
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6921042/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microsatellite Markers from <i>Peronospora tabacina</i> , the Cause of Blue Mold of Tobacco, Reveal Species Origin, Population Structure, and High Gene Flow. Phytopathology, 2022, 112, 422-434.	2.2	2
2	The persistent threat of emerging plant disease pandemics to global food security. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	261
3	Clobal historic pandemics caused by the FAM-1 genotype of Phytophthora infestans on six continents. Scientific Reports, 2021, 11, 12335.	3.3	14
4	Real-time monitoring of plant stresses via chemiresistive profiling of leaf volatiles by a wearable sensor. Matter, 2021, 4, 2553-2570.	10.0	93
5	Population structure of <i>Phytophthora infestans</i> collected on potato and tomato in Italy. Plant Pathology, 2021, 70, 2165-2178.	2.4	8
6	Integrated microneedle-smartphone nucleic acid amplification platform for in-field diagnosis of plant diseases. Biosensors and Bioelectronics, 2021, 187, 113312.	10.1	38
7	Potatoes, Citrus and Coffee Under Threat. Plant Pathology in the 21st Century, 2021, , 3-19.	0.9	2
8	Protective plant immune responses are elicited by bacterial outer membrane vesicles. Cell Reports, 2021, 34, 108645.	6.4	39
9	Detection of <i>Phytophthora infestans</i> by Loop-Mediated Isothermal Amplification, Real-Time LAMP, and Droplet Digital PCR. Plant Disease, 2020, 104, 708-716.	1.4	44
10	The Importance of Mycological and Plant Herbaria in Tracking Plant Killers. Frontiers in Ecology and Evolution, 2020, 7, .	2.2	25
11	DNA Extraction from Plant Leaves Using a Microneedle Patch. Current Protocols in Plant Biology, 2020, 5, e20104.	2.8	20
12	CHAPTER 6: The Threat of Late Blight to Global Food Security. , 2020, , 101-132.		11
13	Genetic Structure and Subclonal Variation of Extant and Recent U.S. Lineages of <i>Phytophthora infestans</i> . Phytopathology, 2019, 109, 1614-1627.	2.2	20
14	Non-invasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. Nature Plants, 2019, 5, 856-866.	9.3	191
15	Extraction of Plant DNA by Microneedle Patch for Rapid Detection of Plant Diseases. ACS Nano, 2019, 13, 6540-6549.	14.6	99
16	<i>Phytophthora acaciae</i> sp. nov., a new species causing gummosis of black wattle in Brazil. Mycologia, 2019, 111, 445-455.	1.9	9
17	Population structure and migration of the Tobacco Blue Mold Pathogen, Peronospora tabacina, into North America and Europe. Molecular Ecology, 2018, 27, 737-751.	3.9	9
18	Large sub-clonal variation in Phytophthora infestans from recent severe late blight epidemics in India. Scientific Reports, 2018, 8, 4429.	3.3	43

2

JEAN BEAGLE RISTAINO

#	Article	IF	CITATIONS
19	A Risk Analysis of Precision Agriculture Technology to Manage Tomato Late Blight. Sustainability, 2018, 10, 3108.	3.2	5
20	Population Structure of Pseudocercospora fijiensis in Costa Rica Reveals Shared Haplotype Diversity with Southeast Asian Populations. Phytopathology, 2017, 107, 1541-1548.	2.2	3
21	Genetic Variation within Clonal Lineages of Phytophthora infestans Revealed through Genotyping-By-Sequencing, and Implications for Late Blight Epidemiology. PLoS ONE, 2016, 11, e0165690.	2.5	26
22	Historic Late Blight Outbreaks Caused by a Widespread Dominant Lineage of Phytophthora infestans (Mont.) de Bary. PLoS ONE, 2016, 11, e0168381.	2.5	51
23	Genetic modification for disease resistance: a position paper. Food Security, 2016, 8, 865-870.	5.3	6
24	Ecosystem Services Connect Environmental Change to Human Health Outcomes. EcoHealth, 2016, 13, 443-449.	2.0	18
25	"What a Painfully Interesting Subject― Charles Darwin's Studies of Potato Late Blight. BioScience, 2016, 66, 1035-1045.	4.9	21
26	Genomic Characterization of a South American <i>Phytophthora</i> Hybrid Mandates Reassessment of the Geographic Origins of <i>Phytophthora infestans</i> . Molecular Biology and Evolution, 2016, 33, 478-491.	8.9	48
27	First Report of Gummosis Caused by Phytophthora frigida on Black Wattle in Brazil. Plant Disease, 2016, 100, 2336-2336.	1.4	2
28	Fungicide Sensitivity of U.S. Genotypes of <i>Phytophthora infestans</i> to Six Oomycete-Targeted Compounds. Plant Disease, 2015, 99, 659-666.	1.4	68
29	Five Reasons to Consider <i>Phytophthora infestans</i> a Reemerging Pathogen. Phytopathology, 2015, 105, 966-981.	2.2	254
30	Mitochondrial genome sequences reveal evolutionary relationships of the Phytophthora 1c clade species. Current Genetics, 2015, 61, 567-577.	1.7	23
31	The Top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology, 2015, 16, 413-434.	4.2	695
32	An Ephemeral Sexual Population of Phytophthora infestans in the Northeastern United States and Canada. PLoS ONE, 2014, 9, e116354.	2.5	38
33	Persistence of the Mitochondrial Lineage Responsible for the Irish Potato Famine in Extant New World Phytophthora infestans. Molecular Biology and Evolution, 2014, 31, 1414-1420.	8.9	39
34	Evidence for presence of the founder la mtDNA haplotype of <i>Phytophthora infestans</i> in 19th century potato tubers from the Rothamsted archives. Plant Pathology, 2013, 62, 492-500.	2.4	13
35	The 2009 Late Blight Pandemic in the Eastern United States – Causes and Results. Plant Disease, 2013, 97, 296-306.	1.4	114
36	Reconstructing genome evolution in historic samples of the Irish potato famine pathogen. Nature Communications, 2013, 4, 2172.	12.8	103

