
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/692014/publications.pdf Version: 2024-02-01

LOSE L NIEVA

#	Article	IF	CITATIONS
1	Engineering pan–HIV-1 neutralization potency through multispecific antibody avidity. Proceedings of the United States of America, 2022, 119, .	7.1	11
2	Single-molecule conformational dynamics of viroporin ion channels regulated by lipid-protein interactions. Bioelectrochemistry, 2021, 137, 107641.	4.6	9
3	Conformational plasticity underlies membrane fusion induced by an HIV sequence juxtaposed to the lipid envelope. Scientific Reports, 2021, 11, 1278.	3.3	4
4	Structure of HIV-1 gp41 with its membrane anchors targeted by neutralizing antibodies. ELife, 2021, 10, .	6.0	15
5	Focal accumulation of aromaticity at the CDRH3 loop mitigates 4E10 polyreactivity without altering its HIV neutralization profile. IScience, 2021, 24, 102987.	4.1	1
6	The Bilayer Collective Properties Govern the Interaction of an HIV-1 Antibody with the Viral Membrane. Biophysical Journal, 2020, 118, 44-56.	0.5	6
7	Affinity for the Interface Underpins Potency of Antibodies Operating In Membrane Environments. Cell Reports, 2020, 32, 108037.	6.4	10
8	Cholesterol Constrains the Antigenic Configuration of the Membrane-Proximal Neutralizing HIV-1 Epitope. ACS Infectious Diseases, 2020, 6, 2155-2168.	3.8	6
9	Fluorescence Microscopy of the HIV-1 Envelope. Viruses, 2020, 12, 348.	3.3	7
10	Molecular recognition of the native HIV-1 MPER revealed by STED microscopy of single virions. Nature Communications, 2019, 10, 78.	12.8	31
11	Noise Properties of Ion Channels Formed by Pestivirus Viroporin p7. Biophysical Journal, 2019, 116, 221a.	0.5	0
12	Exposure of the HIV-1 broadly neutralizing antibody 10E8 MPER epitope on the membrane surface by gp41 transmembrane domain scaffolds. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1259-1271.	2.6	4
13	Mutation-induced changes of transmembrane pore size revealed by combined ion-channel conductance and single vesicle permeabilization analyses. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1015-1021.	2.6	7
14	Functional Optimization of Broadly Neutralizing HIV-1 Antibody 10E8 by Promotion of Membrane Interactions. Journal of Virology, 2018, 92, .	3.4	21
15	HIV antivirals: targeting the functional organization of the lipid envelope. Future Virology, 2018, 13, 129-140.	1.8	6
16	Molecular Recognition at the Membrane Interface: Protein-Membrane Electrostatic Interactions Modulate the Biological Function of Anti-HIV Antibodies. Biophysical Journal, 2018, 114, 197a.	0.5	0
17	Single Virion Super-Resolution Microscopy Unveils Mechanistic Details ofÂEnv Glycoprotein Recognition by the Broadly Neutralizing HIV-1 Antibodies 4E10 and 10E8. Biophysical Journal, 2018, 114, 537a.	0.5	0
18	Classical Swine Fever Virus p7 Protein Interacts with Host Protein CAMLG and Regulates Calcium Permeability at the Endoplasmic Reticulum. Viruses, 2018, 10, 460.	3.3	14

#	Article	IF	CITATIONS
19	Peripheral Membrane Interactions Boost the Engagement by an Anti-HIV-1 Broadly Neutralizing Antibody. Journal of Biological Chemistry, 2017, 292, 5571-5583.	3.4	9
20	Functional Contacts between MPER and the Anti-HIV-1 Broadly Neutralizing Antibody 4E10 Extend into the Core of the Membrane. Journal of Molecular Biology, 2017, 429, 1213-1226.	4.2	14
21	Structure-Related Roles for the Conservation of the HIV-1 Fusion Peptide Sequence Revealed by Nuclear Magnetic Resonance. Biochemistry, 2017, 56, 5503-5511.	2.5	5
