
Atul Bhardwaj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/691952/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In situ click chemistry generation of cyclooxygenase-2 inhibitors. Nature Communications, 2017, 8, 1. Combined Measurement of the Higgs Boson Mass in <mml:math< td=""><td>12.8</td><td>10,736</td></mml:math<>	12.8	10,736
2	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>p</mml:mi> ppCollisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>7<td>7.8 ≻<td>1,062 nath>and</td></td></mml:mn></mml:math 	7.8 ≻ <td>1,062 nath>and</td>	1,062 nath>and
3	8ÂTeV with the ATLAS and CMS Experiments. Physical Review Letters, 2015, 114, 191803. Optimization of Acetazolamide-Based Scaffold as Potent Inhibitors of Vancomycin-Resistant <i>Enterococcus</i> . Journal of Medicinal Chemistry, 2020, 63, 9540-9562.	6.4	57
4	Mono-, Di-, and Triaryl Substituted Tetrahydropyrans as Cyclooxygenase-2 and Tumor Growth Inhibitors. Synthesis and Biological Evaluation. Journal of Medicinal Chemistry, 2010, 53, 3707-3717.	6.4	45
5	N-1 and C-3 substituted indole Schiff bases as selective COX-2 inhibitors: Synthesis and biological evaluation. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2154-2159.	2.2	41
6	Hybrid fluorescent conjugates of COX-2 inhibitors: Search for a COX-2 isozyme imaging cancer biomarker. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 163-168.	2.2	37
7	Fluorophore‣abeled Cyclooxygenaseâ€2 Inhibitors for the Imaging of Cyclooxygenaseâ€2 Overexpression in Cancer: Synthesis and Biological Studies. ChemMedChem, 2014, 9, 109-116.	3.2	36
8	Synthesis and Biological Investigations of Nitric Oxide Releasing Nateglinide and Meglitinide Type II Antidiabetic Prodrugs: In-Vivo Antihyperglycemic Activities and Blood Pressure Lowering Studies. Journal of Medicinal Chemistry, 2012, 55, 7883-7891.	6.4	33
9	Design, Synthesis, and Evaluation of an ¹⁸ Fâ€Labeled Radiotracer Based on Celecoxib–NBD for Positron Emission Tomography (PET) Imaging of Cyclooxygenaseâ€2 (COXâ€2). ChemMedChem, 2015, 10, 1635-1640.	3.2	27
10	1-Toluene-sulfonyl-3-[(3′-hydroxy-5′-substituted)-γ-butyrolactone]-indoles: Synthesis, COX-2 inhibition and anti-cancer activities. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 85-89.	2.2	24
11	Rofecoxib Analogues Possessing a Nitric Oxide Donor Sulfohydroxamic Acid (SO ₂ NHOH) Cyclooxygenaseâ€2 Pharmacophore: Synthesis, Molecular Modeling, and Biological Evaluation as Antiâ€inflammatory Agents. ChemMedChem, 2012, 7, 62-67.	3.2	24
12	Aspirin Analogues as Dual Cyclooxygenaseâ€2/5â€Lipoxygenase Inhibitors: Synthesis, Nitric Oxide Release, Molecular Modeling, and Biological Evaluation as Antiâ€Inflammatory Agents. ChemMedChem, 2012, 7, 144-150.	3.2	20
13	<i>O</i> ² -Sulfonylethyl Protected Isopropylamine Diazen-1-ium-1,2-diolates as Nitroxyl (HNO) Donors: Synthesis, β-Elimination Fragmentation, HNO Release, Positive Inotropic Properties, and Blood Pressure Lowering Studies. Journal of Medicinal Chemistry, 2012, 55, 10262-10271.	6.4	19
14	Mechanism of Action of Key Enzymes Associated with Cancer Propagation and their Inhibition by Various Chemotherapeutic Agents. Mini-Reviews in Medicinal Chemistry, 2008, 8, 388-398.	2.4	18
15	Design, synthesis and evaluation of tetrahydropyran based COX-1/-2 inhibitors. European Journal of Medicinal Chemistry, 2009, 44, 1278-1287.	5.5	18