3

#	Article	IF	CITATIONS
37	Parallels in Intercellular Communication in Oomycete and Fungal Pathogens of Plants and Humans. PLoS Pathogens, 2012, 8, e1003028.	4.7	14
38	Recent Genotypes of <i>Phytophthora infestans</i> in the Eastern United States Reveal Clonal Populations and Reappearance of Mefenoxam Sensitivity. Plant Disease, 2012, 96, 1323-1330.	1.4	102
39	A Universal Microarray Detection Method for Identification of Multiple <i>Phytophthora</i> spp. Using Padlock Probes. Phytopathology, 2012, 102, 635-645.	2.2	16
40	A Lucid Key to the Common Species of <i>Phytophthora</i> . Plant Disease, 2012, 96, 897-903.	1.4	16
41	Ten polymorphic microsatellite loci identified from a small insert genomic library for <i>Peronospora tabacina</i> . Mycologia, 2012, 104, 633-640.	1.9	12
42	A rebuttal to the letter to the editor concerning †Defining species boundaries in the genus <i>Phytophthora</i> : the case of <i>Phytophthora andina</i> '. Plant Pathology, 2012, 61, 221-223.	2.4	8
43	DNA barcoding of oomycetes with cytochrome <i>c</i> oxidase subunit I and internal transcribed spacer. Molecular Ecology Resources, 2011, 11, 1002-1011.	4.8	504
44	Detection and Quantification of Peronospora tabacina Using a Real-Time Polymerase Chain Reaction Assay. Plant Disease, 2011, 95, 673-682.	1.4	17
45	The Potato Late Blight pathogen in Ireland, 1846: reconnecting Irish specimens with the Moore–Berkeley correspondence. Archives of Natural History, 2011, 38, 356-359.	0.3	0
46	Genetic Structure of Phytophthora infestans Populations in China Indicates Multiple Migration Events. Phytopathology, 2010, 100, 997-1006.	2.2	41
47	<i>Phytophthora andina</i> sp. nov., a newly identified heterothallic pathogen of solanaceous hosts in the Andean highlands. Plant Pathology, 2010, 59, 613-625.	2.4	48
48	Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 2009, 461, 393-398.	27.8	1,405
49	Effect of prior tillage and soil fertility amendments on dispersal of Phytophthora capsici and infection of pepper. European Journal of Plant Pathology, 2008, 120, 273-287.	1.7	24
50	Phylogenetic relationships ofPhytophthora andina, a new species from the highlands of Ecuador that is closely related to the Irish potato famine pathogenPhytophthora infestans. Mycologia, 2008, 100, 590-602.	1.9	40
51	Fitness of Isolates of <i>Phytophthora capsici</i> Resistant to Mefenoxam from Squash and Pepper Fields in North Carolina. Plant Disease, 2008, 92, 1439-1443.	1.4	44
52	Identification of the Tobacco Blue Mold Pathogen, Peronospora tabacina, by Polymerase Chain Reaction. Plant Disease, 2007, 91, 685-691.	1.4	14
53	Effect of organic, sustainable, and conventional management strategies in grower fields on soil physical, chemical, and biological factors and the incidence of Southern blight. Applied Soil Ecology, 2007, 37, 202-214.	4.3	134
54	Long-term effects of organic and synthetic soil fertility amendments on soil microbial communities and the development of southern blight. Soil Biology and Biochemistry, 2007, 39, 2302-2316.	8.8	112

