Shen-Ying Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6916854/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs. Science Immunology, 2023, 8, .	5.6	35
2	A global effort to dissect the human genetic basis of resistance to SARS-CoV-2 infection. Nature Immunology, 2022, 23, 159-164.	7.0	41
3	X-Linked TLR7 Deficiency Underlies Critical COVID-19 Pneumonia in a Male Patient with Ataxia-Telangiectasia. Journal of Clinical Immunology, 2022, 42, 1-9.	2.0	34
4	Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature, 2022, 603, 587-598.	13.7	216
5	Life-Threatening Enterovirus 71 Encephalitis in Unrelated Children with Autosomal Dominant TLR3 Deficiency. Journal of Clinical Immunology, 2022, 42, 606-617.	2.0	6
6	Type I interferons and SARS-CoV-2: from cells to organisms. Current Opinion in Immunology, 2022, 74, 172-182.	2.4	49
7	Inherited IFNAR1 Deficiency in a Child with Both Critical COVID-19 Pneumonia and Multisystem Inflammatory Syndrome. Journal of Clinical Immunology, 2022, 42, 471-483.	2.0	44
8	TIM3+ <i> TRBV11-2</i> T cells and IFNÎ ³ signature in patrolling monocytes and CD16+ NK cells delineate MIS-C. Journal of Experimental Medicine, 2022, 219, .	4.2	57
9	A loss-of-function <i>IFNAR1</i> allele in Polynesia underlies severe viral diseases in homozygotes. Journal of Experimental Medicine, 2022, 219, .	4.2	28
10	The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200413119.	3.3	110
11	Recessive inborn errors of type I IFN immunity in children with COVID-19 pneumonia. Journal of Experimental Medicine, 2022, 219, .	4.2	59
12	La panencéphalite sclérosante subaiguë deÂlaÂrougeole. Medecine/Sciences, 2022, 38, 553-561.	0.0	0
13	Herpes simplex encephalitis in a patient with a distinctive form of inherited IFNAR1 deficiency. Journal of Clinical Investigation, 2021, 131, .	3.9	64
14	TLR3 controls constitutive IFN- \hat{l}^2 antiviral immunity in human fibroblasts and cortical neurons. Journal of Clinical Investigation, 2021, 131, .	3.9	64
15	SARS-CoV-2 induces human plasmacytoid predendritic cell diversification via UNC93B and IRAK4. Journal of Experimental Medicine, 2021, 218, .	4.2	107
16	Negative selection on human genes underlying inborn errors depends on disease outcome and both the mode and mechanism of inheritance. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	33
17	Auto-antibodies to type I IFNs can underlie adverse reactions to yellow fever live attenuated vaccine. Journal of Experimental Medicine, 2021, 218, .	4.2	130
18	SARS-CoV-2–related MIS-C: A key to the viral and genetic causes of Kawasaki disease?. Journal of Experimental Medicine, 2021, 218, .	4.2	100

#	Article	IF	CITATIONS
19	Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1. Journal of Experimental Medicine, 2021, 218, .	4.2	185
20	Inherited deficiency of stress granule ZNFX1 in patients with monocytosis and mycobacterial disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	47
21	Polyclonal expansion of TCR Vl² 21.3 ⁺ CD4 ⁺ and CD8 ⁺ T cells is a hallmark of multisystem inflammatory syndrome in children. Science Immunology, 2021, 6, .	5.6	105
22	Insufficient type I IFN immunity underlies life-threatening COVID-19 pneumonia. Comptes Rendus - Biologies, 2021, 344, 19-25.	0.1	16
23	A computational approach for detecting physiological homogeneity in the midst of genetic heterogeneity. American Journal of Human Genetics, 2021, 108, 1012-1025.	2.6	6
24	Loss of DIAPH1 causes SCBMS, combined immunodeficiency, and mitochondrial dysfunction. Journal of Allergy and Clinical Immunology, 2021, 148, 599-611.	1.5	23
25	Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Science Immunology, 2021, 6, .	5.6	357
26	X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19. Science Immunology, 2021, 6, .	5.6	267
27	A monocyte/dendritic cell molecular signature of SARS-CoV-2-related multisystem inflammatory syndrome in children with severe myocarditis. Med, 2021, 2, 1072-1092.e7.	2.2	38