16	Synthesis of highly functionalized barbituric acids and study of their interactions with p-glycoprotein and Mg2+ – Potential candidates for multi drug resistance modulation. European Journal of Medicinal Chemistry, 2010, 45, 1256-1262.	5.5	18
17	Cardiovascular Properties of a Nitric Oxide Releasing Rofecoxib Analogue: Beneficial Antiâ€hypertensive Activity and Enhanced Recovery in an Ischemic Reperfusion Injury Model. ChemMedChem, 2012, 7, 1365-1368.	3.2	17
18	NSAIDs do not require the presence of a carboxylic acid to exert their anti-inflammatory effect – why do we keep using it?. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 1018-1028.	5.2	17

Atul Bhardwaj

#	Article	IF	CITATIONS
19	Glutathione <i>S</i> -Transferase π-Activatable <i>O</i> ² -(Sulfonylethyl Derived) Diazeniumdiolates Potently Suppress Melanoma in Vitro and in Vivo. Journal of Medicinal Chemistry, 2018, 61, 1833-1844.	6.4	17
20	Analysis of chain length, substitution patterns, and unsaturation of AM-404 derivatives as 20S proteasome stimulators. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 420-423.	2.2	16
21	1,4-Diaryl-substituted triazoles as cyclooxygenase-2 inhibitors: Synthesis, biological evaluation and molecular modeling studies. Bioorganic and Medicinal Chemistry, 2013, 21, 4288-4295.	3.0	14
22	lsomeric acetoxy analogs of celecoxib and their evaluation as cyclooxygenase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6074-6080.	2.2	11
23	Pyrimidine-based fluorescent COX-2 inhibitors: synthesis and biological evaluation. Organic and Biomolecular Chemistry, 2016, 14, 7250-7257.	2.8	11
24	Design and synthesis of [125 I]Pyricoxib: A novel 125 I-labeled cyclooxygenase-2 (COX-2) inhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1516-1520.	2.2	7
25	Synthesis and Preclinical Evaluation of [¹⁸ F]SiFA-PSMA Inhibitors in a Prostate Cancer Model. Journal of Medicinal Chemistry, 2021, 64, 15671-15689.	6.4	6
26	Development of Fluorescence Imaging Probes for Labeling COX-1 in Live Ovarian Cancer Cells. ACS Medicinal Chemistry Letters, 2021, 12, 798-804.	2.8	5
27	Can nitric oxide-releasing hybrid drugs alleviate adverse cardiovascular risks?. Future Medicinal Chemistry, 2013, 5, 381-383.	2.3	4
28	The succinct synthesis of AT13387, a clinically relevant Hsp90 inhibitor. Synthetic Communications, 2019, 49, 1436-1443.	2.1	4
29	In Cellulo Generation of Fluorescent Probes for Liveâ€Cell Imaging of Cylooxygenaseâ€2. Chemistry - A European Journal, 2021, 27, 3326-3337.	3.3	4
30	Do nitric oxide-releasing drugs offer a potentially new paradigm for the management of cardiovascular risks in diabetes?. Expert Review of Cardiovascular Therapy, 2014, 12, 533-536.	1.5	3
31	A diazen-1-ium-1,2-diolate analog of 7-azabenzobicyclo[2.2.1]heptane: Synthesis, nitric oxide and nitroxyl release, in vitro hemodynamic, and anti-hypertensive studies. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2769-2774.	2.2	2
32	Design, Synthesis, and Evaluation of a Luminescent Cholesterol Mimic. Journal of Organic Chemistry, 2021, 86, 1612-1621.	3.2	2
33	Fluorine-18 Labelled Radioligands for PET Imaging of Cyclooxygenase-2. Molecules, 2022, 27, 3722.	3.8	1
34	Synthesis, binding affinity analysis, and 18Fâ€radiosynthesis of small molecular weight HIFâ€1α binding compounds ChemMedChem, 2021, , .	3.2	0