Linda Wordeman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6914296/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Kinase-anchoring proteins in ciliary signal transduction. Biochemical Journal, 2021, 478, 1617-1629.	3.7	5
2	Microtubule Targeting Agents in Disease: Classic Drugs, Novel Roles. Cancers, 2021, 13, 5650.	3.7	54
3	Functional characterization of MCAK/Kif2C cancer mutations using high-throughput microscopic analysis. Molecular Biology of the Cell, 2020, 31, 580-588.	2.1	9
4	Phosphorylation of NMDA receptors by cyclin B/CDK1 modulates calcium dynamics and mitosis. Communications Biology, 2020, 3, 665.	4.4	7
5	Cell Biology: Social Distancing of Microtubule Ends Increases Their Assembly Rates. Current Biology, 2020, 30, R888-R890.	3.9	0
6	Gravin-associated kinase signaling networks coordinate Î ³ -tubulin organization at mitotic spindle poles. Journal of Biological Chemistry, 2020, 295, 13784-13797.	3.4	4
7	Non-enzymatic Activity of the α-Tubulin Acetyltransferase αTAT Limits Synaptic Bouton Growth in Neurons. Current Biology, 2020, 30, 610-623.e5.	3.9	5
8	The quantification and regulation of microtubule dynamics in the mitotic spindle. Current Opinion in Cell Biology, 2019, 60, 36-43.	5.4	38
9	GPR124 regulates microtubule assembly, mitotic progression, and glioblastoma cell proliferation. Glia, 2019, 67, 1558-1570.	4.9	15
10	GTP-tubulin loves microtubule plus ends but marries the minus ends. Journal of Cell Biology, 2019, 218, 2822-2823.	5.2	3
11	Arf GAPs and molecular motors. Small GTPases, 2019, 10, 196-209.	1.6	9
12	Subcellular drug targeting illuminates local kinase action. ELife, 2019, 8, .	6.0	23
13	De novo design of self-assembling helical protein filaments. Science, 2018, 362, 705-709.	12.6	112
14	Modified carbazoles destabilize microtubules and kill glioblastoma multiform cells. European Journal of Medicinal Chemistry, 2018, 159, 74-89.	5.5	19
15	β-Tubulin carboxy-terminal tails exhibit isotype-specific effects on microtubule dynamics in human gene-edited cells. Life Science Alliance, 2018, 1, e201800059.	2.8	17
16	The tetrameric kinesin Kif25 suppresses pre-mitotic centrosome separation to establish proper spindleÂorientation. Nature Cell Biology, 2017, 19, 384-390.	10.3	35
17	Divergent microtubule assembly rates after short- versus long-term loss of end-modulating kinesins. Molecular Biology of the Cell, 2016, 27, 1300-1309.	2.1	21
18	Oxidative Stress in Myocardial Infarction Disrupts Microtubule Trafficking, Reducing Transient Outward Current Density. Biophysical Journal, 2016, 110, 129a.	0.5	2

#	Article	IF	CITATIONS
19	Molecular insight into the regulation and function of MCAK. Critical Reviews in Biochemistry and Molecular Biology, 2016, 51, 228-245.	5.2	36
20	Direct Functional Interaction of the Kinesin-13 Family Membrane Kinesin-like Protein 2A (Kif2A) and Arf GAP with GTP-binding Protein-like, Ankyrin Repeats and PH Domains1 (AGAP1). Journal of Biological Chemistry, 2016, 291, 21350-21362.	3.4	10
21	ST-11: A New Brain-Penetrant Microtubule-Destabilizing Agent with Therapeutic Potential for Glioblastoma Multiforme. Molecular Cancer Therapeutics, 2016, 15, 2018-2029.	4.1	22
22	Oxidative stress decreases microtubule growth and stability in ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2016, 93, 32-43.	1.9	47
