
## Liangbing Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6920509/publications.pdf Version: 2024-02-01



LIANCRING HU

| #  | Article                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte<br>interphase control. Nature Nanotechnology, 2012, 7, 310-315.    | 15.6 | 2,144     |
| 2  | Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic<br>Nanostructures. Advanced Materials, 2011, 23, 1482-1513.  | 11.1 | 1,963     |
| 3  | Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano, 2010,<br>4, 2955-2963.                                       | 7.3  | 1,906     |
| 4  | Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nature Materials, 2017, 16,<br>572-579.                                       | 13.3 | 1,583     |
| 5  | Stretchable, Porous, and Conductive Energy Textiles. Nano Letters, 2010, 10, 708-714.                                                                        | 4.5  | 1,415     |
| 6  | Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life.<br>Nano Letters, 2011, 11, 2949-2954.                         | 4.5  | 1,278     |
| 7  | Highly conductive paper for energy-storage devices. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21490-21494. | 3.3  | 1,138     |
| 8  | Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Chemical Reviews, 2016, 116, 9305-9374.                           | 23.0 | 1,110     |
| 9  | Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science, 2018, 359, 1489-1494.                                                             | 6.0  | 1,065     |
| 10 | Enhancing the Supercapacitor Performance of Graphene/MnO <sub>2</sub> Nanostructured Electrodes by Conductive Wrapping. Nano Letters, 2011, 11, 4438-4442.   | 4.5  | 1,062     |
| 11 | Processing bulk natural wood into a high-performance structural material. Nature, 2018, 554, 224-228.                                                        | 13.7 | 970       |
| 12 | Carbon Nanotube Thin Films: Fabrication, Properties, and Applications. Chemical Reviews, 2010, 110, 5790-5844.                                               | 23.0 | 889       |
| 13 | Na-Ion Battery Anodes: Materials and Electrochemistry. Accounts of Chemical Research, 2016, 49, 231-240.                                                     | 7.6  | 886       |
| 14 | A radiative cooling structural material. Science, 2019, 364, 760-763.                                                                                        | 6.0  | 856       |
| 15 | A transparent electrode based on a metal nanotrough network. Nature Nanotechnology, 2013, 8, 421-425.                                                        | 15.6 | 851       |
| 16 | Challenges and Opportunities for Solar Evaporation. Joule, 2019, 3, 683-718.                                                                                 | 11.7 | 850       |
| 17 | Potassium Ion Batteries with Graphitic Materials. Nano Letters, 2015, 15, 7671-7677.                                                                         | 4.5  | 805       |
| 18 | Thin, Flexible Secondary Li-Ion Paper Batteries. ACS Nano, 2010, 4, 5843-5848.                                                                               | 7.3  | 785       |

2

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium<br>batteries. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113,<br>7094-7099. | 3.3  | 769       |
| 20 | Developing fibrillated cellulose as a sustainable technological material. Nature, 2021, 590, 47-56.                                                                                                                  | 13.7 | 711       |
| 21 | Plasmonic Wood for Highâ€Efficiency Solar Steam Generation. Advanced Energy Materials, 2018, 8,<br>1701028.                                                                                                          | 10.2 | 701       |
| 22 | Next-Generation Lithium Metal Anode Engineering <i>via</i> Atomic Layer Deposition. ACS Nano, 2015, 9, 5884-5892.                                                                                                    | 7.3  | 700       |
| 23 | High-Performance Nanostructured Supercapacitors on a Sponge. Nano Letters, 2011, 11, 5165-5172.                                                                                                                      | 4.5  | 670       |
| 24 | Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode. Nano Letters, 2010, 10,<br>4242-4248.                                                                                                    | 4.5  | 660       |
| 25 | Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries. Chemical Reviews, 2020, 120, 4257-4300.                                                                                                  | 23.0 | 655       |
| 26 | Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Science Advances, 2017, 3, e1601659.                                   | 4.7  | 647       |
| 27 | A Highâ€Performance Selfâ€Regenerating Solar Evaporator for Continuous Water Desalination. Advanced<br>Materials, 2019, 31, e1900498.                                                                                | 11.1 | 638       |
| 28 | Structure–property–function relationships of natural and engineered wood. Nature Reviews<br>Materials, 2020, 5, 642-666.                                                                                             | 23.3 | 616       |
| 29 | Electrospun Sb/C Fibers for a Stable and Fast Sodium-Ion Battery Anode. ACS Nano, 2013, 7, 6378-6386.                                                                                                                | 7.3  | 610       |
| 30 | All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance.<br>Energy and Environmental Science, 2017, 10, 538-545.                                                                | 15.6 | 602       |
| 31 | Protected Lithiumâ€Metal Anodes in Batteries: From Liquid to Solid. Advanced Materials, 2017, 29, 1701169.                                                                                                           | 11.1 | 596       |
| 32 | Graphene Oxideâ€Based Electrode Inks for 3Dâ€Printed Lithiumâ€ion Batteries. Advanced Materials, 2016, 28,<br>2587-2594.                                                                                             | 11.1 | 590       |
| 33 | Highly Flexible and Efficient Solar Steam Generation Device. Advanced Materials, 2017, 29, 1701756.                                                                                                                  | 11.1 | 584       |
| 34 | Symmetrical MnO <sub>2</sub> –Carbon Nanotube–Textile Nanostructures for Wearable<br>Pseudocapacitors with High Mass Loading. ACS Nano, 2011, 5, 8904-8913.                                                          | 7.3  | 582       |
| 35 | Tin Anode for Sodium-Ion Batteries Using Natural Wood Fiber as a Mechanical Buffer and Electrolyte<br>Reservoir. Nano Letters, 2013, 13, 3093-3100.                                                                  | 4.5  | 556       |
| 36 | Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium<br>Metal Anodes. Nano Letters, 2017, 17, 565-571.                                                                  | 4.5  | 556       |

| #  | Article                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte.<br>Journal of the American Chemical Society, 2016, 138, 12258-12262.             | 6.6  | 548       |
| 38 | Highly Anisotropic, Highly Transparent Wood Composites. Advanced Materials, 2016, 28, 5181-5187.                                                                                 | 11.1 | 518       |
| 39 | Reducing Interfacial Resistance between Garnetâ€Structured Solidâ€State Electrolyte and Liâ€Metal Anode<br>by a Germanium Layer. Advanced Materials, 2017, 29, 1606042.          | 11.1 | 512       |
| 40 | 3Dâ€Printed, Allâ€inâ€One Evaporator for Highâ€Efficiency Solar Steam Generation under 1 Sun Illumination.<br>Advanced Materials, 2017, 29, 1700981.                             | 11.1 | 511       |
| 41 | Ultrafine Silver Nanoparticles for Seeded Lithium Deposition toward Stable Lithium Metal Anode.<br>Advanced Materials, 2017, 29, 1702714.                                        | 11.1 | 510       |
| 42 | Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries. ACS<br>Nano, 2010, 4, 3671-3678.                                                   | 7.3  | 507       |
| 43 | Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur<br>batteries. Energy and Environmental Science, 2017, 10, 1568-1575.           | 15.6 | 499       |
| 44 | Treeâ€Inspired Design for Highâ€Efficiency Water Extraction. Advanced Materials, 2017, 29, 1704107.                                                                              | 11.1 | 494       |
| 45 | Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy and Environmental Science, 2019, 12, 1558-1567.               | 15.6 | 482       |
| 46 | Transparent paper: fabrications, properties, and device applications. Energy and Environmental Science, 2014, 7, 269-287.                                                        | 15.6 | 457       |
| 47 | Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bulletin, 2011, 36, 760-765.                                                                          | 1.7  | 434       |
| 48 | Transparent and conductive paper from nanocellulose fibers. Energy and Environmental Science, 2013,<br>6, 513-518.                                                               | 15.6 | 431       |
| 49 | Highly Thermally Conductive Papers with Percolative Layered Boron Nitride Nanosheets. ACS Nano, 2014, 8, 3606-3613.                                                              | 7.3  | 425       |
| 50 | Novel Nanostructured Paper with Ultrahigh Transparency and Ultrahigh Haze for Solar Cells. Nano<br>Letters, 2014, 14, 765-773.                                                   | 4.5  | 419       |
| 51 | High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proceedings of the National<br>Academy of Sciences of the United States of America, 2017, 114, 3584-3589. | 3.3  | 412       |
| 52 | Muscleâ€Inspired Highly Anisotropic, Strong, Ionâ€Conductive Hydrogels. Advanced Materials, 2018, 30,<br>e1801934.                                                               | 11.1 | 408       |
| 53 | Thick Electrode Batteries: Principles, Opportunities, and Challenges. Advanced Energy Materials, 2019,<br>9, 1901457.                                                            | 10.2 | 407       |
| 54 | Highly Transparent and Flexible Nanopaper Transistors. ACS Nano, 2013, 7, 2106-2113.                                                                                             | 7.3  | 401       |