22	Effects of HIV-1 gp41-Derived Virucidal Peptides on Virus-like Lipid Membranes. Biophysical Journal, 2017, 113, 1301-1310.	0.5	12
23	Structural basis for broad neutralization of HIV-1 through the molecular recognition of 10E8 helical epitope at the membrane interface. Scientific Reports, 2016, 6, 38177.	3.3	34
24	CSFV p7 Viroporin ION Channel Activity in Lipid Bilayers Mimicking theÂER Membrane. Biophysical Journal, 2016, 110, 115a.	0.5	1
25	Functional organization of the HIV lipid envelope. Scientific Reports, 2016, 6, 34190.	3.3	38
26	Ion channel activity of the CSFV p7 viroporin in surrogates of the ER lipid bilayer. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 30-37.	2.6	14
27	Reply to "The Broadly Neutralizing, Anti-HIV Antibody 4E10: an Open and Shut Case?― Journal of Virology, 2016, 90, 3276-3277.	3.4	2
28	The Atomic Structure of the HIV-1 gp41 Transmembrane Domain and Its Connection to the Immunogenic Membrane-proximal External Region. Journal of Biological Chemistry, 2015, 290, 12999-13015.	3.4	37
29	The Use of Liposomes to Shape Epitope Structure and Modulate Immunogenic Responses of Peptide Vaccines Against HIV MPER. Advances in Protein Chemistry and Structural Biology, 2015, 99, 15-54.	2.3	20
30	Structural and Thermodynamic Basis of Epitope Binding by Neutralizing and Nonneutralizing Forms of the Anti-HIV-1 Antibody 4E10. Journal of Virology, 2015, 89, 11975-11989.	3.4	22
31	Two-Photon Laurdan Studies of the Ternary Lipid Mixture DOPC:SM:Cholesterol Reveal a Single Liquid Phase at Sphingomyelin:Cholesterol Ratios Lower Than 1. Langmuir, 2015, 31, 2808-2817.	3.5	29
32	Fusion-competent state induced by a C-terminal HIV-1 fusion peptide in cholesterol-rich membranes. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1014-1022.	2.6	12
33	Structure and Immunogenicity of a Peptide Vaccine, Including the Complete HIV-1 gp41 2F5 Epitope. Journal of Biological Chemistry, 2014, 289, 6565-6580.	3.4	26
34	The three lives of viral fusion peptides. Chemistry and Physics of Lipids, 2014, 181, 40-55.	3.2	79
35	Cholesterol-Dependent Membrane Fusion Induced by the gp41 Membrane-Proximal External Region–Transmembrane Domain Connection Suggests a Mechanism for Broad HIV-1 Neutralization. Journal of Virology, 2014, 88, 13367-13377.	3.4	39
36	Pore-forming activity of pestivirus p7 in a minimal model system supports genus-specific viroporin function. Antiviral Research, 2014, 101, 30-36.	4.1	27

#	Article	IF	CITATIONS
37	The Gp41 Sequence Connecting Mper and Tm Domains Constitutes a Distinct HIV-1 "Fusion Peptide― Targeted by Neutralizing Antibodies. Biophysical Journal, 2014, 106, 708a-709a.	0.5	0
38	Insights into the Lateral Organization and Molecular Order of Lipid Mixtures that Mimic the HIV-1 Membrane by Multiphoton Fluorescence Microscopy. Biophysical Journal, 2014, 106, 706a.	0.5	0
39	Fusogenic Activity of the HIV-1 Gp41 MPER-TMD Region: Mechanism and Targeting by Immunogens and Inhibitors. Biophysical Journal, 2013, 104, 90a.	0.5	0
40	Charge Pair Interactions in Transmembrane Helices and Turn Propensity of the Connecting Sequence Promote Helical Hairpin Insertion. Journal of Molecular Biology, 2013, 425, 830-840.	4.2	30
41	Classical Swine Fever Virus p7 Protein Is a Viroporin Involved in Virulence in Swine. Journal of Virology, 2012, 86, 6778-6791.	3.4	56