#	Article	IF	CITATIONS
55	An Andean origin of Phytophthora infestans inferred from mitochondrial and nuclear gene genealogies. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3306-3311.	7.1	138
56	Tracking the Evolutionary History of the Potato Late Blight Pathogen with Historical Collections. Outlooks on Pest Management, 2006, 17, 228-231.	0.2	7
57	Mitochondrial genome sequences and molecular evolution of the Irish potato famine pathogen, Phytophthora infestans. Current Genetics, 2006, 49, 39-46.	1.7	52
58	Soil microbial biomass and activity in organic tomato farming systems: Effects of organic inputs and straw mulching. Soil Biology and Biochemistry, 2006, 38, 247-255.	8.8	286
59	Identity of the mtDNA haplotype(s) of Phytophthora infestans in historical specimens from the Irish Potato Famine. Mycological Research, 2004, 108, 471-479.	2.5	91
60	Optimization of Sample Size and DNA Extraction Methods to Improve PCR Detection of Different Propagules of Phytophthora infestans. Plant Disease, 2002, 86, 247-253.	1.4	24
61	Phytophthora infestans Populations from Tomato and Potato in North Carolina Differ in Genetic Diversity and Structure. Phytopathology, 2002, 92, 1189-1195.	2.2	26
62	Effect of Synthetic and Organic Soil Fertility Amendments on Southern Blight, Soil Microbial Communities, and Yield of Processing Tomatoes. Phytopathology, 2002, 92, 181-189.	2.2	150
63	Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Applied Soil Ecology, 2002, 19, 147-160.	4.3	470
64	Influences of organic and synthetic soil fertility amendments on nematode trophic groups and community dynamics under tomatoes. Applied Soil Ecology, 2002, 21, 233-250.	4.3	127
65	Tracking historic migrations of the Irish potato famine pathogen, Phytophthora infestans. Microbes and Infection, 2002, 4, 1369-1377.	1.9	82
66	Resistance to Mefenoxam and Metalaxyl Among Field Isolates of Phytophthora capsici Causing Phytophthora Blight of Bell Pepper. Plant Disease, 2001, 85, 1069-1075.	1.4	207
67	PCR amplification of the Irish potato famine pathogen from historic specimens. Nature, 2001, 411, 695-697.	27.8	185
68	Temporal Dynamics of Phytophthora Blight on Bell Pepper in Relation to the Mechanisms of Dispersal of Primary Inoculum of Phytophthora capsici in Soil. Phytopathology, 2000, 90, 148-156.	2.2	14
69	Commercial Fungicide Formulations Induce In Vitro Oospore Formation and Phenotypic Change in Mating Type in Phytophthora infestans. Phytopathology, 2000, 90, 1201-1208.	2.2	44
70	New Frontiers in the Study of Dispersal and Spatial Analysis of Epidemics Caused by Species in the GenusPhytophthora. Annual Review of Phytopathology, 2000, 38, 541-576.	7.8	131
71	The Importance of Dispersal Mechanisms in the Epidemiology of Phytophthora Blights and Downy Mildews on Crop Plants. EcoHealth, 1999, 5, 146-157.	0.2	14
72	Ecologically Based Approaches to Management of Phytophthora Blight on Bell Pepper. Plant Disease, 1999, 83, 1080-1089.	1.4	223