| #  | Article                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Organic electrode for non-aqueous potassium-ion batteries. Nano Energy, 2015, 18, 205-211.                                                                                      | 8.2  | 397       |
| 56 | Mesoporous, Three-Dimensional Wood Membrane Decorated with Nanoparticles for Highly Efficient<br>Water Treatment. ACS Nano, 2017, 11, 4275-4282.                                | 7.3  | 392       |
| 57 | Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nature<br>Communications, 2019, 10, 4011.                                                         | 5.8  | 376       |
| 58 | Energy and environmental nanotechnology in conductive paper and textiles. Energy and Environmental Science, 2012, 5, 6423.                                                      | 15.6 | 374       |
| 59 | Scalable and Highly Efficient Mesoporous Woodâ€Based Solar Steam Generation Device: Localized Heat,<br>Rapid Water Transport. Advanced Functional Materials, 2018, 28, 1707134. | 7.8  | 366       |
| 60 | Progress in 3D Printing of Carbon Materials for Energyâ€Related Applications. Advanced Materials, 2017,<br>29, 1603486.                                                         | 11.1 | 364       |
| 61 | Highly Compressible, Anisotropic Aerogel with Aligned Cellulose Nanofibers. ACS Nano, 2018, 12,<br>140-147.                                                                     | 7.3  | 364       |
| 62 | Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications.<br>Chemical Society Reviews, 2016, 45, 6742-6765.                                | 18.7 | 363       |
| 63 | Rich Mesostructures Derived from Natural Woods for Solar Steam Generation. Joule, 2017, 1, 588-599.                                                                             | 11.7 | 363       |
| 64 | Woodâ€Based Nanotechnologies toward Sustainability. Advanced Materials, 2018, 30, 1703453.                                                                                      | 11.1 | 359       |
| 65 | A general method to synthesize and sinter bulk ceramics in seconds. Science, 2020, 368, 521-526.                                                                                | 6.0  | 357       |
| 66 | Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting.<br>Nature Materials, 2019, 18, 608-613.                                        | 13.3 | 343       |
| 67 | Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Science Advances, 2018, 4, eaar3724.                            | 4.7  | 336       |
| 68 | Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam<br>Generation. ACS Applied Materials & Interfaces, 2018, 10, 1104-1112.          | 4.0  | 327       |
| 69 | Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency<br>solar desalination. Nano Energy, 2017, 41, 201-209.                            | 8.2  | 316       |
| 70 | Natural Cellulose Fiber as Substrate for Supercapacitor. ACS Nano, 2013, 7, 6037-6046.                                                                                          | 7.3  | 315       |
| 71 | A Thermally Conductive Separator for Stable Li Metal Anodes. Nano Letters, 2015, 15, 6149-6154.                                                                                 | 4.5  | 313       |
| 72 | Ultrathin Surface Coating Enables the Stable Sodium Metal Anode. Advanced Energy Materials, 2017, 7,<br>1601526.                                                                | 10.2 | 312       |

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Anomalous scaling law of strength and toughness of cellulose nanopaper. Proceedings of the<br>National Academy of Sciences of the United States of America, 2015, 112, 8971-8976.                                       | 3.3  | 296       |
| 74 | A strong, biodegradable and recyclable lignocellulosic bioplastic. Nature Sustainability, 2021, 4, 627-635.                                                                                                             | 11.5 | 291       |
| 75 | Paper supercapacitors by a solvent-free drawing method. Energy and Environmental Science, 2011, 4, 3368.                                                                                                                | 15.6 | 290       |
| 76 | Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes. Energy and Environmental Science, 2012, 5, 5265-5270.                                                                                     | 15.6 | 284       |
| 77 | Transient Electronics: Materials and Devices. Chemistry of Materials, 2016, 28, 3527-3539.                                                                                                                              | 3.2  | 284       |
| 78 | Biodegradable transparent substrates for flexible organic-light-emitting diodes. Energy and Environmental Science, 2013, 6, 2105.                                                                                       | 15.6 | 281       |
| 79 | High temperature shockwave stabilized single atoms. Nature Nanotechnology, 2019, 14, 851-857.                                                                                                                           | 15.6 | 278       |
| 80 | Nanocellulose as green dispersant for two-dimensional energy materials. Nano Energy, 2015, 13,<br>346-354.                                                                                                              | 8.2  | 270       |
| 81 | 3Dâ€Printed Allâ€Fiber Liâ€lon Battery toward Wearable Energy Storage. Advanced Functional Materials,<br>2017, 27, 1703140.                                                                                             | 7.8  | 270       |
| 82 | Copper-coordinated cellulose ion conductors for solid-state batteries. Nature, 2021, 598, 590-596.                                                                                                                      | 13.7 | 262       |
| 83 | Three-Dimensional Printed Thermal Regulation Textiles. ACS Nano, 2017, 11, 11513-11520.                                                                                                                                 | 7.3  | 261       |
| 84 | Ultraâ€Thick, Lowâ€Tortuosity, and Mesoporous Wood Carbon Anode for Highâ€Performance Sodiumâ€Ion<br>Batteries. Advanced Energy Materials, 2016, 6, 1600377.                                                            | 10.2 | 257       |
| 85 | Highâ€₽erformance Solar Steam Device with Layered Channels: Artificial Tree with a Reversed Design.<br>Advanced Energy Materials, 2018, 8, 1701616.                                                                     | 10.2 | 255       |
| 86 | Nanocellulose toward Advanced Energy Storage Devices: Structure and Electrochemistry. Accounts of Chemical Research, 2018, 51, 3154-3165.                                                                               | 7.6  | 251       |
| 87 | Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive<br>framework. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115,<br>3770-3775. | 3.3  | 250       |
| 88 | Garnet Solid Electrolyte Protected Li-Metal Batteries. ACS Applied Materials & Interfaces, 2017, 9, 18809-18815.                                                                                                        | 4.0  | 247       |
| 89 | Scalable and Sustainable Approach toward Highly Compressible, Anisotropic, Lamellar Carbon Sponge.<br>CheM, 2018, 4, 544-554.                                                                                           | 5.8  | 246       |
| 90 | Encapsulation of Metallic Na in an Electrically Conductive Host with Porous Channels as a Highly<br>Stable Na Metal Anode. Nano Letters, 2017, 17, 3792-3797.                                                           | 4.5  | 243       |

| #   | Article                                                                                                                                                               | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Extrusionâ€Based 3D Printing of Hierarchically Porous Advanced Battery Electrodes. Advanced<br>Materials, 2018, 30, e1705651.                                         | 11.1 | 241       |
| 92  | High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery.<br>Science, 2022, 376, eabn3103.                                    | 6.0  | 239       |
| 93  | MWCNT/V <sub>2</sub> O <sub>5</sub> Core/Shell Sponge for High Areal Capacity and Power Density<br>Li-Ion Cathodes. ACS Nano, 2012, 6, 7948-7955.                     | 7.3  | 236       |
| 94  | 3Dâ€Printing Electrolytes for Solidâ€State Batteries. Advanced Materials, 2018, 30, e1707132.                                                                         | 11.1 | 236       |
| 95  | Transparent lithium-ion batteries. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13013-13018.                           | 3.3  | 234       |
| 96  | High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture. Materials Today, 2019, 22, 50-57.                                                | 8.3  | 233       |
| 97  | Lithiumâ€lon Textile Batteries with Large Areal Mass Loading. Advanced Energy Materials, 2011, 1, 1012-1017.                                                          | 10.2 | 230       |
| 98  | Wood Composite as an Energy Efficient Building Material: Guided Sunlight Transmittance and Effective Thermal Insulation. Advanced Energy Materials, 2016, 6, 1601122. | 10.2 | 228       |
| 99  | Transient Behavior of the Metal Interface in Lithium Metal–Garnet Batteries. Angewandte Chemie -<br>International Edition, 2017, 56, 14942-14947.                     | 7.2  | 227       |
| 100 | Highâ€Entropy Metal Sulfide Nanoparticles Promise Highâ€Performance Oxygen Evolution Reaction.<br>Advanced Energy Materials, 2021, 11, 2002887.                       | 10.2 | 226       |
| 101 | Transparent nanopaper with tailored optical properties. Nanoscale, 2013, 5, 3787.                                                                                     | 2.8  | 223       |
| 102 | Transparent and haze wood composites for highly efficient broadband light management in solar cells. Nano Energy, 2016, 26, 332-339.                                  | 8.2  | 222       |
| 103 | Silicon–Carbon Nanotube Coaxial Sponge as Liâ€ion Anodes with High Areal Capacity. Advanced Energy<br>Materials, 2011, 1, 523-527.                                    | 10.2 | 220       |
| 104 | A Dynamic Gel with Reversible and Tunable Topological Networks and Performances. Matter, 2020, 2, 390-403.                                                            | 5.0  | 216       |
| 105 | Porous Amorphous FePO <sub>4</sub> Nanoparticles Connected by Single-Wall Carbon Nanotubes for<br>Sodium Ion Battery Cathodes. Nano Letters, 2012, 12, 5664-5668.     | 4.5  | 215       |
| 106 | Electrode Materials of Sodium-Ion Batteries toward Practical Application. ACS Energy Letters, 2018, 3, 1604-1612.                                                     | 8.8  | 214       |
| 107 | Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation. Nature Communications, 2014, 5, 4224.                   | 5.8  | 213       |
| 108 | Scalable Holey Graphene Synthesis and Dense Electrode Fabrication toward High-Performance<br>Ultracapacitors. ACS Nano, 2014, 8, 8255-8265.                           | 7.3  | 212       |

| #   | Article                                                                                                                                                                | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Highly Conductive, Lightweight, Lowâ€Tortuosity Carbon Frameworks as Ultrathick 3D Current<br>Collectors. Advanced Energy Materials, 2017, 7, 1700595.                 | 10.2 | 210       |
| 110 | Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification. Journal of Materials Chemistry A, 2018, 6, 18839-18846.    | 5.2  | 208       |
| 111 | Lignin as a Woodâ€Inspired Binder Enabled Strong, Water Stable, and Biodegradable Paper for Plastic<br>Replacement. Advanced Functional Materials, 2020, 30, 1906307.  | 7.8  | 208       |
| 112 | Interface Engineering for Garnetâ€Based Solidâ€State Lithiumâ€Metal Batteries: Materials, Structures, and<br>Characterization. Advanced Materials, 2018, 30, e1802068. | 11.1 | 204       |
| 113 | Anisotropic, Transparent Films with Aligned Cellulose Nanofibers. Advanced Materials, 2017, 29, 1606284.                                                               | 11.1 | 202       |
| 114 | A Strong, Tough, and Scalable Structural Material from Fastâ€Growing Bamboo. Advanced Materials,<br>2020, 32, e1906308.                                                | 11.1 | 202       |
| 115 | A carbon-based 3D current collector with surface protection for Li metal anode. Nano Research, 2017, 10, 1356-1365.                                                    | 5.8  | 200       |
| 116 | Nanostructured paper for flexible energy and electronic devices. MRS Bulletin, 2013, 38, 320-325.                                                                      | 1.7  | 199       |
| 117 | Aqueous supercapacitors on conductive cotton. Nano Research, 2010, 3, 452-458.                                                                                         | 5.8  | 197       |
| 118 | 3D Wettable Framework for Dendriteâ€Free Alkali Metal Anodes. Advanced Energy Materials, 2018, 8,<br>1800635.                                                          | 10.2 | 196       |
| 119 | Reactivation of dissolved polysulfides in Li–S batteries based on atomic layer deposition of Al2O3 in nanoporous carbon cloth. Nano Energy, 2013, 2, 1197-1206.        | 8.2  | 195       |
| 120 | Determining the three-dimensional atomic structure of an amorphous solid. Nature, 2021, 592, 60-64.                                                                    | 13.7 | 193       |
| 121 | Atomic-Layer-Deposition Oxide Nanoglue for Sodium Ion Batteries. Nano Letters, 2014, 14, 139-147.                                                                      | 4.5  | 191       |
| 122 | Flexible, Scalable, and Highly Conductive Garnetâ€Polymer Solid Electrolyte Templated by Bacterial<br>Cellulose. Advanced Energy Materials, 2018, 8, 1703474.          | 10.2 | 189       |
| 123 | An Electron/Ion Dualâ€Conductive Alloy Framework for Highâ€Rate and Highâ€Capacity Solidâ€State<br>Lithiumâ€Metal Batteries. Advanced Materials, 2019, 31, e1804815.   | 11.1 | 188       |
| 124 | Reduced Graphene Oxide Films with Ultrahigh Conductivity as Li-Ion Battery Current Collectors. Nano<br>Letters, 2016, 16, 3616-3623.                                   | 4.5  | 187       |
| 125 | Universal Soldering of Lithium and Sodium Alloys on Various Substrates for Batteries. Advanced<br>Energy Materials, 2018, 8, 1701963.                                  | 10.2 | 186       |
| 126 | Super‧trong, Super‧tiff Macrofibers with Aligned, Long Bacterial Cellulose Nanofibers. Advanced<br>Materials, 2017, 29, 1702498.                                       | 11.1 | 185       |