42	Membrane-Active Peptides Derived from Picornavirus 2B Viroporin. Current Protein and Peptide Science, 2012, 13, 632-643.	1.4	15
43	Mechanism of membrane perturbation by the HIV-1 gp41 membrane-proximal external region and its modulation by cholesterol. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2521-2528.	2.6	21
44	Phase Behavior of Lipid Mixtures that Emulate the HIV-1 Membrane: A Monolayer Approach. Biophysical Journal, 2012, 102, 648a.	0.5	0
45	Recognition of Membrane-Bound Fusion-Peptide/MPER Complexes by the HIV-1 Neutralizing 2F5 Antibody: Implications for Anti-2F5 Immunogenicity. PLoS ONE, 2012, 7, e52740.	2.5	9
46	Membrane-Proximal External HIV-1 gp41 Motif Adapted for Destabilizing the Highly Rigid Viral Envelope. Biophysical Journal, 2011, 101, 2426-2435.	0.5	17
47	Destabilization of Highly Rigid Bilayers Enriched in Cholesterol by the Membrane-Proximal External Region of HIV-1 gp41. Biophysical Journal, 2011, 100, 634a.	0.5	0
48	Destabilization exerted by peptides derived from the membrane-proximal external region of HIV-1 gp41 in lipid vesicles supporting fluid phase coexistence. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1797-1805.	2.6	7
49	Membrane-Transferring Regions of gp41 as Targets for HIV-1 Fusion Inhibition and Viral Neutralization. Current Topics in Medicinal Chemistry, 2011, 11, 2985-2996.	2.1	5
50	A new paradigm in molecular recognition? specific antibody binding to membraneâ€inserted HIVâ€1 epitopes. Journal of Molecular Recognition, 2011, 24, 642-646.	2.1	9
51	Interaction of Anti-HIV Type 1 Antibody 2F5 with Phospholipid Bilayers and Its Relevance for the Mechanism of Virus Neutralization. AIDS Research and Human Retroviruses, 2011, 27, 863-876.	1.1	11
52	Confocal microscopy of giant vesicles supports the absence of HIVâ€1 neutralizing 2F5 antibody reactivity to plasma membrane phospholipids. FEBS Letters, 2010, 584, 1591-1596.	2.8	19
53	Distinct mechanisms of lipid bilayer perturbation induced by peptides derived from the membrane-proximal external region of HIV-1 gp41. Chemistry and Physics of Lipids, 2010, 163, S46-S47.	3.2	0
54	Dihydrosphingomyelin Impairs HIV-1 Infection by Rigidifying Liquid-Ordered Membrane Domains. Chemistry and Biology, 2010, 17, 766-775.	6.0	76

#	Article	IF	CITATIONS
55	Membrane pore formation by the human immunodeficiency virus type-1 neutralizing anti-gp41 antibody 2F5. Chemistry and Physics of Lipids, 2010, 163, S46.	3.2	0
56	Ablation of the Complementarity-Determining Region H3 Apex of the Anti-HIV-1 Broadly Neutralizing Antibody 2F5 Abrogates Neutralizing Capacity without Affecting Core Epitope Binding. Journal of Virology, 2010, 84, 4136-4147.	3.4	64
57	Membrane-Active Peptides Derived From HIV-1 GP41: Could They Become Useful Therapeutic Tools?. Biophysical Journal, 2010, 98, 1a.	0.5	0
58	All-or-None versus Graded: Single-Vesicle Analysis Reveals Lipid Composition Effects on Membrane Permeabilization. Biophysical Journal, 2010, 99, 3619-3628.	0.5	71
59	A peptide based on the pore-forming domain of pro-apoptotic poliovirus 2B viroporin targets mitochondria. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 52-58.	2.6	12
60	Cholesterol Effect on The Lipid Bilayer Perturbation Induced by Peptides Derived from the Membrane-Proximal External Region of HIV-1 gp41. Biophysical Journal, 2010, 98, 217a.	0.5	0
61	Distinct Mechanisms of Lipid Bilayer Perturbation Induced by Peptides Derived from the Membrane-Proximal External Region of HIV-1 gp41. Biochemistry, 2009, 48, 5320-5331.	2.5	32
