Ulf Riebesell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6913540/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 2000, 407, 364-367.	27.8	1,276
2	Enhanced biological carbon consumption in a high CO2 ocean. Nature, 2007, 450, 545-548.	27.8	739
3	Carbon dioxide limitation of marine phytoplankton growth rates. Nature, 1993, 361, 249-251.	27.8	544
4	Adaptive evolution of a key phytoplankton species to ocean acidification. Nature Geoscience, 2012, 5, 346-351.	12.9	442
5	Carbon acquisition of bloomâ€ f orming marine phytoplankton. Limnology and Oceanography, 2003, 48, 55-67.	3.1	406
6	Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	2.5	356
7	Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature, 2004, 428, 929-932.	27.8	336
8	Rising CO2 and increased light exposure synergistically reduce marine primary productivity. Nature Climate Change, 2012, 2, 519-523.	18.8	307
9	Effects of CO2 Enrichment on Marine Phytoplankton. Journal of Oceanography, 2004, 60, 719-729.	1.7	305
10	Decreasing marine biogenic calcification: A negative feedback on rising atmosphericpCO2. Global Biogeochemical Cycles, 2001, 15, 507-516.	4.9	289
11	Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—A review. Global Change Biology, 2018, 24, 2239-2261.	9.5	285
12	Lessons learned from ocean acidification research. Nature Climate Change, 2015, 5, 12-14.	18.8	269
13	CO ₂ and HCO ₃ ßš uptake in marine diatoms acclimated to different CO ₂ concentrations. Limnology and Oceanography, 2001, 46, 1378-1391.	3.1	267
14	Sensitivities of marine carbon fluxes to ocean change. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20602-20609.	7.1	246
15	Testing the direct effect of CO ₂ concentration on a bloom of the coccolithophorid <i>Emiliania huxleyi</i> in mesocosm experiments. Limnology and Oceanography, 2005, 50, 493-507.	3.1	244
16	CO ₂ -induced seawater acidification affects physiological performance of the marine diatom <i>Phaeodactylum tricornutum</i> . Biogeosciences, 2010, 7, 2915-2923.	3.3	239
17	Changes in biogenic carbon flow in response to sea surface warming. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7067-7072.	7.1	235
18	Simulated 21st century's increase in oceanic suboxia by CO ₂ â€enhanced biotic carbon export. Global Biogeochemical Cycles, 2008, 22, .	4.9	234

#	Article	IF	CITATIONS
19	Ocean Acidification-Induced Food Quality Deterioration Constrains Trophic Transfer. PLoS ONE, 2012, 7, e34737.	2.5	228
20	Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths. Journal of Experimental Marine Biology and Ecology, 2002, 272, 55-70.	1.5	223
21	Response of primary production and calcification to changes ofpCO2during experimental blooms of the coccolithophoridEmiliania huxleyi. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	4.9	215
22	Adaptation of a globally important coccolithophore to ocean warming andÂacidification. Nature Climate Change, 2014, 4, 1024-1030.	18.8	209
23	Coccolithophores and the biological pump: responses to environmental changes. , 2004, , 99-125.		201
24	Acclimation to ocean acidification during longâ€ŧerm <scp><scp>CO₂</scp></scp> exposure in the coldâ€water coral <scp><i>L</i></scp> <i>ophelia pertusa</i> . Global Change Biology, 2012, 18, 843-853.	9.5	192
25	Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod <i>Limacina helicina</i> : mortality, shell degradation, and shell growth. Biogeosciences, 2011, 8, 919-932.	3.3	183
26	Why marine phytoplankton calcify. Science Advances, 2016, 2, e1501822.	10.3	181
27	Testing the effect of CO2 concentration on the dynamics of marine heterotrophic bacterioplankton. Limnology and Oceanography, 2006, 51, 1-11.	3.1	176
28	Effect of CO ₂ concentration on C:N:P ratio in marine phytoplankton: A species comparison. Limnology and Oceanography, 1999, 44, 683-690.	3.1	172
29	Transparent exopolymer particles and dissolved organic carbon production by Emiliania huxleyi exposed to different CO2 concentrations: a mesocosm experiment. Aquatic Microbial Ecology, 2004, 34, 93-104.	1.8	172
30	Dissecting the impact of CO ₂ and <scp>pH</scp> on the mechanisms of photosynthesis and calcification in the coccolithophore <i>Emiliania huxleyi</i> . New Phytologist, 2013, 199, 121-134.	7.3	171
31	Technical Note: A mobile sea-going mesocosm system – new opportunities for ocean change research. Biogeosciences, 2013, 10, 1835-1847.	3.3	168
32	Diffusion and reactions in the vicinity of plankton: A refined model for inorganic carbon transport. Marine Chemistry, 1997, 59, 17-34.	2.3	150
33	Effect of rising atmospheric carbon dioxide on the marine nitrogen fixerTrichodesmium. Global Biogeochemical Cycles, 2007, 21, n/a-n/a.	4.9	146
34	Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide. Biogeosciences, 2013, 10, 161-180.	3.3	144
35	Reviews and Syntheses: Responses of coccolithophores to ocean acidification: a meta-analysis. Biogeosciences, 2015, 12, 1671-1682.	3.3	141
36	Mass aggregation of diatom blooms: Insights from a mesocosm study. Deep-Sea Research Part II: Topical Studies in Oceanography, 1995, 42, 9-27.	1.4	136