| #   | Article                                                                                                                                                                   | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Printed energy storage devices by integration of electrodes and separators into single sheets of paper. Applied Physics Letters, 2010, 96, .                              | 1.5  | 184       |
| 128 | Reduced graphene oxide film with record-high conductivity and mobility. Materials Today, 2018, 21, 186-192.                                                               | 8.3  | 182       |
| 129 | Scalable aesthetic transparent wood for energy efficient buildings. Nature Communications, 2020, 11, 3836.                                                                | 5.8  | 180       |
| 130 | A cellulose based hydrophilic, oleophobic hydrated filter for water/oil separation. Chemical Communications, 2014, 50, 13296-13299.                                       | 2.2  | 178       |
| 131 | Three-Dimensional, Solid-State Mixed Electron–Ion Conductive Framework for Lithium Metal Anode.<br>Nano Letters, 2018, 18, 3926-3933.                                     | 4.5  | 175       |
| 132 | Ultrahigh Tough, Super Clear, and Highly Anisotropic Nanofiber-Structured Regenerated Cellulose<br>Films. ACS Nano, 2019, 13, 4843-4853.                                  | 7.3  | 174       |
| 133 | Optical haze of transparent and conductive silver nanowire films. Nano Research, 2013, 6, 461-468.                                                                        | 5.8  | 173       |
| 134 | Flexible Batteries: From Mechanics to Devices. ACS Energy Letters, 2016, 1, 1065-1079.                                                                                    | 8.8  | 170       |
| 135 | Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes. Chemical Communications, 2011, 47, 367-369.                                                     | 2.2  | 166       |
| 136 | Conductive Cellulose Nanofiber Enabled Thick Electrode for Compact and Flexible Energy Storage<br>Devices. Advanced Energy Materials, 2018, 8, 1802398.                   | 10.2 | 163       |
| 137 | Three-Dimensional Printable High-Temperature and High-Rate Heaters. ACS Nano, 2016, 10, 5272-5279.                                                                        | 7.3  | 161       |
| 138 | Extreme Light Management in Mesoporous Wood Cellulose Paper for Optoelectronics. ACS Nano, 2016, 10, 1369-1377.                                                           | 7.3  | 161       |
| 139 | Hierarchically Porous, Ultrathick, "Breathable―Woodâ€Đerived Cathode for Lithiumâ€Oxygen Batteries.<br>Advanced Energy Materials, 2018, 8, 1701203.                       | 10.2 | 161       |
| 140 | Solution Processed Boron Nitride Nanosheets: Synthesis, Assemblies and Emerging Applications.<br>Advanced Functional Materials, 2017, 27, 1701450.                        | 7.8  | 160       |
| 141 | Low temperature carbonization of cellulose nanocrystals for high performance carbon anode of sodium-ion batteries. Nano Energy, 2017, 33, 37-44.                          | 8.2  | 159       |
| 142 | Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts. Science Advances, 2020, 6, eaaz0510.                     | 4.7  | 158       |
| 143 | <i>In Situ</i> Neutron Depth Profiling of Lithium Metal–Garnet Interfaces for Solid State Batteries.<br>Journal of the American Chemical Society, 2017, 139, 14257-14264. | 6.6  | 154       |
| 144 | Denary oxide nanoparticles as highly stable catalysts for methane combustion. Nature Catalysis, 2021,<br>4, 62-70.                                                        | 16.1 | 153       |

| #   | Article                                                                                                                                                                        | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Enabling High-Areal-Capacity Lithium–Sulfur Batteries: Designing Anisotropic and Low-Tortuosity<br>Porous Architectures. ACS Nano, 2017, 11, 4801-4807.                        | 7.3  | 151       |
| 146 | Holey Graphene Nanomanufacturing: Structure, Composition, and Electrochemical Properties.<br>Advanced Functional Materials, 2015, 25, 2920-2927.                               | 7.8  | 150       |
| 147 | A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Science Advances, 2019, 5, eaau4238.                                                                  | 4.7  | 148       |
| 148 | Carbonized-leaf Membrane with Anisotropic Surfaces for Sodium-ion Battery. ACS Applied Materials<br>& Interfaces, 2016, 8, 2204-2210.                                          | 4.0  | 146       |
| 149 | FeS <sub>2</sub> Nanoparticles Embedded in Reduced Graphene Oxide toward Robust,<br>Highâ€Performance Electrocatalysts. Advanced Energy Materials, 2017, 7, 1700482.           | 10.2 | 144       |
| 150 | Transparent, Anisotropic Biofilm with Aligned Bacterial Cellulose Nanofibers. Advanced Functional<br>Materials, 2018, 28, 1707491.                                             | 7.8  | 142       |
| 151 | A perylene anhydride crystal as a reversible electrode for K-ion batteries. Energy Storage Materials, 2016, 2, 63-68.                                                          | 9.5  | 141       |
| 152 | Superflexible Wood. ACS Applied Materials & amp; Interfaces, 2017, 9, 23520-23527.                                                                                             | 4.0  | 141       |
| 153 | Clear Wood toward High-Performance Building Materials. ACS Nano, 2019, 13, 9993-10001.                                                                                         | 7.3  | 138       |
| 154 | Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material.<br>Science, 2021, 374, 465-471.                                             | 6.0  | 137       |
| 155 | High Temperature Carbonized Grass as a High Performance Sodium Ion Battery Anode. ACS Applied<br>Materials & Interfaces, 2017, 9, 391-397.                                     | 4.0  | 136       |
| 156 | 3Dâ€Printed Graphene Oxide Framework with Thermal Shock Synthesized Nanoparticles for<br>Li O <sub>2</sub> Batteries. Advanced Functional Materials, 2018, 28, 1805899.        | 7.8  | 135       |
| 157 | Lithium-ion conductive ceramic textile: A new architecture for flexible solid-state lithium metal<br>batteries. Materials Today, 2018, 21, 594-601.                            | 8.3  | 134       |
| 158 | Sustainable off-grid desalination of hypersaline waters using Janus wood evaporators. Energy and<br>Environmental Science, 2021, 14, 5347-5357.                                | 15.6 | 133       |
| 159 | Ultrahigh-Capacity Lithium–Oxygen Batteries Enabled by Dry-Pressed Holey Graphene Air Cathodes.<br>Nano Letters, 2017, 17, 3252-3260.                                          | 4.5  | 132       |
| 160 | Silver nanowire transparent conducting paper-based electrode with high optical haze. Journal of<br>Materials Chemistry C, 2014, 2, 1248-1254.                                  | 2.7  | 131       |
| 161 | Celluloseâ€Nanofiberâ€Enabled 3D Printing of a Carbonâ€Nanotube Microfiber Network. Small Methods,<br>2017, 1, 1700222.                                                        | 4.6  | 130       |
| 162 | Transient, <i>in situ</i> synthesis of ultrafine ruthenium nanoparticles for a high-rate<br>Li–CO <sub>2</sub> battery. Energy and Environmental Science, 2019, 12, 1100-1107. | 15.6 | 129       |