28	Biochemically deleterious human <i>NFKB1</i> variants underlie an autosomal dominant form of common variable immunodeficiency. Journal of Experimental Medicine, 2021, 218, .	4.2	32
29	Neuron-intrinsic immunity to viruses in mice and humans. Current Opinion in Immunology, 2021, 72, 309-317.	2.4	14
30	IFN-α2a Therapy in Two Patients with Inborn Errors of TLR3 and IRF3 Infected with SARS-CoV-2. Journal of Clinical Immunology, 2021, 41, 26-27.	2.0	40
31	Inborn errors of TLR3- or MDA5-dependent type I IFN immunity in children with enterovirus rhombencephalitis. Journal of Experimental Medicine, 2021, 218, .	4.2	12
32	Single-Cell and Bulk RNA-Sequencing Reveal Differences in Monocyte Susceptibility to Influenza A Virus Infection Between Africans and Europeans. Frontiers in Immunology, 2021, 12, 768189.	2.2	14
33	Herpes simplex virus 2 encephalitis in a patient heterozygous for a TLR3 mutation. Neurology: Genetics, 2020, 6, e532.	0.9	6
34	Life-Threatening COVID-19: Defective Interferons Unleash Excessive Inflammation. Med, 2020, 1, 14-20.	2.2	110
35	Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science, 2020, 370, .	6.0	1,749
36	Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science, 2020, 370, .	6.0	1,983

#	Article	IF	CITATIONS
37	Heterozygous TLR3 Mutation in Patients with Hantavirus Encephalitis. Journal of Clinical Immunology, 2020, 40, 1156-1162.	2.0	12
38	Severe COVID-19 in the young and healthy: monogenic inborn errors of immunity?. Nature Reviews Immunology, 2020, 20, 455-456.	10.6	47
39	Inherited disorders of TLR, IL-1R, and NFκB immunity. , 2020, , 869-883.		1
40	Herpes simplex virus encephalitis of childhood: inborn errors of central nervous system cell-intrinsic immunity. Human Genetics, 2020, 139, 911-918.	1.8	53
41	Human inborn errors of immunity to herpes viruses. Current Opinion in Immunology, 2020, 62, 106-122.	2.4	60
42	Immunodeficiencies at the Interface of Innate and Adaptive Immunity. , 2019, , 509-522.e1.		0
43	Inherited IFNAR1 deficiency in otherwise healthy patients with adverse reaction to measles and yellow fever live vaccines. Journal of Experimental Medicine, 2019, 216, 2057-2070.	4.2	127
44	Severe influenza pneumonitis in children with inherited TLR3 deficiency. Journal of Experimental Medicine, 2019, 216, 2038-2056.	4.2	134
45	Human inborn errors of immunity to infection affecting cells other than leukocytes: from the immune system to the whole organism. Current Opinion in Immunology, 2019, 59, 88-100.	2.4	44
46	Human SNORA31 variations impair cortical neuron-intrinsic immunity to HSV-1 and underlie herpes simplex encephalitis. Nature Medicine, 2019, 25, 1873-1884.	15.2	76
47	Human TANK-binding kinase 1 is required for early autophagy induction upon herpes simplex virus 1 infection. Journal of Allergy and Clinical Immunology, 2019, 143, 765-769.e7.	1.5	18
48	Inborn Errors of RNA Lariat Metabolism in Humans with Brainstem Viral Infection. Cell, 2018, 172, 952-965.e18.	13.5	92
49	Varicella-zoster virus CNS vasculitis and RNA polymerase III gene mutation in identical twins. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e500.	3.1	49
50	PopViz: a webserver for visualizing minor allele frequencies and damage prediction scores of human genetic variations. Bioinformatics, 2018, 34, 4307-4309.	1.8	55
51	Life-threatening influenza pneumonitis in a child with inherited IRF9 deficiency. Journal of Experimental Medicine, 2018, 215, 2567-2585.	4.2	146
52	Human iPSC-derived trigeminal neurons lack constitutive TLR3-dependent immunity that protects cortical neurons from HSV-1 infection. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8775-E8782.	3.3	58
53	Lethal Influenza in Two Related Adults with Inherited GATA2 Deficiency. Journal of Clinical Immunology, 2018, 38, 513-526.	2.0	29
54	A novel kindred with inherited STAT2 deficiency and severe viral illness. Journal of Allergy and Clinical Immunology, 2017, 139, 1995-1997.e9.	1.5	71

#	Article	IF	CITATIONS
55	T-cell Responses to HSV-1 in Persons Who Have Survived Childhood Herpes Simplex Encephalitis. Pediatric Infectious Disease Journal, 2017, 36, 741-744.	1.1	9