62	Structural Constraints Imposed by the Conserved Fusion Peptide on the HIV-1 gp41 Epitope Recognized by the Broadly Neutralizing Antibody 2F5. Journal of Physical Chemistry B, 2009, 113, 13626-13637.	2.6	21
63	Lipid modulation of membraneâ€bound epitope recognition and blocking by HIVâ€1 neutralizing antibodies. FEBS Letters, 2008, 582, 3798-3804.	2.8	19
64	Structural Details of HIV-1 Recognition by the Broadly Neutralizing Monoclonal Antibody 2F5: Epitope Conformation, Antigen-Recognition Loop Mobility, and Anion-Binding Site. Journal of Molecular Biology, 2008, 384, 377-392.	4.2	81
65	The immunogenic CBD1 peptide corresponding to the caveolin-1 binding domain in HIV-1 envelope gp41 has the capacity to penetrate the cell membrane and bind caveolin-1. Molecular Immunology, 2008, 45, 1963-1975.	2.2	11
66	Interfacial pre-transmembrane domains in viral proteins promoting membrane fusion and fission. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1624-1639.	2.6	61
67	Poliovirus 2b insertion into lipid monolayers and pore formation in vesicles modulated by anionic phospholipids. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2621-2626.	2.6	14
68	Functional and Structural Characterization of 2B Viroporin Membranolytic Domains. Biochemistry, 2008, 47, 10731-10739.	2.5	18
69	The Broadly Neutralizing Anti-Human Immunodeficiency Virus Type 1 4E10 Monoclonal Antibody Is Better Adapted to Membrane-Bound Epitope Recognition and Blocking than 2F5. Journal of Virology, 2008, 82, 8986-8996.	3.4	44
70	Plasma Membrane-porating Domain in Poliovirus 2B Protein. A Short Peptide Mimics Viroporin Activity. Journal of Molecular Biology, 2007, 374, 951-964.	4.2	41
71	Structural Analysis and Assembly of the HIV-1 Gp41 Amino-Terminal Fusion Peptide and the Pretransmembrane Amphipathic-At-Interface Sequence. Biochemistry, 2006, 45, 14337-14346.	2.5	42
72	Specific phospholipid recognition by human immunodeficiency virus type-1 neutralizing anti-gp41 2F5 antibody. FEBS Letters, 2006, 580, 2395-2399.	2.8	46

#	Article	IF	CITATIONS
73	Hexapeptides that interfere with HIV-1 fusion peptide activity in liposomes block GP41-mediated membrane fusion. FEBS Letters, 2006, 580, 2561-2566.	2.8	13
74	Membrane-transferring Sequences of the HIV-1 Gp41 Ectodomain Assemble into an Immunogenic Complex. Journal of Molecular Biology, 2006, 360, 45-55.	4.2	38
75	Recognition and Blocking of HIV-1 gp41 Pre-transmembrane Sequence by Monoclonal 4E10 Antibody in a Raft-like Membrane Environment. Journal of Biological Chemistry, 2006, 281, 39598-39606.	3.4	41
76	Membrane Association and Epitope Recognition by HIV-1 Neutralizing Anti-gp41 2F5 and 4E10 Antibodies. AIDS Research and Human Retroviruses, 2006, 22, 998-1006.	1.1	63
77	Roles of a conserved proline in the internal fusion peptide of Ebola glycoprotein. FEBS Letters, 2004, 569, 261-266.	2.8	34
78	Membrane-permeabilizing motif in Semliki forest virus E1 glycoprotein. FEBS Letters, 2004, 576, 417-422.	2.8	10
79	Pre-transmembrane sequence of Ebola glycoprotein. FEBS Letters, 2003, 533, 47-53.	2.8	39
80	Calcium-dependent conformational changes of membrane-bound Ebola fusion peptide drive vesicle fusion. FEBS Letters, 2003, 535, 23-28.	2.8	21
81	Mechanisms of membrane permeabilization by picornavirus 2B viroporin. FEBS Letters, 2003, 552, 68-73.	2.8	64
82	Effects of sphingomyelin on melittin pore formation. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1612, 83-89.	2.6	27