| #   | Article                                                                                                                                                                        | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Dense, Selfâ€Formed Char Layer Enables a Fireâ€Retardant Wood Structural Material. Advanced<br>Functional Materials, 2019, 29, 1807444.                                        | 7.8  | 125       |
| 164 | A Clear, Strong, and Thermally Insulated Transparent Wood for Energy Efficient Windows. Advanced<br>Functional Materials, 2020, 30, 1907511.                                   | 7.8  | 124       |
| 165 | Highly transparent paper with tunable haze for green electronics. Energy and Environmental Science, 2014, 7, 3313-3319.                                                        | 15.6 | 123       |
| 166 | Chemically Crushed Wood Cellulose Fiber towards High-Performance Sodium-Ion Batteries. ACS<br>Applied Materials & Interfaces, 2015, 7, 23291-23296.                            | 4.0  | 123       |
| 167 | Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films.<br>Nature Communications, 2016, 7, 12332.                                | 5.8  | 123       |
| 168 | From Wood to Textiles: Topâ€Down Assembly of Aligned Cellulose Nanofibers. Advanced Materials, 2018,<br>30, e1801347.                                                          | 11.1 | 121       |
| 169 | Natureâ€Inspired Triâ€Pathway Design Enabling Highâ€Performance Flexible Li–O <sub>2</sub> Batteries.<br>Advanced Energy Materials, 2019, 9, 1802964.                          | 10.2 | 121       |
| 170 | High-throughput, combinatorial synthesis of multimetallic nanoclusters. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6316-6322. | 3.3  | 119       |
| 171 | Highly transparent and writable wood all-cellulose hybrid nanostructured paper. Journal of<br>Materials Chemistry C, 2013, 1, 6191.                                            | 2.7  | 117       |
| 172 | Scalable, anisotropic transparent paper directly from wood for light management in solar cells. Nano<br>Energy, 2017, 36, 366-373.                                             | 8.2  | 117       |
| 173 | Flexible lithium–CO <sub>2</sub> battery with ultrahigh capacity and stable cycling. Energy and Environmental Science, 2018, 11, 3231-3237.                                    | 15.6 | 117       |
| 174 | Conductive Wood for High-Performance Structural Electromagnetic Interference Shielding.<br>Chemistry of Materials, 2020, 32, 5280-5289.                                        | 3.2  | 117       |
| 175 | Bioinspired Solarâ€Heated Carbon Absorbent for Efficient Cleanup of Highly Viscous Crude Oil.<br>Advanced Functional Materials, 2019, 29, 1900162.                             | 7.8  | 116       |
| 176 | 3D lithium metal anodes hosted in asymmetric garnet frameworks toward high energy density batteries. Energy Storage Materials, 2018, 14, 376-382.                              | 9.5  | 114       |
| 177 | Atomic Force Microscopy Studies on Molybdenum Disulfide Flakes as Sodium-Ion Anodes. Nano Letters,<br>2015, 15, 1018-1024.                                                     | 4.5  | 113       |
| 178 | Sustainable high-strength macrofibres extracted from natural bamboo. Nature Sustainability, 2022, 5, 235-244.                                                                  | 11.5 | 113       |
| 179 | A Highâ€Performance, Lowâ€Tortuosity Woodâ€Carbon Monolith Reactor. Advanced Materials, 2017, 29,<br>1604257.                                                                  | 11.1 | 110       |
| 180 | Nanocellulose-based films and their emerging applications. Current Opinion in Solid State and<br>Materials Science, 2019, 23, 100764.                                          | 5.6  | 109       |

| #   | Article                                                                                                                                                                                | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Allâ€Natural, Degradable, Rolledâ€Up Straws Based on Cellulose Micro―and Nanoâ€Hybrid Fibers. Advanced<br>Functional Materials, 2020, 30, 1910417.                                     | 7.8  | 109       |
| 182 | All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture. Energy<br>Storage Materials, 2018, 15, 458-464.                                                | 9.5  | 108       |
| 183 | Alignment of Cellulose Nanofibers: Harnessing Nanoscale Properties to Macroscale Benefits. ACS<br>Nano, 2021, 15, 3646-3673.                                                           | 7.3  | 108       |
| 184 | Solar-assisted fabrication of large-scale, patternable transparent wood. Science Advances, 2021, 7, .                                                                                  | 4.7  | 107       |
| 185 | Rapid Processing of Whole Bamboo with Exposed, Aligned Nanofibrils toward a High-Performance<br>Structural Material. ACS Nano, 2020, 14, 5194-5202.                                    | 7.3  | 105       |
| 186 | Overcoming immiscibility toward bimetallic catalyst library. Science Advances, 2020, 6, eaaz6844.                                                                                      | 4.7  | 105       |
| 187 | Strong transparent magnetic nanopaper prepared by immobilization of Fe3O4 nanoparticles in a nanofibrillated cellulose network. Journal of Materials Chemistry A, 2013, 1, 15278.      | 5.2  | 104       |
| 188 | Light management in plastic–paper hybrid substrate towards high-performance optoelectronics.<br>Energy and Environmental Science, 2016, 9, 2278-2285.                                  | 15.6 | 103       |
| 189 | Synergistic Ultrathin Functional Polymer-Coated Carbon Nanotube Interlayer for High Performance<br>Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2016, 8, 20092-20099. | 4.0  | 102       |
| 190 | Extreme mixing in nanoscale transition metal alloys. Matter, 2021, 4, 2340-2353.                                                                                                       | 5.0  | 102       |
| 191 | General, Vertical, Three-Dimensional Printing of Two-Dimensional Materials with Multiscale<br>Alignment. ACS Nano, 2019, 13, 12653-12661.                                              | 7.3  | 101       |
| 192 | A high-entropy phosphate catalyst for oxygen evolution reaction. Nano Energy, 2021, 86, 106029.                                                                                        | 8.2  | 100       |
| 193 | Optical transmission enhacement through chemically tuned two-dimensional bismuth chalcogenide nanoplates. Nature Communications, 2014, 5, 5670.                                        | 5.8  | 99        |
| 194 | Infrared transparent carbon nanotube thin films. Applied Physics Letters, 2009, 94, 081103.                                                                                            | 1.5  | 98        |
| 195 | Highly Elastic Hydrated Cellulosic Materials with Durable Compressibility and Tunable Conductivity.<br>ACS Nano, 2020, 14, 16723-16734.                                                | 7.3  | 98        |
| 196 | Self-Powered Human-Interactive Transparent Nanopaper Systems. ACS Nano, 2015, 9, 7399-7406.                                                                                            | 7.3  | 97        |
| 197 | Architecting a Floatable, Durable, and Scalable Steam Generator: Hydrophobic/Hydrophilic<br>Bifunctional Structure for Solar Evaporation Enhancement. Small Methods, 2019, 3, 1800176. | 4.6  | 97        |
| 198 | Thermoelectric properties and performance of flexible reduced graphene oxide films up to 3,000 K.<br>Nature Energy, 2018, 3, 148-156.                                                  | 19.8 | 96        |

| #   | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Depolarized and Fully Active Cathode Based on<br>Li(Ni <sub>0.5</sub> Co <sub>0.2</sub> Mn <sub>0.3</sub> )O <sub>2</sub> Embedded in Carbon Nanotube<br>Network for Advanced Batteries. Nano Letters, 2014, 14, 4700-4706. | 4.5  | 95        |
| 200 | Hybridizing wood cellulose and graphene oxide toward high-performance fibers. NPG Asia Materials, 2015, 7, e150-e150.                                                                                                       | 3.8  | 95        |
| 201 | 3D printed separator for the thermal management of high-performance Li metal anodes. Energy<br>Storage Materials, 2018, 12, 197-203.                                                                                        | 9.5  | 95        |
| 202 | Highly Conductive Microfiber of Graphene Oxide Templated Carbonization of Nanofibrillated Cellulose. Advanced Functional Materials, 2014, 24, 7366-7372.                                                                    | 7.8  | 94        |
| 203 | Stable Multimetallic Nanoparticles for Oxygen Electrocatalysis. Nano Letters, 2019, 19, 5149-5158.                                                                                                                          | 4.5  | 94        |
| 204 | Fireâ€Resistant Structural Material Enabled by an Anisotropic Thermally Conductive Hexagonal Boron<br>Nitride Coating. Advanced Functional Materials, 2020, 30, 1909196.                                                    | 7.8  | 94        |
| 205 | Continuous Synthesis of Hollow Highâ€Entropy Nanoparticles for Energy and Catalysis Applications.<br>Advanced Materials, 2020, 32, e2002853.                                                                                | 11.1 | 93        |
| 206 | Ta–TiOx nanoparticles as radical scavengers to improve the durability of Fe–N–C oxygen reduction catalysts. Nature Energy, 2022, 7, 281-289.                                                                                | 19.8 | 93        |
| 207 | Textile Inspired Lithium–Oxygen Battery Cathode with Decoupled Oxygen and Electrolyte Pathways.<br>Advanced Materials, 2018, 30, 1704907.                                                                                   | 11.1 | 92        |
| 208 | Nanocellulose-Enabled, All-Nanofiber, High-Performance Supercapacitor. ACS Applied Materials &<br>Interfaces, 2019, 11, 5919-5927.                                                                                          | 4.0  | 91        |
| 209 | Rapid Thermal Annealing of Cathode-Garnet Interface toward High-Temperature Solid State Batteries.<br>Nano Letters, 2017, 17, 4917-4923.                                                                                    | 4.5  | 89        |
| 210 | Free-Standing Na <sub>2/3</sub> Fe <sub>1/2</sub> Mn <sub>1/2</sub> O <sub>2</sub> @Graphene Film for<br>a Sodium-Ion Battery Cathode. ACS Applied Materials & Interfaces, 2014, 6, 4242-4247.                              | 4.0  | 88        |
| 211 | Carbon Welding by Ultrafast Joule Heating. Nano Letters, 2016, 16, 7282-7289.                                                                                                                                               | 4.5  | 88        |
| 212 | Fast and Scalable Printing of Large Area Monolayer Nanoparticles for Nanotexturing Applications.<br>Nano Letters, 2010, 10, 2989-2994.                                                                                      | 4.5  | 87        |
| 213 | In Situ Investigations of Liâ€MoS <sub>2</sub> with Planar Batteries. Advanced Energy Materials, 2015, 5,<br>1401742.                                                                                                       | 10.2 | 87        |
| 214 | In Situ Lignin Modification toward Photonic Wood. Advanced Materials, 2021, 33, e2001588.                                                                                                                                   | 11.1 | 86        |
| 215 | Carbon‣upported Highâ€Entropy Oxide Nanoparticles as Stable Electrocatalysts for Oxygen Reduction<br>Reactions. Advanced Functional Materials, 2021, 31, 2010561.                                                           | 7.8  | 86        |
| 216 | A gravure printed antenna on shape-stable transparent nanopaper. Nanoscale, 2014, 6, 9110.                                                                                                                                  | 2.8  | 85        |

