## Christopher P Dillon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6921029/publications.pdf

Version: 2024-02-01

45 papers 11,875 citations

34 h-index 263392 45 g-index

47 all docs

47 docs citations

times ranked

47

20470 citing authors

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | SAM-Competitive PRMT5 Inhibitor PF-06939999 Demonstrates Antitumor Activity in Splicing Dysregulated NSCLC with Decreased Liability of Drug Resistance. Molecular Cancer Therapeutics, 2022, 21, 3-15. | 1.9 | 29        |
| 2  | Multiple Autonomous Cell Death Suppression Strategies Ensure Cytomegalovirus Fitness. Viruses, 2021, 13, 1707.                                                                                         | 1.5 | 6         |
| 3  | Pharmacologic Properties and Preclinical Activity of Sasanlimab, A High-affinity Engineered Anti-Human PD-1 Antibody. Molecular Cancer Therapeutics, 2020, 19, 2105-2116.                              | 1.9 | 10        |
| 4  | ZBP1/DAI Drives RIPK3-Mediated Cell Death Induced by IFNs in the Absence of RIPK1. Journal of Immunology, 2019, 203, 1348-1355.                                                                        | 0.4 | 72        |
| 5  | RIPK1-dependent apoptosis bypasses pathogen blockade of innate signaling to promote immune defense.<br>Journal of Experimental Medicine, 2017, 214, 3171-3182.                                         | 4.2 | 94        |
| 6  | A Dual Role of Caspase-8 in Triggering and Sensing Proliferation-Associated DNA Damage, a Key Determinant of Liver Cancer Development. Cancer Cell, 2017, 32, 342-359.e10.                             | 7.7 | 122       |
| 7  | The proline rich domain of p53 is dispensable for MGMT-dependent DNA repair and cell survival following alkylation damage. Cell Death and Differentiation, 2017, 24, 1925-1936.                        | 5.0 | 10        |
| 8  | Programmed necrosis in inflammation: Toward identification of the effector molecules. Science, 2016, 352, aaf2154.                                                                                     | 6.0 | 431       |
| 9  | Developmental checkpoints guarded by regulated necrosis. Cellular and Molecular Life Sciences, 2016, 73, 2125-2136.                                                                                    | 2.4 | 23        |
| 10 | The Pseudokinase MLKL and the Kinase RIPK3 Have Distinct Roles in Autoimmune Disease Caused by Loss of Death-Receptor-Induced Apoptosis. Immunity, 2016, 45, 513-526.                                  | 6.6 | 191       |
| 11 | Molecular Cell Biology of Apoptosis and Necroptosis in Cancer. Advances in Experimental Medicine and Biology, 2016, 930, 1-23.                                                                         | 0.8 | 46        |
| 12 | Cell-Extrinsic TNF Collaborates with TRIF Signaling To Promote <i>Yersinia</i> Induced Apoptosis. Journal of Immunology, 2016, 197, 4110-4117.                                                         | 0.4 | 39        |
| 13 | RIPK3 Activates Parallel Pathways of MLKL-Driven Necroptosis and FADD-Mediated Apoptosis to Protect against Influenza A Virus. Cell Host and Microbe, 2016, 20, 13-24.                                 | 5.1 | 299       |
| 14 | Apoptosis-Inducing-Factor-Dependent Mitochondrial Function Is Required for T Cell but Not B Cell Function. Immunity, 2016, 44, 88-102.                                                                 | 6.6 | 69        |
| 15 | StIKKing it to a death kinase: IKKs prevent TNF-α-induced cell death by phosphorylating RIPK1. Cytokine, 2016, 78, 47-50.                                                                              | 1.4 | 7         |
| 16 | Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3. Nature Communications, 2015, 6, 7515.                                                               | 5.8 | 205       |
| 17 | IL-21-mediated non-canonical pathway for IL- $1\hat{l}^2$ production in conventional dendritic cells. Nature Communications, 2015, 6, 7988.                                                            | 5.8 | 21        |
| 18 | Myeloid-Derived Suppressor Activity Is Mediated by Monocytic Lineages Maintained by Continuous Inhibition of Extrinsic and Intrinsic Death Pathways. Immunity, 2014, 41, 947-959.                      | 6.6 | 121       |