23	Revisiting Actin's role in early centrosome separation. Cell Cycle, 2016, 15, 162-163.	2.6	5
24	<scp>HXâ€MS</scp> 2 for high performance conformational analysis of complex protein states. Protein Science, 2015, 24, 1313-1324.	7.6	8
25	ATPS-06BRAIN-PENETRANT ALKYLINDOLE COMPOUNDS PROMOTE APOPTOSIS IN GLIOMA CELLS THROUGH MICROTUBULE DESTABILIZATION. Neuro-Oncology, 2015, 17, v19.2-v19.	1.2	0
26	Mitosis, microtubule dynamics and the evolution of kinesins. Experimental Cell Research, 2015, 334, 61-69.	2.6	74
27	A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells. ELife, 2015, 4, e09384.	6.0	44
28	Increased microtubule assembly rates influence chromosomal instability in colorectal cancer cells. Nature Cell Biology, 2014, 16, 779-791.	10.3	174
29	Nucleotide Exchange in Dimeric MCAK Induces Longitudinal and Lateral Stress at Microtubule Ends to Support Depolymerization. Structure, 2014, 22, 1173-1183.	3.3	12
30	Mass Spec Studio for Integrative Structural Biology. Structure, 2014, 22, 1538-1548.	3.3	86
31	Rapid Measurement of Mitotic Spindle Orientation in Cultured Mammalian Cells. Methods in Molecular Biology, 2014, 1136, 31-40.	0.9	7
32	Roles for focal adhesion kinase (FAK) in blastomere abscission and vesicle trafficking during cleavage in the sea urchin embryo. Mechanisms of Development, 2013, 130, 290-303.	1.7	2
33	FAM123A Binds to Microtubules and Inhibits the Guanine Nucleotide Exchange Factor ARHGEF2 to Decrease Actomyosin Contractility. Science Signaling, 2012, 5, ra64.	3.6	16
34	MCAK activity at microtubule tips regulates spindle microtubule length to promote robust kinetochore attachment. Journal of Cell Biology, 2012, 197, 231-237.	5.2	61
35	Kif18A and Chromokinesins Confine Centromere Movements via Microtubule Growth Suppression and Spatial Control of Kinetochore Tension. Developmental Cell, 2012, 22, 1017-1029.	7.0	146
36	Gravin Is a Transitory Effector of Polo-like Kinase 1 during Cell Division. Molecular Cell, 2012, 48, 547-559.	9.7	36

#	Article	IF	CITATIONS
37	The Kinesin Superfamily. , 2012, , 55-72.		4
38	A Tethering Mechanism Controls the Processivity and Kinetochore-Microtubule Plus-End Enrichment of the Kinesin-8 Kif18A. Molecular Cell, 2011, 43, 764-775.	9.7	108
39	Mip1 associates with both the Mps1 kinase and actin, and is required for cell cortex stability and anaphase spindle positioning. Cell Cycle, 2011, 10, 783-793.	2.6	25
40	AKAP220 Protein Organizes Signaling Elements That Impact Cell Migration. Journal of Biological Chemistry, 2011, 286, 39269-39281.	3.4	35
41	Mitotic centromere-associated kinesin (MCAK): a potential cancer drug target. Oncotarget, 2011, 2, 935-947.	1.8	66
42	In Vitro Reconstitution of the Functional Interplay between MCAK and EB3 at Microtubule Plus Ends. Current Biology, 2010, 20, 1717-1722.	3.9	130
43	Catalysis of the microtubule on-rate is the major parameter regulating the depolymerase activity of MCAK. Nature Structural and Molecular Biology, 2010, 17, 77-82.	8.2	77
44	Long astral microtubules uncouple mitotic spindles from the cytokinetic furrow. Journal of Cell Biology, 2010, 190, 35-43.	5.2	78
45	Cooperation of the Dam1 and Ndc80 kinetochore complexes enhances microtubule coupling and is regulated by aurora B. Journal of Cell Biology, 2010, 189, 713-723.	5.2	193