| #   | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Synergistic protective effect of a BN-carbon separator for highly stable lithium sulfur batteries. NPG<br>Asia Materials, 2017, 9, e375-e375.                                                                             | 3.8  | 85        |
| 218 | Millisecond synthesis of CoS nanoparticles for highly efficient overall water splitting. Nano Research, 2019, 12, 2259-2267.                                                                                              | 5.8  | 85        |
| 219 | Scalable Synthesis of High Entropy Alloy Nanoparticles by Microwave Heating. ACS Nano, 2021, 15, 14928-14937.                                                                                                             | 7.3  | 85        |
| 220 | Tailoring the Local Environment of Platinum in Singleâ€Atom Pt <sub>1</sub> /CeO <sub>2</sub><br>Catalysts for Robust Lowâ€Temperature CO Oxidation. Angewandte Chemie - International Edition, 2021,<br>60, 26054-26062. | 7.2  | 84        |
| 221 | A printed, recyclable, ultra-strong, and ultra-tough graphite structural material. Materials Today, 2019, 30, 17-25.                                                                                                      | 8.3  | 83        |
| 222 | Salinityâ€Gradient Power Generation with Ionized Wood Membranes. Advanced Energy Materials, 2020,<br>10, 1902590.                                                                                                         | 10.2 | 83        |
| 223 | Hydrophobic nanostructured wood membrane for thermally efficient distillation. Science Advances, 2019, 5, eaaw3203.                                                                                                       | 4.7  | 81        |
| 224 | Thermally Conductive Reduced Graphene Oxide Thin Films for Extreme Temperature Sensors. Advanced<br>Functional Materials, 2019, 29, 1901388.                                                                              | 7.8  | 81        |
| 225 | Strong, Hydrostable, and Degradable Straws Based on Celluloseâ€Lignin Reinforced Composites. Small, 2021, 17, e2008011.                                                                                                   | 5.2  | 81        |
| 226 | Thermally conductive, dielectric PCM–boron nitride nanosheet composites for efficient electronic system thermal management. Nanoscale, 2016, 8, 19326-19333.                                                              | 2.8  | 80        |
| 227 | Highly Anisotropic Conductors. Advanced Materials, 2017, 29, 1703331.                                                                                                                                                     | 11.1 | 80        |
| 228 | <i>In Situ</i> Transmission Electron Microscopy Observation of Sodiation–Desodiation in a Long<br>Cycle, High-Capacity Reduced Graphene Oxide Sodium-Ion Battery Anode. Chemistry of Materials, 2016,<br>28, 6528-6535.   | 3.2  | 79        |
| 229 | Isotropic Paper Directly from Anisotropic Wood: Top-Down Green Transparent Substrate Toward<br>Biodegradable Electronics. ACS Applied Materials & Interfaces, 2018, 10, 28566-28571.                                      | 4.0  | 79        |
| 230 | In Situ "Chainmail Catalyst―Assembly in Lowâ€īortuosity, Hierarchical Carbon Frameworks for<br>Efficient and Stable Hydrogen Generation. Advanced Energy Materials, 2018, 8, 1801289.                                     | 10.2 | 79        |
| 231 | A Highly Conductive Cationic Wood Membrane. Advanced Functional Materials, 2019, 29, 1902772.                                                                                                                             | 7.8  | 79        |
| 232 | All Natural, High Efficient Groundwater Extraction via Solar Steam/Vapor Generation. Advanced<br>Sustainable Systems, 2019, 3, 1800055.                                                                                   | 2.7  | 78        |
| 233 | Transient Rechargeable Batteries Triggered by Cascade Reactions. Nano Letters, 2015, 15, 4664-4671.                                                                                                                       | 4.5  | 77        |
| 234 | Atomic-Layer-Deposition Functionalized Carbonized Mesoporous Wood Fiber for High Sulfur Loading<br>Lithium Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 14801-14807.                                    | 4.0  | 77        |

| #   | Article                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Using a fully recyclable dicarboxylic acid for producing dispersible and thermally stable cellulose nanomaterials from different cellulosic sources. Cellulose, 2017, 24, 2483-2498.      | 2.4  | 77        |
| 236 | Reversible Shortâ€Circuit Behaviors in Garnetâ€Based Solidâ€State Batteries. Advanced Energy Materials,<br>2020, 10, 2000702.                                                             | 10.2 | 77        |
| 237 | Recent Advances in Functional Materials through Cellulose Nanofiber Templating. Advanced<br>Materials, 2021, 33, e2005538.                                                                | 11.1 | 77        |
| 238 | Dry-Processed, Binder-Free Holey Graphene Electrodes for Supercapacitors with Ultrahigh Areal<br>Loadings. ACS Applied Materials & Interfaces, 2016, 8, 29478-29485.                      | 4.0  | 76        |
| 239 | Garnet/polymer hybrid ion-conducting protective layer for stable lithium metal anode. Nano Research, 2017, 10, 4256-4265.                                                                 | 5.8  | 76        |
| 240 | Nanoscale Ion Regulation in Woodâ€Based Structures and Their Device Applications. Advanced<br>Materials, 2021, 33, e2002890.                                                              | 11.1 | 75        |
| 241 | Aerosol Synthesis of High Entropy Alloy Nanoparticles. Langmuir, 2020, 36, 1985-1992.                                                                                                     | 1.6  | 74        |
| 242 | Stabilizing the Garnet Solid-Electrolyte/Polysulfide Interface in Li–S Batteries. Chemistry of Materials,<br>2017, 29, 8037-8041.                                                         | 3.2  | 73        |
| 243 | Nano-structured textiles as high-performance aqueous cathodes for microbial fuel cells. Energy and Environmental Science, 2011, 4, 1293.                                                  | 15.6 | 72        |
| 244 | Nanocellulose-based Translucent Diffuser for Optoelectronic Device Applications with Dramatic<br>Improvement of Light Coupling. ACS Applied Materials & Interfaces, 2015, 7, 26860-26864. | 4.0  | 72        |
| 245 | Flexible Solid-State Electrolyte with Aligned Nanostructures Derived from Wood. , 2019, 1, 354-361.                                                                                       |      | 72        |
| 246 | In Situ Wood Delignification toward Sustainable Applications. Accounts of Materials Research, 2021, 2, 606-620.                                                                           | 5.9  | 71        |
| 247 | Two dimensional silicon nanowalls for lithium ion batteries. Journal of Materials Chemistry A, 2014,<br>2, 6051-6057.                                                                     | 5.2  | 70        |
| 248 | A silicon anode for garnet-based all-solid-state batteries: Interfaces and nanomechanics. Energy<br>Storage Materials, 2019, 21, 246-252.                                                 | 9.5  | 70        |
| 249 | Charging sustainable batteries. Nature Sustainability, 2022, 5, 176-178.                                                                                                                  | 11.5 | 70        |
| 250 | Nonflammable electrolyte enhances battery safety. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3205-3206.                                  | 3.3  | 69        |
| 251 | A strong, flame-retardant, and thermally insulating wood laminate. Chemical Engineering Journal, 2020, 383, 123109.                                                                       | 6.6  | 69        |
| 252 | Rapid, in Situ Synthesis of High Capacity Battery Anodes through High Temperature Radiation-Based<br>Thermal Shock. Nano Letters, 2016, 16, 5553-5558.                                    | 4.5  | 67        |

| #   | Article                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Synthesis of Metal Oxide Nanoparticles by Rapid, Highâ€Temperature 3D Microwave Heating. Advanced<br>Functional Materials, 2019, 29, 1904282.                                                       | 7.8  | 65        |
| 254 | Selectively aligned cellulose nanofibers towards high-performance soft actuators. Extreme<br>Mechanics Letters, 2019, 29, 100463.                                                                   | 2.0  | 65        |
| 255 | Direct observation of the formation and stabilization of metallic nanoparticles on carbon supports.<br>Nature Communications, 2020, 11, 6373.                                                       | 5.8  | 65        |
| 256 | High-Performance, Scalable Wood-Based Filtration Device with a Reversed-Tree Design. Chemistry of<br>Materials, 2020, 32, 1887-1895.                                                                | 3.2  | 65        |
| 257 | A flexible solar-blind 2D boron nitride nanopaper-based photodetector with high thermal resistance.<br>Npj 2D Materials and Applications, 2018, 2, .                                                | 3.9  | 64        |
| 258 | Lightweight, conductive hollow fibers from nature as sustainable electrode materials for microbial energy harvesting. Nano Energy, 2014, 10, 268-276.                                               | 8.2  | 63        |
| 259 | Highly Conductive, Light Weight, Robust, Corrosionâ€Resistant, Scalable, Allâ€Fiber Based Current<br>Collectors for Aqueous Acidic Batteries. Advanced Energy Materials, 2018, 8, 1702615.          | 10.2 | 63        |
| 260 | Paperâ€Based Antiâ€Reflection Coatings for Photovoltaics. Advanced Energy Materials, 2014, 4, 1301804.                                                                                              | 10.2 | 62        |
| 261 | Fabrication of 3D Core–Shell Multiwalled Carbon Nanotube@RuO <sub>2</sub> Lithium-Ion Battery<br>Electrodes through a RuO <sub>2</sub> Atomic Layer Deposition Process. ACS Nano, 2015, 9, 464-473. | 7.3  | 62        |
| 262 | One-Dimensional Silicon Nanostructures for Li Ion Batteries. Journal of Physical Chemistry Letters, 2014, 5, 720-731.                                                                               | 2.1  | 61        |
| 263 | Programmable heating and quenching for efficient thermochemical synthesis. Nature, 2022, 605, 470-476.                                                                                              | 13.7 | 61        |
| 264 | Metal current collector-free freestanding silicon–carbon 1D nanocomposites for ultralight anodes<br>in lithium ion batteries. Journal of Power Sources, 2010, 195, 8311-8316.                       | 4.0  | 60        |
| 265 | Scalable Wood Hydrogel Membrane with Nanoscale Channels. ACS Nano, 2021, 15, 11244-11252.                                                                                                           | 7.3  | 60        |
| 266 | Flexible, High Temperature, Planar Lighting with Large Scale Printable Nanocarbon Paper. Advanced<br>Materials, 2016, 28, 4684-4691.                                                                | 11.1 | 59        |
| 267 | Advanced Nanowood Materials for the Water–Energy Nexus. Advanced Materials, 2021, 33, e2001240.                                                                                                     | 11.1 | 59        |
| 268 | Oxidative Etching of Hexagonal Boron Nitride Toward Nanosheets with Defined Edges and Holes.<br>Scientific Reports, 2015, 5, 14510.                                                                 | 1.6  | 58        |
| 269 | Uniform, Scalable, High-Temperature Microwave Shock for Nanoparticle Synthesis through Defect<br>Engineering. Matter, 2019, 1, 759-769.                                                             | 5.0  | 58        |
| 270 | Stamping Flexible Li Alloy Anodes. Advanced Materials, 2021, 33, e2005305.                                                                                                                          | 11.1 | 58        |

