
Peter Greve

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6919074/publications.pdf Version: 2024-02-01

DETED CDEVE

#	Article	IF	CITATIONS
1	Global assessment of trends in wetting and drying over land. Nature Geoscience, 2014, 7, 716-721.	12.9	613
2	Global assessment of water challenges under uncertainty in water scarcity projections. Nature Sustainability, 2018, 1, 486-494.	23.7	274
3	Selenium deficiency risk predicted to increase under future climate change. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2848-2853.	7.1	260
4	Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth-Science Reviews, 2020, 210, 103348.	9.1	224
5	On the assessment of aridity with changes in atmospheric <scp>CO</scp> ₂ . Water Resources Research, 2015, 51, 5450-5463.	4.2	194
6	Global exposure and vulnerability to multi-sector development and climate change hotspots. Environmental Research Letters, 2018, 13, 055012.	5.2	162
7	Assessment of future changes in water availability and aridity. Geophysical Research Letters, 2015, 42, 5493-5499.	4.0	136
8	The aridity Index under global warming. Environmental Research Letters, 2019, 14, 124006.	5.2	124
9	A planetary boundary for green water. Nature Reviews Earth & Environment, 2022, 3, 380-392.	29.7	95
10	Introducing a probabilistic Budyko framework. Geophysical Research Letters, 2015, 42, 2261-2269.	4.0	93
11	The sensitivity of water availability to changes in the aridity index and other factors—A probabilistic analysis in the Budyko space. Geophysical Research Letters, 2016, 43, 6985-6994.	4.0	86
12	Large cale Controls of the Surface Water Balance Over Land: Insights From a Systematic Review and Metaâ€Analysis. Water Resources Research, 2017, 53, 9659-9678.	4.2	86
13	Changes in regional climate extremes as a function of global mean temperature: an interactive plotting framework. Geoscientific Model Development, 2017, 10, 3609-3634.	3.6	75
14	A two-parameter Budyko function to represent conditions under which evapotranspiration exceeds precipitation. Hydrology and Earth System Sciences, 2016, 20, 2195-2205.	4.9	67
15	Regional scaling of annual mean precipitation and water availability with global temperature change. Earth System Dynamics, 2018, 9, 227-240.	7.1	64
16	The dry season intensity as a key driver of NPP trends. Geophysical Research Letters, 2016, 43, 2632-2639.	4.0	60
17	Development of the Community Water Model (CWatM v1.04) – a high-resolution hydrological model for global and regional assessment of integrated water resources management. Geoscientific Model Development, 2020, 13, 3267-3298.	3.6	60
18	A Continental‣cale Hydroeconomic Model for Integrating Waterâ€Energy‣and Nexus Solutions. Water Resources Research, 2018, 54, 7511-7533.	4.2	57

Peter Greve

#	Article	IF	CITATIONS
19	Irrigation of biomass plantations may globally increase water stress more than climate change. Nature Communications, 2021, 12, 1512.	12.8	54
20	Multiâ€model and multiâ€scenario assessments of Asian water futures: The Water Futures and Solutions (WFaS) initiative. Earth's Future, 2017, 5, 823-852.	6.3	50
21	Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20160450.	3.4	46
22	Simulated changes in aridity from the last glacial maximum to 4xCO ₂ . Environmental Research Letters, 2017, 12, 114021.	5.2	44
23	Hydrological concept formation inside long short-term memoryÂ(LSTM) networks. Hydrology and Earth System Sciences, 2022, 26, 3079-3101.	4.9	34
24	Using the Budyko Framework for Calibrating a Global Hydrological Model. Water Resources Research, 2020, 56, e2019WR026280.	4.2	33
25	Evaluating Soil Water Content in a WRF-Noah Downscaling Experiment. Journal of Applied Meteorology and Climatology, 2013, 52, 2312-2327.	1.5	28
26	A nexus modeling framework for assessing water scarcity solutions. Current Opinion in Environmental Sustainability, 2019, 40, 72-80.	6.3	27
27	A Multivariate Conditional Probability Ratio Framework for the Detection and Attribution of Compound Climate Extremes. Geophysical Research Letters, 2021, 48, e2021GL094361.	4.0	16
28	Correspondence: Flawed assumptions compromise water yield assessment. Nature Communications, 2017, 8, 14795.	12.8	14
29	Estimating Regionalized Hydrological Impacts of Climate Change Over Europe by Performance-Based Weighting of CORDEX Projections. Frontiers in Water, 2021, 3, .	2.3	10
30	Intensified Likelihood of Concurrent Warm and Dry Months Attributed to Anthropogenic Climate Change. Water Resources Research, 2022, 58, .	4.2	8
31	Co-development of East African regional water scenarios for 2050. One Earth, 2021, 4, 434-447.	6.8	4