56	Autosomal Recessive Cardiomyopathy Presenting as Acute Myocarditis. Journal of the American College of Cardiology, 2017, 69, 1653-1665.	1.2	94
57	Inborn errors in RNA polymerase III underlie severe varicella zoster virus infections. Journal of Clinical Investigation, 2017, 127, 3543-3556.	3.9	125
58	Mendelian Susceptibility to Infections with Viruses, Mycobacteria, Bacteria, and Candida. , 2016, , 407-415.		0
59	Human TBK1: A Gatekeeper of Neuroinflammation. Trends in Molecular Medicine, 2016, 22, 511-527.	3.5	143
60	Characterization of Greater Middle Eastern genetic variation for enhanced disease gene discovery. Nature Genetics, 2016, 48, 1071-1076.	9.4	314
61	Whole-exome sequencing to analyze population structure, parental inbreeding, and familial linkage. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6713-6718.	3.3	53
62	The mutation significance cutoff: gene-level thresholds for variant predictions. Nature Methods, 2016, 13, 109-110.	9.0	249
63	Parsing the Interferon Transcriptional Network and Its Disease Associations. Cell, 2016, 164, 564-578.	13.5	250
64	Host genetics of severe influenza: from mouse Mx1 to human IRF7. Current Opinion in Immunology, 2016, 38, 109-120.	2.4	115
65	Deciphering Human Cell-Autonomous Anti-HSV-1 Immunity in the Central Nervous System. Frontiers in Immunology, 2015, 6, 208.	2.2	19
66	Inborn errors underlying herpes simplex encephalitis: From TLR3 to IRF3. Journal of Experimental Medicine, 2015, 212, 1342-1343.	4.2	65
67	Inherited DOCK2 Deficiency in Patients with Early-Onset Invasive Infections. New England Journal of Medicine, 2015, 372, 2409-2422.	13.9	169
68	Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science, 2015, 348, 448-453.	6.0	389
69	The human gene damage index as a gene-level approach to prioritizing exome variants. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13615-13620.	3.3	213
70	Human intracellular ISG15 prevents interferon- $\hat{l} \pm / \hat{l}^2$ over-amplification and auto-inflammation. Nature, 2015, 517, 89-93.	13.7	432
71	Addressing diagnostic challenges in primary immunodeficiencies: Laboratory evaluation of Toll-like receptor- and NF-κB-mediated immune responses. Critical Reviews in Clinical Laboratory Sciences, 2014, 51, 112-123.	2.7	20
72	TLR3 deficiency in herpes simplex encephalitis. Neurology, 2014, 83, 1888-1897.	1.5	128

#	Article	IF	CITATIONS
73	HGCS: an online tool for prioritizing disease-causing gene variants by biological distance. BMC Genomics, 2014, 15, 256.	1.2	43
74	EVER2 Deficiency is Associated with Mild T-cell Abnormalities. Journal of Clinical Immunology, 2013, 33, 14-21.	2.0	38
75	TLR3 immunity to infection in mice and humans. Current Opinion in Immunology, 2013, 25, 19-33.	2.4	141
76	The proteome of Toll-like receptor 3–stimulated human immortalized fibroblasts: Implications for susceptibility to herpes simplex virus encephalitis. Journal of Allergy and Clinical Immunology, 2013, 131, 1157-1166.	1.5	12
77	Cleaved/Associated TLR3 Represents the Primary Form of the Signaling Receptor. Journal of Immunology, 2013, 190, 764-773.	0.4	60
78	Mendelian predisposition to herpes simplex encephalitis. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 112, 1091-1097.	1.0	42
79	The human gene connectome as a map of short cuts for morbid allele discovery. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5558-5563.	3.3	79
80	Inherited disorders of IFN-Î ³ -, IFN-Î \pm /Î ² /λ-, and NF-Î ² B-mediated immunity. , 2013, , 454-464.		1
81	Heterozygous <i>TBK1</i> mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood. Journal of Experimental Medicine, 2012, 209, 1567-1582.	4.2	231
82	lgM+lgD+CD27+ B cells are markedly reduced in IRAK-4–, MyD88-, and TIRAP- but not UNC-93B–deficient patients. Blood, 2012, 120, 4992-5001.	0.6	87
83	Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature, 2012, 491, 769-773.	13.7	288
84	Inherited MST1 Deficiency Underlies Susceptibility to EV-HPV Infections. PLoS ONE, 2012, 7, e44010.	1.1	125