| #   | Article                                                                                                                                                                     | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 271 | Interfacial Oxygen Stabilizes Composite Silicon Anodes. Nano Letters, 2015, 15, 703-708.                                                                                    | 4.5  | 57        |
| 272 | Electrochemical Intercalation of Lithium Ions into NbSe <sub>2</sub> Nanosheets. ACS Applied<br>Materials & Interfaces, 2016, 8, 11390-11395.                               | 4.0  | 56        |
| 273 | Designing Textile Architectures for High Energy-Efficiency Human Body Sweat- and<br>Cooling-Management. Advanced Fiber Materials, 2019, 1, 61-70.                           | 7.9  | 56        |
| 274 | Hydroxylated carbon nanotube enhanced sulfur cathodes for improved electrochemical performance of lithium–sulfur batteries. Chemical Communications, 2015, 51, 13682-13685. | 2.2  | 55        |
| 275 | Investigation of the Cathode–Catalyst–Electrolyte Interface in Aprotic Li–O <sub>2</sub> Batteries.<br>Chemistry of Materials, 2015, 27, 5305-5313.                         | 3.2  | 55        |
| 276 | Scalable Dry Processing of Binder-Free Lithium-Ion Battery Electrodes Enabled by Holey Graphene. ACS<br>Applied Energy Materials, 2019, 2, 2990-2997.                       | 2.5  | 55        |
| 277 | A general, highly efficient, high temperature thermal pulse toward high performance solid state<br>electrolyte. Energy Storage Materials, 2019, 17, 234-241.                | 9.5  | 55        |
| 278 | Development, application and commercialization of transparent paper. Translational Materials<br>Research, 2014, 1, 015004.                                                  | 1.2  | 54        |
| 279 | Flexible, Bio-Compatible Nanofluidic Ion Conductor. Chemistry of Materials, 2018, 30, 7707-7713.                                                                            | 3.2  | 54        |
| 280 | Printable, high-performance solid-state electrolyte films. Science Advances, 2020, 6, .                                                                                     | 4.7  | 54        |
| 281 | Thermally Conductive, Electrical Insulating, Optically Transparent Bi-Layer Nanopaper. ACS Applied<br>Materials & Interfaces, 2016, 8, 28838-28843.                         | 4.0  | 53        |
| 282 | A Solutionâ€Processed Highâ€Temperature, Flexible, Thinâ€Film Actuator. Advanced Materials, 2016, 28,<br>8618-8624.                                                         | 11.1 | 53        |
| 283 | Thermally Stable Cellulose Nanocrystals toward High-Performance 2D and 3D Nanostructures. ACS<br>Applied Materials & Interfaces, 2017, 9, 28922-28929.                      | 4.0  | 53        |
| 284 | An Energyâ€Efficient, Woodâ€Derived Structural Material Enabled by Pore Structure Engineering towards<br>Building Efficiency. Small Methods, 2020, 4, 1900747.              | 4.6  | 53        |
| 285 | Mixed ionic-electronic conductor enabled effective cathode-electrolyte interface in all solid state batteries. Nano Energy, 2018, 50, 393-400.                              | 8.2  | 52        |
| 286 | Epitaxial Welding of Carbon Nanotube Networks for Aqueous Battery Current Collectors. ACS Nano,<br>2018, 12, 5266-5273.                                                     | 7.3  | 51        |
| 287 | Rapid, high-temperature microwave soldering toward a high-performance cathode/electrolyte interface. Energy Storage Materials, 2020, 30, 385-391.                           | 9.5  | 51        |
| 288 | Flexible Garnet Solid-State Electrolyte Membranes Enabled by Tile-and-Grout Design. ACS Energy<br>Letters, 2019, 4, 2668-2674.                                              | 8.8  | 50        |

| #   | Article                                                                                                                                                         | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 289 | Highly Efficient Water Treatment via a Wood-Based and Reusable Filter. , 2020, 2, 430-437.                                                                      |      | 50        |
| 290 | A high-performance hydroxide exchange membrane enabled by Cu2+-crosslinked chitosan. Nature<br>Nanotechnology, 2022, 17, 629-636.                               | 15.6 | 50        |
| 291 | Anisotropic, Mesoporous Microfluidic Frameworks with Scalable, Aligned Cellulose Nanofibers. ACS<br>Applied Materials & Interfaces, 2018, 10, 7362-7370.        | 4.0  | 49        |
| 292 | Holey three-dimensional wood-based electrode for vanadium flow batteries. Energy Storage<br>Materials, 2020, 27, 327-332.                                       | 9.5  | 49        |
| 293 | Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition.<br>Science Advances, 2022, 8, eabm4322.                   | 4.7  | 49        |
| 294 | Solid Electrolyte Lithium Phosphous Oxynitride as a Protective Nanocladding Layer for 3D<br>High-Capacity Conversion Electrodes. ACS Nano, 2016, 10, 2693-2701. | 7.3  | 48        |
| 295 | High temperature thermal management with boron nitride nanosheets. Nanoscale, 2018, 10, 167-173.                                                                | 2.8  | 48        |
| 296 | Ultrahigh-temperature conversion of biomass to highly conductive graphitic carbon. Carbon, 2019, 144, 241-248.                                                  | 5.4  | 48        |
| 297 | Nanomanufacturing of graphene nanosheets through nano-hole opening and closing. Materials<br>Today, 2019, 24, 26-32.                                            | 8.3  | 48        |
| 298 | All omponent Transient Lithiumâ€Ion Batteries. Advanced Energy Materials, 2016, 6, 1502496.                                                                     | 10.2 | 47        |
| 299 | Flash-induced reduced graphene oxide as a Sn anode host for high performance sodium ion batteries.<br>Journal of Materials Chemistry A, 2016, 4, 18306-18313.   | 5.2  | 47        |
| 300 | Sodium-Ion Intercalated Transparent Conductors with Printed Reduced Graphene Oxide Networks.<br>Nano Letters, 2015, 15, 3763-3769.                              | 4.5  | 46        |
| 301 | Na Metal Anode: "Holy Grail―for Room-Temperature Na-Ion Batteries?. ACS Central Science, 2015, 1,<br>420-422.                                                   | 5.3  | 46        |
| 302 | Single-digit-micrometer thickness wood speaker. Nature Communications, 2019, 10, 5084.                                                                          | 5.8  | 45        |
| 303 | Ligninâ€Based Direct Ink Printed Structural Scaffolds. Small, 2020, 16, e1907212.                                                                               | 5.2  | 45        |
| 304 | Compressible, Dense, Three-Dimensional Holey Graphene Monolithic Architecture. ACS Nano, 2017, 11, 3189-3197.                                                   | 7.3  | 44        |
| 305 | Highâ€Temperature Atomic Mixing toward Wellâ€Dispersed Bimetallic Electrocatalysts. Advanced Energy<br>Materials, 2018, 8, 1800466.                             | 10.2 | 43        |
| 306 | Continuous 2000â€⁻K droplet-to-particle synthesis. Materials Today, 2020, 35, 106-114.                                                                          | 8.3  | 43        |

| #   | Article                                                                                                                                                        | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 307 | Encapsulation of S/SWNT with PANI Web for Enhanced Rate and Cycle Performance in Lithium Sulfur<br>Batteries. Scientific Reports, 2015, 5, 8946.               | 1.6  | 42        |
| 308 | Decoupling Ionic and Electronic Pathways in Low-Dimensional Hybrid Conductors. Journal of the American Chemical Society, 2019, 141, 17830-17837.               | 6.6  | 42        |
| 309 | Rapid Synthesis of Highâ€Entropy Oxide Microparticles. Small, 2022, 18, e2104761.                                                                              | 5.2  | 41        |
| 310 | Weavable high-capacity electrodes. Nano Energy, 2013, 2, 987-994.                                                                                              | 8.2  | 39        |
| 311 | Highly compressible, binderless and ultrathick holey graphene-based electrode architectures. Nano<br>Energy, 2017, 31, 386-392.                                | 8.2  | 39        |
| 312 | Hierarchical Polyelemental Nanoparticles as Bifunctional Catalysts for Oxygen Evolution and Reduction Reactions. Advanced Energy Materials, 2020, 10, 2001119. | 10.2 | 39        |
| 313 | Wood Nanomaterials and Nanotechnologies. Advanced Materials, 2021, 33, e2006207.                                                                               | 11.1 | 39        |
| 314 | Ultrafast Sintering of Solid-State Electrolytes with Volatile Fillers. ACS Energy Letters, 2021, 6, 3753-3760.                                                 | 8.8  | 39        |
| 315 | A highly sensitive, highly transparent, gel-gated MoS <sub>2</sub> phototransistor on biodegradable<br>nanopaper. Nanoscale, 2016, 8, 14237-14242.             | 2.8  | 38        |
| 316 | Toward stretchable batteries: 3D-printed deformable electrodes and separator enabled by nanocellulose. Materials Today, 2022, 54, 18-26.                       | 8.3  | 35        |
| 317 | <i>In Situ</i> High Temperature Synthesis of Single-Component Metallic Nanoparticles. ACS Central Science, 2017, 3, 294-301.                                   | 5.3  | 34        |
| 318 | Solvo-thermal microwave-powered two-dimensional material exfoliation. Chemical Communications, 2016, 52, 5757-5760.                                            | 2.2  | 33        |
| 319 | Tailoring grain growth and densification toward a high-performance solid-state electrolyte membrane. Materials Today, 2021, 42, 41-48.                         | 8.3  | 32        |
| 320 | Aqueous Gating of van der Waals Materials on Bilayer Nanopaper. ACS Nano, 2014, 8, 10606-10612.                                                                | 7.3  | 31        |
| 321 | Tunable Broadband Nanocarbon Transparent Conductor by Electrochemical Intercalation. ACS Nano, 2017, 11, 788-796.                                              | 7.3  | 31        |
| 322 | A solid state energy storage device with supercapacitor–battery hybrid design. Journal of Materials<br>Chemistry A, 2017, 5, 15266-15272.                      | 5.2  | 31        |
| 323 | Precision Imprinted Nanostructural Wood. Advanced Materials, 2019, 31, e1903270.                                                                               | 11.1 | 31        |
| 324 | Interface Engineering Between Multiâ€Elemental Alloy Nanoparticles and a Carbon Support Toward<br>Stable Catalysts. Advanced Materials, 2022, 34, e2106436.    | 11.1 | 30        |

