression delays leukemogenesis. Blood, 2016, 127, 1525-1526.	1.4	3
81	Gene expression at a single-molecule level: implications for myelodysplastic syndromes and acute myeloid leukemia. Blood, 2021, 138, 625-636.	1.4	3
82	Exome Sequencing of Familial MDS Reveals Novel Mutations and High Rates of False Positive Mutations in MLL3 Due to Pseudogene Effects. Blood, 2014, 124, 4591-4591.	1.4	3
83	Analysis of overall survival in a large multiethnic cohort reveals absolute neutrophil count of 1,100 as a novel prognostic cutoff in African Americans. Oncotarget, 2016, 7, 67948-67955.	1.8	3
84	Inhibition of HIF1α Signaling: A Grand Slam for MDS Therapy?. Cancer Discovery, 2018, 8, 1355-1357.	9.4	2
85	Fueling clonal dominance through TRAFficking of NF-κB signaling. Nature Immunology, 2020, 21, 489-490.	14.5	2
86	Stem cell origins of JMML. Journal of Experimental Medicine, 2021, 218, .	8.5	2
87	Myelodysplastic Syndrome Marrow Stroma Shows Widespread Aberrant Hypermethylation That Is Abrogated By Treatment with Dnmt Inhibitors. Blood, 2014, 124, 4379-4379.	1.4	2
88	Targeting MDS and AML Stem Cells with AZD-9150 Mediated Inhibition of STAT3. Blood, 2016, 128, 4314-4314.	1.4	2
89	Metabolic strugGLS after FLT3 inhibition in AML. Blood, 2018, 131, 1631-1632.	1.4	1
90	Epigenetic modifiers in normal and aberrent erythropoeisis. Seminars in Hematology, 2021, 58, 15-26.	3.4	1

#	Article	IF	CITATIONS
91	Exploiting a key transcriptional dependency: ZMYND8 and IRF8 in AML. Molecular Cell, 2021, 81, 3445-3446.	9.7	1
92	New Allosteric Inhibitors of Mutant IDH1 in Acute Myeloid Leukemia. Blood, 2015, 126, 787-787.	1.4	1
93	The Neuropeptides Orexin a and B Have An Impact on Functional Properties of Human CD34+ Stem and Progenitor Cells Blood, 2008, 112, 1393-1393.	1.4	1
94	Metastasis Suppressor 1 Is Downregulated in CML Stem Cells and Overexpression Impairs Early Leukemic Cell Propagation Blood, 2012, 120, 2776-2776.	1.4	1
95	Minimal Reduction of PU.1 Is Sufficient to Induce a Preleukemic State and Promote Development of Acute Myeloid Leukemia. Blood, 2015, 126, 305-305.	1.4	1
96	ETO2-GLIS2: A Chimeric Transcription Factor Drives Leukemogenesis through a Neomorphic Transcription Network. Cancer Cell, 2017, 31, 307-308.	16.8	0
97	Epigenetic Achilles' heel of AML. Nature Cancer, 2021, 2, 481-483.	13.2	0
98	Transcriptional circuit dynamics in HSPCs. Blood, 2021, 138, 1382-1384.	1.4	0
99	A Distal Single Nucleotide Polymorphism Disrupts Development-Dependent Long-Range Transcriptional Regulation of the PU.1 Gene through the Chromatin-Remodeling Protein SATB1 in Acute Myeloid Leukemia Blood, 2007, 110, 3175-3175.	1.4	0
100	Dysregulation of TGF-Beta Stimulated Smad Signaling Is Seen in Myelodysplasia and Points to the Potential Therapeutic Efficacy of TGF-Beta Receptor I Kinase Inhibition in Low Grade Disease Blood, 2009, 114, 737-737.	1.4	0
101	Neuropeptides Orexin A and B Are Funktionally Aktive in CD34+ Hematopoietic Stem and Progenitor Cells Blood, 2009, 114, 4593-4593.	1.4	0
102	Parallel Transcriptional Analysis of Multiple Stem and Progenitor Populations Identifies Novel Commonly Dysregulated and Functionally Relevant Targets in AML. Blood, 2012, 120, 1875-1875.	1.4	0
103	H2.0-Like Homeobox (HLX) Induces Unlimited Clonogenicity, Blocks Differentiation, and Cooperates with FLT3-ITD in the Induction of Acute Myeloid Leukemia. Blood, 2012, 120, 651-651.	1.4	0
104	Identification of a Novel Protein-Coding Gene (TIHL) and Its Functional Relevance in Myeloid Cells Blood, 2012, 120, 2333-2333.	1.4	0
105	PU.1 and p53 Double Mutant Mice Develop Aggressive AML with Dysplastic Features. Blood, 2012, 120, 769-769.	1.4	0
106	H2.0-Like Homeobox (HLX) Causes Pre-Leukemic Myeloid Expansion and Initiates AML In Cooperation With FLT3-ITD. Blood, 2013, 122, 4201-4201.	1.4	0
107	Efficacy of Dual Inhibition of p38 Mitogen Activated Protein Kinase (MAPK) and Tie-2 Kinase in Myelodysplastic Syndromes (MDS) and Acute Myeloid Leukemia (AML). Blood, 2014, 124, 4628-4628.	1.4	0
108	PAK1 Is a Therapeutic Target in Acute Myeloid Leukemia and Myelodysplastic Syndrome. Blood, 2014, 124, 4614-4614.	1.4	0

#	Article	IF	CITATIONS
109	CITED2 Cooperates with Low PU.1 and DNMT3A to Maintain Self-Renewal in Hematopoietic Stem Cells. Blood, 2015, 126, 309-309.	1.4	Ο
110	Interleukin-1 Drives Precocious Myeloid Differentiation of Hematopoietic Stem Cells at the Expense of Self-Renewal. Blood, 2015, 126, 778-778.	1.4	0
111	Examination of Phosphoprotein Targets in Timed Samples from Patients with RAS-Mutated AML during Concurrent Treatment with Alpelisib and Binimetinib on the Phase Ib Clinical Trial CMEK162X2109. Blood, 2016, 128, 2749-2749.	1.4	Ο
112	Hispanic Ethnicity Is Associated with Younger Age at Presentation and Worse Survival in AML. Blood, 2016, 128, 3600-3600.	1.4	0
113	A novel thrombopoietin mimetic RWJ-800088 increases megakaryopoiesis without causing malignant proliferation in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) Journal of Clinical Oncology, 2019, 37, e18527-e18527.	1.6	0
114	Posttranscriptional Arid3a deregulation in AMKL. Blood, 2022, 139, 637-638.	1.4	0