83	Are fusion peptides a good model to study viral cell fusion?. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1614, 104-115.	2.6	76
84	Structural and Functional Roles of HIV-1 gp41 Pretransmembrane Sequence Segmentation. Biophysical Journal, 2003, 85, 3769-3780.	0.5	79
85	The Hydrophobic Internal Region of Bovine Prion Protein Shares Structural and Functional Properties with HIV Type 1 Fusion Peptide. AIDS Research and Human Retroviruses, 2003, 19, 969-978.	1.1	14
86	Interaction of Phospholipases C and Sphingomyelinase with Liposomes. Methods in Enzymology, 2003, 372, 3-19.	1.0	18
87	Uptake of Liposomes by Cells: Experimental Procedures and Modeling. Methods in Enzymology, 2003, 372, 235-248.	1.0	2
88	Viroporin-mediated Membrane Permeabilization. Journal of Biological Chemistry, 2002, 277, 40434-40441.	3.4	124
89	Sphingomyelin and Cholesterol Promote HIV-1 gp41 Pretransmembrane Sequence Surface Aggregation and Membrane Restructuring. Journal of Biological Chemistry, 2002, 277, 21776-21785.	3.4	119
90	Conformational transitions of membrane-bound HIV-1 fusion peptide. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1564, 57-65.	2.6	56

#	Article	IF	CITATIONS
91	Differential Interaction of Equinatoxin II with Model Membranes in Response to Lipid Composition. Biophysical Journal, 2001, 80, 1343-1353.	0.5	74
92	Hydrophobic-at-Interface Regions in Viral Fusion Protein Ectodomains. Bioscience Reports, 2000, 20, 519-533.	2.4	29
93	Interactions of peptides with liposomes: pore formation and fusion. Progress in Lipid Research, 2000, 39, 181-206.	11.6	77
94	Interactions of the HIV-1 fusion peptide with large unilamellar vesicles and monolayers. A cryo-TEM and spectroscopic study. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1467, 153-164.	2.6	36
95	The pre-transmembrane region of the human immunodeficiency virus type-1 glycoprotein: a novel fusogenic sequence. FEBS Letters, 2000, 477, 145-149.	2.8	88
96	Induction of aggregation and fusion of cholesterol-containing membrane vesicles by an anti-cholesterol monoclonal antibody. Journal of Lipid Research, 2000, 41, 621-628.	4.2	7
97	Interbilayer lipid mixing induced by the human immunodeficiency virus type-1 fusion peptide on large unilamellar vesicles: the nature of the nonlamellar intermediates. Chemistry and Physics of Lipids, 1999, 103, 11-20.	3.2	31
98	Membrane topology of the HIV-1 fusion peptide. , 1999, , 381-382.		0
99	Membrane Fusion Induced by the HIV Type 1 Fusion Peptide: Modulation by Factors Affecting Glycoprotein 41 Activity and Potential Anti-HIV Compounds. AIDS Research and Human Retroviruses, 1997, 13, 1203-1211.	1.1	32
100	Membrane destabilization induced by the human immunodeficiency virus type-1 fusion peptide. International Journal of Peptide Research and Therapeutics, 1997, 4, 365-369.	0.1	0
101	Membrane destabilization induced by the human immunodeficiency virus type-1 fusion peptide. International Journal of Peptide Research and Therapeutics, 1997, 4, 365-369.	0.1	0
102	Interactions of Peptides with Phospholipid Vesicles: Fusion, Leakage and Flip-Flop. , 1995, , 71-96.		0
103	Phospholipase-C-promoted liposome fusion. Biochemical Society Transactions, 1994, 22, 839-844.	3.4	26
104	Interaction of the HIV-1 Fusion Peptide with Phospholipid Vesicles: Different Structural Requirements for Fusion and Leakage. Biochemistry, 1994, 33, 3201-3209.	2.5	207