46	Reconstitution and Functional Analysis of Kinetochore Subcomplexes. Methods in Cell Biology, 2010, 95, 641-656.	1.1	19
47	How kinesin motor proteins drive mitotic spindle function: Lessons from molecular assays. Seminars in Cell and Developmental Biology, 2010, 21, 260-268.	5.0	144
48	Mitotic Spindle Dysfunction Promotes Genomic Instability In Marrow Failure. Blood, 2010, 116, 880-880.	1.4	1
49	A new model for binding of kinesin 13 to curved microtubule protofilaments. Journal of Cell Biology, 2009, 185, 51-57.	5.2	38
50	Motor-dependent microtubule disassembly driven by tubulin tyrosination. Journal of Cell Biology, 2009, 185, 1159-1166.	5.2	284
51	The diffusive interaction of microtubule binding proteins. Current Opinion in Cell Biology, 2009, 21, 68-73.	5.4	69
52	TIP150 interacts with and targets MCAK at the microtubule plus ends. EMBO Reports, 2009, 10, 857-865.	4.5	67
53	Microtubule Length Control, a Team Sport?. Developmental Cell, 2009, 17, 437-438.	7.0	9
54	The Ndc80 Kinetochore Complex Forms Load-Bearing Attachments to Dynamic Microtubule Tips via Biased Diffusion. Cell, 2009, 136, 865-875.	28.9	262

#	Article	IF	CITATIONS
55	Reconstitution Of Microtubule-driven Movement and Force Production by the Ndc80 Kinetochore Complex. Biophysical Journal, 2009, 96, 572a.	0.5	0
56	Phosphoregulation and depolymerization-driven movement of the Dam1 complex do not require ring formation. Nature Cell Biology, 2008, 10, 407-414.	10.3	136
57	The Kinesin-8 Motor Kif18A Suppresses Kinetochore Movements to Control Mitotic Chromosome Alignment. Developmental Cell, 2008, 14, 252-262.	7.0	300
58	A kinesin-13 mutant catalytically depolymerizes microtubules in ADP. Journal of Cell Biology, 2008, 183, 617-623.	5.2	28
59	The Kinesin-13 Proteins Kif2a, Kif2b, and Kif2c/MCAK Have Distinct Roles during Mitosis in Human Cells. Molecular Biology of the Cell, 2007, 18, 2970-2979.	2.1	198
60	MCAK facilitates chromosome movement by promoting kinetochore microtubule turnover. Journal of Cell Biology, 2007, 179, 869-879.	5.2	121
61	Chromosome Congression: The Kinesin-8-Step Path to Alignment. Current Biology, 2007, 17, R326-R328.	3.9	11
62	Rings, bracelets, sleeves, and chevrons: new structures of kinetochore proteins. Trends in Cell Biology, 2007, 17, 377-382.	7.9	23
63	In Vitro and In Vivo Analysis of Microtubule-Destabilizing Kinesins. Methods in Molecular Biology, 2007, 392, 37-49.	0.9	9
64	The Role of the Kinesin-13 Neck in Microtubule Depolymerization. Cell Cycle, 2006, 5, 1812-1815.	2.6	38
65	A Perikinetochoric Ring Defined by MCAK and Aurora-B as a Novel Centromere Domain. PLoS Genetics, 2006, 2, e84.	3.5	26
66	Tubulin tyrosination is a major factor affecting the recruitment of CAP-Cly proteins at microtubule plus ends. Journal of Cell Biology, 2006, 174, 839-849.	5.2	271
67	Kinesin-2 is a Motor for Late Endosomes and Lysosomes. Traffic, 2005, 6, 1114-1124.	2.7	119
68	Microtubule-depolymerizing kinesins. Current Opinion in Cell Biology, 2005, 17, 82-88.	5.4	109
69	MCAK associates with the tips of polymerizing microtubules. Journal of Cell Biology, 2005, 169, 391-397.	5.2	127
70	A Perikinetochoric Ring Defined by MCAK as a New Centromere Domain in Meiosis. PLoS Genetics, 2005, preprint, e84.	3.5	0
71	The mechanism, function and regulation of depolymerizing kinesins during mitosis. Trends in Cell Biology, 2004, 14, 537-546.	7.9	93