| #   | Article                                                                                                                                                                                | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 325 | Enhanced electrochemical stability of high-voltage LiNi0.5Mn1.5O4 cathode by surface modification using atomic layer deposition. Journal of Nanoparticle Research, 2014, 16, 1.        | 0.8  | 29        |
| 326 | Universal, In Situ Transformation of Bulky Compounds into Nanoscale Catalysts by High-Temperature<br>Pulse. Nano Letters, 2017, 17, 5817-5822.                                         | 4.5  | 29        |
| 327 | Dramatic Enhancement of CO <sub>2</sub> Photoreduction by Biodegradable Lightâ€Management Paper.<br>Advanced Energy Materials, 2018, 8, 1703136.                                       | 10.2 | 29        |
| 328 | Amorphous-Carbon-Coated 3D Solid Electrolyte for an Electro-Chemomechanically Stable Lithium<br>Metal Anode in Solid-State Batteries. Nano Letters, 2021, 21, 6163-6170.               | 4.5  | 29        |
| 329 | Ultrafast Microwave Nano-manufacturing of Fullerene-Like Metal Chalcogenides. Scientific Reports, 2016, 6, 22503.                                                                      | 1.6  | 28        |
| 330 | Ultrafast, Controllable Synthesis of Sub-Nano Metallic Clusters through Defect Engineering. ACS<br>Applied Materials & Interfaces, 2019, 11, 29773-29779.                              | 4.0  | 28        |
| 331 | Rapid, Highâ€Temperature, In Situ Microwave Synthesis of Bulk Nanocatalysts. Small, 2019, 15, e1904881.                                                                                | 5.2  | 28        |
| 332 | High-Temperature Pulse Method for Nanoparticle Redispersion. Journal of the American Chemical Society, 2020, 142, 17364-17371.                                                         | 6.6  | 28        |
| 333 | Synthetic Crystals of Silver with Carbon: 3D Epitaxy of Carbon Nanostructures in the Silver Lattice.<br>Advanced Functional Materials, 2015, 25, 4768-4777.                            | 7.8  | 27        |
| 334 | In Situ, Fast, Highâ€Temperature Synthesis of Nickel Nanoparticles in Reduced Graphene Oxide Matrix.<br>Advanced Energy Materials, 2017, 7, 1601783.                                   | 10.2 | 27        |
| 335 | Superâ€Clear Nanopaper from Agroâ€Industrial Waste for Green Electronics. Advanced Electronic<br>Materials, 2017, 3, 1600539.                                                          | 2.6  | 27        |
| 336 | Ionâ€Conducting, Electronâ€Blocking Layer for Highâ€Performance Solid Electrolytes. Small Structures, 2021, 2, 2100014.                                                                | 6.9  | 27        |
| 337 | In situ iron coating on nanocatalysts for efficient and durable oxygen evolution reaction. Nano Energy, 2019, 63, 103855.                                                              | 8.2  | 26        |
| 338 | Upscaling 3D Engineered Trees for Off-Grid Desalination. Environmental Science & Technology, 2022, 56, 1289-1299.                                                                      | 4.6  | 26        |
| 339 | Facile, Solventâ€Free Preparation of High Density, High Mass Loading Sulfur Cathodes Enabled by<br>Dryâ€Pressable Holey Graphene Scaffolds. Batteries and Supercaps, 2019, 2, 774-783. | 2.4  | 25        |
| 340 | Fly-through synthesis of nanoparticles on textile and paper substrates. Nanoscale, 2019, 11, 6174-6181.                                                                                | 2.8  | 25        |
| 341 | Cellulose hydrogel as a flexible gel electrolyte layer. MRS Communications, 2019, 9, 122-128.                                                                                          | 0.8  | 25        |
| 342 | Strong, Water-Stable Ionic Cable from Bio-Hydrogel. Chemistry of Materials, 2019, 31, 9288-9294.                                                                                       | 3.2  | 24        |

| #   | Article                                                                                                                                                                                                                                                                                                                              | IF           | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 343 | Highâ€Temperature Ultrafast Sintering: Exploiting a New Kinetic Region to Fabricate Porous Solid‧tate<br>Electrolyte Scaffolds. Advanced Materials, 2021, 33, e2100726.                                                                                                                                                              | 11.1         | 24        |
| 344 | Role of mesoporosity in cellulose fibers for paper-based fast electrochemical energy storage. Journal of Materials Chemistry A, 2013, 1, 8201.                                                                                                                                                                                       | 5.2          | 23        |
| 345 | Scalable nanomanufacturing of surfactant-free carbon nanotube inks for spray coatings with high conductivity. Nano Research, 2015, 8, 2242-2250.                                                                                                                                                                                     | 5.8          | 23        |
| 346 | Rapid Synthesis and Sintering of Metals from Powders. Advanced Science, 2021, 8, e2004229.                                                                                                                                                                                                                                           | 5.6          | 23        |
| 347 | Electrochemical Stability of Garnet-Type<br>Li <sub>7</sub> La <sub>2.75</sub> Ca <sub>0.25</sub> Zr <sub>1.75</sub> Nb <sub>0.25</sub> O <sub>12</sub><br>and without Atomic Layer Deposited-Al <sub>2</sub> O <sub>3</sub> Âunder CO <sub>2</sub> and<br>Humidity, Journal of the Electrochemical Society, 2019, 166, A1844-A1852. | Âwith<br>1.3 | 22        |
| 348 | Electrochemical measurement of serotonin by Au-CNT electrodes fabricated on microporous cell culture membranes. Microsystems and Nanoengineering, 2020, 6, 90.                                                                                                                                                                       | 3.4          | 22        |
| 349 | Rapid, Universal Surface Engineering of Carbon Materials via Microwaveâ€Induced Carbothermal Shock.<br>Advanced Functional Materials, 2021, 31, 2010968.                                                                                                                                                                             | 7.8          | 22        |
| 350 | Design of High Capacity Dissoluble Electrodes for All Transient Batteries. Advanced Functional<br>Materials, 2017, 27, 1605724.                                                                                                                                                                                                      | 7.8          | 21        |
| 351 | Holey Carbon Nanotubes from Controlled Air Oxidation. Advanced Functional Materials, 2017, 27, 1700762.                                                                                                                                                                                                                              | 7.8          | 21        |
| 352 | Inverted battery design as ion generator for interfacing with biosystems. Nature Communications, 2017, 8, 15609.                                                                                                                                                                                                                     | 5.8          | 21        |
| 353 | Thermal Shock Synthesis of Nanocatalyst by 3Dâ€Printed Miniaturized Reactors. Small, 2020, 16, e2000509.                                                                                                                                                                                                                             | 5.2          | 21        |
| 354 | Strong and Superhydrophobic Wood with Aligned Cellulose Nanofibers as a Waterproof Structural<br>Material <sup>â€</sup> . Chinese Journal of Chemistry, 2020, 38, 823-829.                                                                                                                                                           | 2.6          | 21        |
| 355 | 3Dâ€Printed, Highâ€Porosity, Highâ€Strength Graphite Aerogel. Small Methods, 2021, 5, e2001188.                                                                                                                                                                                                                                      | 4.6          | 21        |
| 356 | Fabrication of Cellulose–Graphite Foam via Ion Cross-linking and Ambient-Drying. Nano Letters, 2022,<br>22, 3931-3938.                                                                                                                                                                                                               | 4.5          | 21        |
| 357 | Rapid Pressureless Sintering of Glasses. Small, 2022, 18, e2107951.                                                                                                                                                                                                                                                                  | 5.2          | 20        |
| 358 | Advanced Broadband Antireflection Coatings Based on Cellulose Microfiber Paper. IEEE Journal of Photovoltaics, 2015, 5, 577-583.                                                                                                                                                                                                     | 1.5          | 19        |
| 359 | A conductive wood membrane anode improves effluent quality of microbial fuel cells. Environmental<br>Science: Water Research and Technology, 2017, 3, 940-946.                                                                                                                                                                       | 1.2          | 19        |
| 360 | A self-buffering structure for application in high-performance sodium-ion batteries. Energy Storage<br>Materials, 2018, 15, 242-248.                                                                                                                                                                                                 | 9.5          | 19        |