85	Induced pluripotent stem cells: AÂnovel frontier in the study of human primary immunodeficiencies. Journal of Allergy and Clinical Immunology, 2011, 127, 1400-1407.e4.	1.5	37
86	NEMO is a key component of NF-κB– and IRF-3–dependent TLR3-mediated immunity to herpes simplex virus. Journal of Allergy and Clinical Immunology, 2011, 128, 610-617.e4.	1.5	66
87	Inborn errors of anti-viral interferon immunity in humans. Current Opinion in Virology, 2011, 1, 487-496.	2.6	109
88	Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. Journal of Experimental Medicine, 2011, 208, 2083-2098.	4.2	262
89	Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency. Journal of Clinical Investigation, 2011, 121, 4889-4902.	3.9	254
90	Association of genetic variation in IL28B with hepatitis C treatment-induced viral clearance in the Chinese Han population. Antiviral Therapy, 2010, 16, 141-147.	0.6	41

#	Article	IF	CITATIONS
91	Age-Dependent Mendelian Predisposition to Herpes Simplex Virus Type 1 Encephalitis in Childhood. Journal of Pediatrics, 2010, 157, 623-629.e1.	0.9	85
92	Primary immunodeficiencies of protective immunity to primary infections. Clinical Immunology, 2010, 135, 204-209.	1.4	65
93	Human CD14dim Monocytes Patrol and Sense Nucleic Acids and Viruses via TLR7 and TLR8 Receptors. Immunity, 2010, 33, 375-386.	6.6	1,060
94	Human TRAF3 Adaptor Molecule Deficiency Leads to Impaired Toll-like Receptor 3 Response and Susceptibility to Herpes Simplex Encephalitis. Immunity, 2010, 33, 400-411.	6.6	304
95	A partial form of recessive STAT1 deficiency in humans. Journal of Clinical Investigation, 2009, 119, 1502-1514.	3.9	167
96	Inborn errors of interferon (IFN)â€mediated immunity in humans: insights into the respective roles of IFNâ€Î±/β, IFNâ€Î³, and IFNâ€Î» in host defense. Immunological Reviews, 2008, 226, 29-40.	2.8	271
97	Revisiting human primary immunodeficiencies. Journal of Internal Medicine, 2008, 264, 115-127.	2.7	59
98	IRAK-4- and MyD88-Dependent Pathways Are Essential for the Removal of Developing Autoreactive B Cells in Humans. Immunity, 2008, 29, 746-757.	6.6	201
99	From Infectious Diseases to Primary Immunodeficiencies. Immunology and Allergy Clinics of North America, 2008, 28, 235-258.	0.7	25
100	Polymorphisms of microsomal triglyceride transfer protein in different hepatitis B virus-infected patients. World Journal of Gastroenterology, 2008, 14, 5454.	1.4	5
101	Selective predisposition to bacterial infections in IRAK-4–deficient children: IRAK-4–dependent TLRs are otherwise redundant in protective immunity. Journal of Experimental Medicine, 2007, 204, 2407-2422.	4.2	374
102	Genetic susceptibility to herpes simplex virus 1 encephalitis in mice and humans. Current Opinion in Allergy and Clinical Immunology, 2007, 7, 495-505.	1.1	101
103	Human primary immunodeficiencies of type I interferons. Biochimie, 2007, 89, 878-883.	1.3	57
104	TLR3 Deficiency in Patients with Herpes Simplex Encephalitis. Science, 2007, 317, 1522-1527.	6.0	970
105	MxA Induction May Predict Sustained Virologic Responses of Chronic Hepatitis B Patients with IFN- <i>α</i> Treatment. Journal of Interferon and Cytokine Research, 2007, 27, 809-818.	0.5	29
106	Human Tollâ€like receptorâ€dependent induction of interferons in protective immunity to viruses. Immunological Reviews, 2007, 220, 225-236.	2.8	147
107	Herpes Simplex Virus Encephalitis in Human UNC-93B Deficiency. Science, 2006, 314, 308-312.	6.0	674
108	Expression of Hepatitis C Virus E2 Ectodomain in <italic>E. coli</italic> and Its Application in the Detection of Anti-E2 Antibodies in Human Sera. Acta Biochimica Et Biophysica Sinica, 2004, 36, 57-63.	0.9	2

#	Article	IF	CITATIONS
109	Broadly cross-reactive mimotope of hypervariable region 1 of hepatitis C virus derived from DNA shuffling and screened by phage display library. Journal of Medical Virology, 2003, 71, 511-517.	2.5	13
110	Expression of hepatitis C virus hypervariable region 1 and its clinical significance. World Journal of Gastroenterology, 2003, 9, 1003.	1.4	2