| #  | Article                                                                                                                                                                                                                                            | IF          | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 19 | FADD and Caspase-8 Mediate Priming and Activation of the Canonical and Noncanonical Nlrp3 Inflammasomes. Journal of Immunology, 2014, 192, 1835-1846.                                                                                              | 0.4         | 429       |
| 20 | RIPK1 Blocks Early Postnatal Lethality Mediated by Caspase-8 and RIPK3. Cell, 2014, 157, 1189-1202.                                                                                                                                                | 13.5        | 452       |
| 21 | Cutting Edge: Endoplasmic Reticulum Stress Licenses Macrophages To Produce Mature IL-1β in Response to TLR4 Stimulation through a Caspase-8– and TRIF-Dependent Pathway. Journal of Immunology, 2014, 192, 2029-2033.                              | 0.4         | 149       |
| 22 | Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-κB and MAPK signaling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7385-7390.            | 3.3         | 215       |
| 23 | Caspase-8 Modulates Dectin-1 and Complement Receptor 3–Driven IL-1β Production in Response to β-Glucans and the Fungal Pathogen, <i>Candida albicans</i> . Journal of Immunology, 2014, 193, 2519-2530.                                            | 0.4         | 114       |
| 24 | Protective Roles for Caspase-8 and cFLIP in Adult Homeostasis. Cell Reports, 2013, 5, 340-348.                                                                                                                                                     | 2.9         | 130       |
| 25 | Yeretssian et al. reply. Nature, 2012, 488, E6-E8.                                                                                                                                                                                                 | 13.7        | 4         |
| 26 | Survival Function of the FADD-CASPASE-8-cFLIPL Complex. Cell Reports, 2012, 1, 401-407.                                                                                                                                                            | 2.9         | 285       |
| 27 | The Transcription Factor Myc Controls Metabolic Reprogramming upon T Lymphocyte Activation. Immunity, 2011, 35, 871-882.                                                                                                                           | 6.6         | 1,698     |
| 28 | RIPK-Dependent Necrosis and Its Regulation by Caspases: A Mystery in Five Acts. Molecular Cell, 2011, 44, 9-16.                                                                                                                                    | 4.5         | 159       |
| 29 | A Unified Model of Mammalian BCL-2 Protein Family Interactions at the Mitochondria. Molecular Cell, 2011, 44, 517-531.                                                                                                                             | 4.5         | 502       |
| 30 | Catalytic activity of the caspase-8–FLIPL complex inhibits RIPK3-dependent necrosis. Nature, 2011, 471, 363-367.                                                                                                                                   | 13.7        | 1,059     |
| 31 | Non-apoptotic role of BID in inflammation and innate immunity. Nature, 2011, 474, 96-99.                                                                                                                                                           | 13.7        | 103       |
| 32 | Ripped to death. Trends in Cell Biology, 2011, 21, 630-637.                                                                                                                                                                                        | 3.6         | 62        |
| 33 | Scientists contemplate unexplained death in Austrian Alps. EMBO Molecular Medicine, 2011, 3, 363-366.                                                                                                                                              | 3.3         | 1         |
| 34 | Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17396-17401. | 3.3         | 585       |
| 35 | Autophagy is a cell survival program for female germ cells in the murine ovary. Reproduction, 2011, 141, 759-765.                                                                                                                                  | 1.1         | 146       |
| 36 | Characterization of Cytoplasmic Caspase-2 Activation by Induced Proximity. Molecular Cell, 2009, 35, 830-840.                                                                                                                                      | <b>4.</b> 5 | 131       |

| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Matters of Life and Death in the Immune System. , 2009, , 423-442.                                                                                                                                               |      | 0         |
| 38 | Inhibition of Hsp90 via 17-DMAG induces apoptosis in a p53-dependent manner to prevent medulloblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17037-17042. | 3.3  | 37        |
| 39 | Mechanism of apoptosis induction by inhibition of the anti-apoptotic BCL-2 proteins. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20327-20332.                    | 3.3  | 204       |
| 40 | Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature, 2007, 450, 1253-1257.                                                                                          | 13.7 | 1,181     |
| 41 | Evidence for a protective role of Mcl-1 in proteasome inhibitor-induced apoptosis. Blood, 2005, 105, 3255-3262.                                                                                                  | 0.6  | 114       |
| 42 | RNAI AS AN EXPERIMENTAL AND THERAPEUTIC TOOL TO STUDY AND REGULATE PHYSIOLOGICAL AND DISEASE PROCESSES. Annual Review of Physiology, 2005, 67, 147-173.                                                          | 5.6  | 96        |
| 43 | Cre-lox-regulated conditional RNA interference from transgenes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10380-10385.                                         | 3.3  | 575       |
| 44 | A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature Genetics, 2003, 33, 401-406.                                      | 9.4  | 1,427     |
| 45 | Small Interfering RNA-Mediated Gene Silencing in T Lymphocytes. Journal of Immunology, 2002, 169, 5754-5760.                                                                                                     | 0.4  | 217       |