| #   | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 361 | A bio-inspired, hierarchically porous structure with a decoupled fluidic transportation and<br>evaporative pathway toward high-performance evaporation. Journal of Materials Chemistry A, 2021, 9,<br>9745-9752. | 5.2  | 19        |
| 362 | A paper-based electrostatic zipper actuator for printable robots. , 2014, , .                                                                                                                                    |      | 18        |
| 363 | Improving the High-Voltage Li <sub>2</sub> FeMn <sub>3</sub> O <sub>8</sub> Cathode by Chlorine<br>Doping. ACS Applied Materials & Interfaces, 2016, 8, 10820-10825.                                             | 4.0  | 18        |
| 364 | 3D Printed Grapheneâ€Based 3000 K Probe. Advanced Functional Materials, 2021, 31, 2102994.                                                                                                                       | 7.8  | 18        |
| 365 | Self-formed conductive nanofilaments in (Bi, Mn)O for ultralow-power memory devices. Nano Energy, 2015, 13, 283-290.                                                                                             | 8.2  | 17        |
| 366 | Necklace‣ike Silicon Carbide and Carbon Nanocomposites Formed by Steady Joule Heating. Small<br>Methods, 2018, 2, 1700371.                                                                                       | 4.6  | 17        |
| 367 | Super Elastic and Thermally Insulating Carbon Aerogel: Go Tubular Like Polar Bear Hair. Matter, 2019,<br>1, 36-38.                                                                                               | 5.0  | 17        |
| 368 | Shape-driven arrest of coffee stain effect drives the fabrication of carbon-nanotube-graphene-oxide inks for printing embedded structures and temperature sensors. Nanoscale, 2019, 11, 23402-23415.             | 2.8  | 16        |
| 369 | Thermal Radiation Synthesis of Ultrafine Platinum Nanoclusters toward Methanol Oxidation. Small<br>Methods, 2020, 4, 2000265.                                                                                    | 4.6  | 16        |
| 370 | A General Method for Regenerating Catalytic Electrodes. Joule, 2020, 4, 2374-2386.                                                                                                                               | 11.7 | 15        |
| 371 | Computation uided Synthesis of New Garnetâ€Type Solid‣tate Electrolytes via an Ultrafast Sintering<br>Technique. Advanced Materials, 2020, 32, e2005059.                                                         | 11.1 | 15        |
| 372 | Engineered wood for a sustainable future. Matter, 2022, 5, 1326-1329.                                                                                                                                            | 5.0  | 14        |
| 373 | Overcoming Immiscibility via a Milliseconds-Long "Shock―Synthesis toward Alloyed Nanoparticles.<br>Matter, 2019, 1, 1451-1453.                                                                                   | 5.0  | 13        |
| 374 | Predicting the flexural strength of Liâ€ionâ€conducting garnet type oxide for solidâ€stateâ€batteries. Journal<br>of the American Ceramic Society, 2020, 103, 5186-5195.                                         | 1.9  | 13        |
| 375 | Continuous Fly-Through High-Temperature Synthesis of Nanocatalysts. Nano Letters, 2021, 21, 4517-4523.                                                                                                           | 4.5  | 13        |
| 376 | Boron-doped few-walled carbon nanotubes: novel synthesis and properties. Nanotechnology, 2016, 27,<br>445601.                                                                                                    | 1.3  | 12        |
| 377 | Transient Behavior of the Metal Interface in Lithium Metal–Garnet Batteries. Angewandte Chemie, 2017,<br>129, 15138-15143.                                                                                       | 1.6  | 12        |
| 378 | Towards a high-performance garnet-based solid-state Li metal battery: A perspective on recent<br>advances. Journal of Power Sources, 2020, 472, 228571.                                                          | 4.0  | 12        |

| #   | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 379 | Rapid Atomic Ordering Transformation toward Intermetallic Nanoparticles. Nano Letters, 2022, 22, 255-262.                                                                                                    | 4.5 | 12        |
| 380 | Wood cellulose-based thin gel electrolyte with enhanced ionic conductivity. MRS Communications, 2019, 9, 1015-1021.                                                                                          | 0.8 | 11        |
| 381 | Cut-and-stack nanofiber paper toward fast transient energy storage. Inorganic Chemistry Frontiers, 2016, 3, 681-688.                                                                                         | 3.0 | 10        |
| 382 | Wood Ionic Cable. Small, 2021, 17, e2008200.                                                                                                                                                                 | 5.2 | 10        |
| 383 | Ultrafast high-temperature sintering to avoid metal loss toward high-performance and scalable cermets. Matter, 2022, 5, 594-604.                                                                             | 5.0 | 10        |
| 384 | Tuning the Highâ€Temperature Wetting Behavior of Metals toward Ultrafine Nanoparticles. Angewandte<br>Chemie - International Edition, 2018, 57, 2625-2629.                                                   | 7.2 | 9         |
| 385 | Thermoelectric properties enhancement of p-type composite films using wood-based binder and mechanical pressing. Scientific Reports, 2019, 9, 7869.                                                          | 1.6 | 8         |
| 386 | Composition-dependent structure and properties of 5- and 15-element high-entropy alloy nanoparticles. Cell Reports Physical Science, 2021, 2, 100641.                                                        | 2.8 | 8         |
| 387 | Drop spreading on a superhydrophobic surface: pinned contact line and bending liquid surface.<br>Physical Chemistry Chemical Physics, 2017, 19, 14442-14452.                                                 | 1.3 | 7         |
| 388 | Interaction between a water drop and holey graphene: retarded imbibition and generation of novel water–graphene wetting states. Physical Chemistry Chemical Physics, 2017, 19, 27421-27434.                  | 1.3 | 7         |
| 389 | One-Step, Catalyst-Free, Scalable in Situ Synthesis of Single-Crystal Aluminum Nanowires in Confined<br>Graphene Space. ACS Applied Materials & Interfaces, 2019, 11, 6009-6014.                             | 4.0 | 7         |
| 390 | Tailoring the Local Environment of Platinum in Singleâ€Atom Pt <sub>1</sub> /CeO <sub>2</sub><br>Catalysts for Robust Lowâ€Temperature CO Oxidation. Angewandte Chemie, 2021, 133, 26258-26266.              | 1.6 | 7         |
| 391 | Catalyst-Free <i>In Situ</i> Carbon Nanotube Growth in Confined Space <i>via</i> High Temperature<br>Gradient. Research, 2018, 2018, 1793784.                                                                | 2.8 | 7         |
| 392 | Rapid Dissolving-Debonding Strategy for Optically Transparent Paper Production. Scientific Reports, 2016, 5, 17703.                                                                                          | 1.6 | 6         |
| 393 | Dynamics of a Water Nanodrop through a Holey Graphene Matrix: Role of Surface Functionalization,<br>Capillarity, and Applied Forcing. Journal of Physical Chemistry C, 2018, 122, 12243-12250.               | 1.5 | 6         |
| 394 | Giant tunability of interlayer friction in graphite via ion intercalation. Extreme Mechanics Letters, 2020, 35, 100616.                                                                                      | 2.0 | 6         |
| 395 | Rapid Laser Pulse Synthesis of Supported Metal Nanoclusters with Kinetically Tunable Size and<br>Surface Density for Electrocatalytic Hydrogen Evolution. ACS Applied Nano Materials, 2020, 3,<br>2959-2968. | 2.4 | 6         |
| 396 | Target-Sintering of Single-Phase Bulk Intermetallics via a Fast-Heating-Induced Rapid Interdiffusion<br>Mechanism. , 2022, 4, 480-486.                                                                       |     | 6         |

| #   | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 397 | Protection of boron nitride nanosheets by atomic layer deposition toward thermal energy management applications. Nano Energy, 2017, 40, 149-154.                                                                             | 8.2  | 5         |
| 398 | Critical roles of pores and moisture in sustainable nanocellulose-based super-thermal insulators.<br>Matter, 2021, 4, 769-772.                                                                                               | 5.0  | 5         |
| 399 | Molecular partitioning in ternary solutions of cellulose. Carbohydrate Polymers, 2019, 220, 157-162.                                                                                                                         | 5.1  | 4         |
| 400 | Wood Cellulose Paper for Solar Cells. , 2020, , 279-295.                                                                                                                                                                     |      | 4         |
| 401 | Solar Cells: Paperâ€Based Antiâ€Reflection Coatings for Photovoltaics (Adv. Energy Mater. 9/2014).<br>Advanced Energy Materials, 2014, 4, .                                                                                  | 10.2 | 3         |
| 402 | Nanocarbon Paper: Flexible, High Temperature, Planar Lighting with Large Scale Printable Nanocarbon<br>Paper (Adv. Mater. 23/2016). Advanced Materials, 2016, 28, 4566-4566.                                                 | 11.1 | 3         |
| 403 | Cellulose Nanocomposites of Cellulose Nanofibers and Molecular Coils. Journal of Composites Science, 2021, 5, 200.                                                                                                           | 1.4  | 2         |
| 404 | Boron-Nitride Nanosheet-Based Thermal Barrier Coating for Micro-Combustor Performance<br>Improvement. Journal of Energy Resources Technology, Transactions of the ASME, 2022, 144, .                                         | 1.4  | 2         |
| 405 | Shock synthesis by flash-thermal lamping. CheM, 2022, , .                                                                                                                                                                    | 5.8  | 2         |
| 406 | A low-corrosivity structural timber. Cell Reports Physical Science, 2022, 3, 100921.                                                                                                                                         | 2.8  | 2         |
| 407 | Modified coffee rings for 1-D electronics: Size considerations. Molecular Crystals and Liquid Crystals, 2017, 646, 26-30.                                                                                                    | 0.4  | 1         |
| 408 | Tuning the Highâ€īemperature Wetting Behavior of Metals toward Ultrafine Nanoparticles. Angewandte<br>Chemie, 2018, 130, 2655-2659.                                                                                          | 1.6  | 1         |
| 409 | Cellulose Nanofiber Templating: Recent Advances in Functional Materials through Cellulose<br>Nanofiber Templating (Adv. Mater. 12/2021). Advanced Materials, 2021, 33, 2170094.                                              | 11.1 | 1         |
| 410 | Frontispiece: Tailoring the Local Environment of Platinum in Singleâ€Atom<br>Pt <sub>1</sub> /CeO <sub>2</sub> Catalysts for Robust Lowâ€Temperature CO Oxidation. Angewandte<br>Chemie - International Edition, 2021, 60, . | 7.2  | 1         |
| 411 | Synthetic Alloys: Synthetic Crystals of Silver with Carbon: 3D Epitaxy of Carbon Nanostructures in<br>the Silver Lattice (Adv. Funct. Mater. 30/2015). Advanced Functional Materials, 2015, 25, 4746-4746.                   | 7.8  | 0         |
| 412 | 3D Microstructure Reconstruction and Characterization of Solid-State Electrolyte with Varying Porosity. Microscopy and Microanalysis, 2018, 24, 814-815.                                                                     | 0.2  | 0         |
| 413 | In situ TEM Observation of Nanoparticles Formation during Carbothermal Shock. Microscopy and Microanalysis, 2019, 25, 1534-1535.                                                                                             | 0.2  | 0         |
| 414 | Ion Transport and Regulation: Nanoscale Ion Regulation in Woodâ€Based Structures and Their Device<br>Applications (Adv. Mater. 28/2021). Advanced Materials, 2021, 33, 2170221.                                              | 11.1 | 0         |

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 415 | Silver Nanowires. , 2016, , 1187-1203.                                                                                                                                                              |     | 0         |
| 416 | Frontispiz: Tailoring the Local Environment of Platinum in Singleâ€Atom<br>Pt <sub>1</sub> /CeO <sub>2</sub> Catalysts for Robust Lowâ€Temperature CO Oxidation. Angewandte<br>Chemie, 2021, 133, . | 1.6 | 0         |