72	A standardized kinesin nomenclature. Journal of Cell Biology, 2004, 167, 19-22.	5.2	662

5

#	Article	IF	CITATIONS
73	MCAK, a Kin I kinesin, increases the catastrophe frequency of steady-state HeLa cell microtubules in an ATP-dependent manner in vitro. FEBS Letters, 2004, 572, 80-84.	2.8	41
74	Aurora B Regulates MCAK at the Mitotic Centromere. Developmental Cell, 2004, 6, 253-268.	7.0	472
75	C-terminus of mitotic centromere-associated kinesin (MCAK) inhibits its lattice-stimulated ATPase activity. Biochemical Journal, 2004, 383, 227-235.	3.7	41
76	Unconventional Motoring: An Overview of the Kin C and Kin I Kinesins. Traffic, 2003, 4, 367-375.	2.7	36
77	The Kinesin-Related Protein MCAK Is a Microtubule Depolymerase that Forms an ATP-Hydrolyzing Complex at Microtubule Ends. Molecular Cell, 2003, 11, 445-457.	9.7	332
78	Breathing down the neck of Unc104. Journal of Cell Biology, 2003, 163, 693-695.	5.2	1
79	K-loop insertion restores microtubule depolymerizing activity of a "neckless―MCAK mutant. Journal of Cell Biology, 2002, 159, 557-562.	5.2	94
80	Expression Cloning with Pan Kinesin Antibodies. , 2001, 164, 21-41.		1
81	Molecular Dissection of the Microtubule Depolymerizing Activity of Mitotic Centromere-associated Kinesin. Journal of Biological Chemistry, 2001, 276, 34753-34758.	3.4	136
82	Expression and Partial Characterization of Kinesin-related Proteins in Differentiating and Adult Skeletal Muscle. Molecular Biology of the Cell, 2000, 11, 4143-4158.	2.1	24
83	The Kinetochore of Higher Eucaryotes: A Molecular View. International Review of Cytology, 1999, 194, 67-131.	6.2	72
84	MUTATIONS IN THE ATP-BINDING DOMAIN AFFECT THE SUBCELLULAR DISTRIBUTION OF MITOTIC CENTROMERE-ASSOCIATED KINESIN (MCAK). Cell Biology International, 1999, 23, 275-286.	3.0	36
85	Green fluorescent protein. Cell Biology International, 1999, 23, 523.	3.0	0
86	Mitotic Centromere–associated Kinesin Is Important for Anaphase Chromosome Segregation. Journal of Cell Biology, 1998, 142, 787-801.	5.2	272
87	Chapter 14 Using Antisense Technology to Study Mitosis. Methods in Cell Biology, 1998, 61, 245-266.	1.1	1
88	Disruption of CENP antigen function perturbs dynein anchoring to the mitotic kinetochore. Chromosoma, 1996, 104, 551-560.	2.2	10
89	Disruption of CENP antigen function perturbs dynein anchoring to the mitotic kinetochore. Chromosoma, 1996, 104, 551-560.	2.2	0
90	ldentification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis Journal of Cell Biology, 1995, 128, 95-104.	5.2	377

#	Article	IF	CITATIONS
91	Mechanisms of chromosome segregation in metazoan cells. , 1995, 1, 319-327.		2
92	[39] Preparation of modified tubulins. Methods in Enzymology, 1991, 196, 478-485.	1.0	666
93	Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Nature, 1990, 345, 266-268.	27.8	509
94	Cytokinesis by Furrowing in Diatoms. Annals of the New York Academy of Sciences, 1990, 582, 252-259.	3.8	5
95	Distribution of a thiophosphorylated spindle midzone antigen during spindle reactivation <i>in vitro</i> . Journal of Cell Science, 1989, 93, 279-285.	2.0	12
96	Reactivation of spindle elongation in vitro is correlated with the phosphorylation of a 205 kd spindle-associated protein. Cell, 1987, 50, 535-543.	28.9	36
97	In Vitro and In Vivo Analysis of Microtubule-Destabilizing Kinesins. , 0, , 37-50.		0