#	Article	IF	CITATIONS
73	Characterization of Isolates of Phytophthora infestans from Tomato and Potato in North Carolina from 1993 to 1995. Plant Disease, 1999, 83, 633-638.	1.4	35
74	The Importance of Archival and Herbarium Materials in Understanding the Role of Oospores in Late Blight Epidemics of the Past. Phytopathology, 1998, 88, 1120-1130.	2.2	42
75	PCR Amplification of Ribosomal DNA for Species Identification in the Plant Pathogen Genus <i>Phytophthora</i> . Applied and Environmental Microbiology, 1998, 64, 948-954.	3.1	157
76	Insensitivity to Ridomil Gold (Mefenoxam) Found Among Field Isolates of Phytophthora capsici Causing Phytophthora Blight on Bell Pepper in North Carolina and New Jersey. Plant Disease, 1998, 82, 711-711.	1.4	40
77	Autologistic Model of Spatial Pattern of Phytophthora Epidemic in Bell Pepper: Effects of Soil Variables on Disease Presence. Journal of Agricultural, Biological, and Environmental Statistics, 1997, 2, 131.	1.4	113
78	Agriculture, Methyl Bromide, and the Ozone Hole: Can We Fill the Gaps?. Plant Disease, 1997, 81, 964-977.	1.4	189
79	Suppression of Phytophthora Blight in Bell Pepper by a No-Till Wheat Cover Crop. Phytopathology, 1997, 87, 242-249.	2.2	56
80	Rapid Detection of Phytophthora infestans in Late Blight-Infected Potato and Tomato Using PCR. Plant Disease, 1997, 81, 1042-1048.	1.4	101
81	Estimating temperature of mulched and bare soil from meteorological data. Agricultural and Forest Meteorology, 1996, 81, 299-323.	4.8	43
82	Soil Solarization and Gliocladium virens Reduce the Incidence of Southern Blight Sclerotium rolfsii in Bell Pepper in the Field. Biocontrol Science and Technology, 1996, 6, 583-594.	1.3	14
83	Detection and Quantification ofPhytophthora capsiciin Soil. Phytopathology, 1995, 85, 1057.	2.2	41
84	Geostatistical Analysis ofPhytophthoraEpidemic Development in Commercial Bell Pepper Fields. Phytopathology, 1995, 85, 191.	2.2	56
85	Isolation and Characterization of Thaxtomin-Type Phytotoxins Associated with Streptomyces ipomoeae. Journal of Agricultural and Food Chemistry, 1994, 42, 1791-1794.	5.2	42
86	Influence of Isolates of <i>Gliocladium virens</i> and Delivery Systems on Biological Control of Southern Blight on Carrot and Tomato in the Field. Plant Disease, 1994, 78, 153.	1.4	28
87	Spatial Dynamics of Disease Symptom Expression DuringPhytophthoraEpidemics in Bell Pepper. Phytopathology, 1994, 84, 1015.	2.2	33
88	Infection of sweetpotato fibrous roots by Streptomyces ipomoeae: Influence of soil water potential. Soil Biology and Biochemistry, 1993, 25, 185-192.	8.8	5
89	Effect of Resistance to Streptomyces ipomoeae on Disease, Yield, and Dry Matter Partitioning in Sweetpotato. Plant Disease, 1993, 77, 193.	1.4	5
90	Spatial and Temporal Dynamics ofPhytophthoraEpidemics in Commercial Bell Pepper Fields. Phytopathology, 1993, 83, 1312.	2.2	50

#	Article	IF	CITATIONS
91	Population Densities of <i>Phytophthora capsici</i> in Field Soils in Relation to Drip Irrigation, Rainfall, and Disease Incidence. Plant Disease, 1992, 76, 1017.	1.4	18
92	Effects of Irrigation, Sulfur, and Fumigation on Streptomyces Soil Rot and Yield Components in Sweetpotato. Phytopathology, 1992, 82, 670.	2.2	8
93	Effect of the Matric Component of Soil Water Potential on Infection of Pepper Seedlings in Soil Infested with Oospores of <i>Phytophthora capsici</i> . Phytopathology, 1992, 82, 792.	2.2	19
94	Effect of Solarization andGliocladium virenson Sclerotia ofSclerotium rolfsii,Soil Microbiota, and the Incidence of Southern Blight of Tomato. Phytopathology, 1991, 81, 1117.	2.2	55
95	Effects of Physical and Chemical Factors on the Germination of Oospores of <i>Phytophthora capsici</i> in vitro. Phytopathology, 1991, 81, 1541.	2.2	28
96	Influence of Rainfall, Drip Irrigation, and Inoculum Density on the Development of Phytophthora Root and Crown Rot Epidemics and Yield in Bell Pepper. Phytopathology, 1991, 81, 922.	2.2	57
97	Intraspecific Variation Among Isolates of <i>Phytophthora capsici</i> from Pepper and Cucurbit Fields in North Carolina. Phytopathology, 1990, 80, 1253.	2.2	80
98	Biological Control of Rhizoctonia Stem Canker and Black Scurf of Potato. Phytopathology, 1985, 75, 560.	2.2	62
99	Liquid Fermentation Technology for Experimental Production of Biocontrol Fungi. Phytopathology, 1984, 74, 1171.	2.2	121
100	Late blight of potato and tomato. The Plant Health Instructor Index, 0, , .	1.0	28