#	Article	IF	CITATIONS
37	Temperature Modulates Coccolithophorid Sensitivity of Growth, Photosynthesis and Calcification to Increasing Seawater pCO2. PLoS ONE, 2014, 9, e88308.	2.5	128
38	Arctic microbial community dynamics influenced by elevated CO ₂ levels. Biogeosciences, 2013, 10, 719-731.	3.3	126
39	Direct effects of CO2 concentration on growth and isotopic composition of marine plankton. Tellus, Series B: Chemical and Physical Meteorology, 1999, 51, 461-476.	1.6	125
40	Effects of Ocean Acidification on Pelagic Organisms and Ecosystems. , 2011, , .		125
41	Inorganic carbon acquisition in red tide dinoflagellates. Plant, Cell and Environment, 2006, 29, 810-822.	5.7	118
42	CO ₂ increases ¹⁴ C primary production in an Arctic plankton community. Biogeosciences, 2013, 10, 1291-1308.	3.3	116
43	A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework. Progress in Oceanography, 2015, 135, 125-138.	3.2	112
44	Temporal Trends in Deep Ocean Redfield Ratios. Science, 2000, 287, 831-833.	12.6	110
45	Molecular Mechanisms Underlying Calcification in Coccolithophores. Geomicrobiology Journal, 2010, 27, 585-595.	2.0	110
46	Ocean fertilization for geoengineering: A review of effectiveness, environmental impacts and emerging governance. Chemical Engineering Research and Design, 2012, 90, 475-488.	5.6	110
47	Cellular pH measurements in <i>Emiliania huxleyi</i> reveal pronounced membrane proton permeability. New Phytologist, 2011, 190, 595-608.	7.3	106
48	An approach for particle sinking velocity measurements in the 3–400Âμm size range and considerations on the effect of temperature on sinking rates. Marine Biology, 2012, 159, 1853-1864.	1.5	104
49	Mesocosm CO ₂ perturbation studies: from organism to community level. Biogeosciences, 2008, 5, 1157-1164.	3.3	103
50	Marine ecosystem community carbon and nutrient uptake stoichiometry under varying ocean acidification during the PeECE III experiment. Biogeosciences, 2008, 5, 1517-1527.	3.3	100
51	Distinguishing between the effects of ocean acidification and ocean carbonation in the coccolithophore <i>Emiliania huxleyi</i> . Limnology and Oceanography, 2011, 56, 2040-2050.	3.1	100
52	Effects of CO ₂ on particle size distribution and phytoplankton abundance during a mesocosm bloom experiment (PeECE II). Biogeosciences, 2008, 5, 509-521.	3.3	99
53	CO2 availability affects elemental composition (C:N:P) of the marine diatom Skeletonema costatum. Marine Ecology - Progress Series, 1997, 155, 67-76.	1.9	99
54	Coupling of heterotrophic bacteria to phytoplankton bloom development at different <i>p</i> CO ₂ levels: a mesocosm study. Biogeosciences, 2008, 5, 1007-1022.	3.3	97

#	Article	IF	CITATIONS
55	Synergistic effects of ocean acidification and warming on overwintering pteropods in the Arctic. Global Change Biology, 2012, 18, 3517-3528.	9.5	97
56	CO ₂ perturbation experiments: similarities and differences between dissolved inorganic carbon and total alkalinity manipulations. Biogeosciences, 2009, 6, 2145-2153.	3.3	93
57	Particle aggregation during a diatom bloom. I. Physical aspects. Marine Ecology - Progress Series, 1991, 69, 273-280.	1.9	93
58	Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels. Nature Communications, 2015, 6, 8714.	12.8	91
59	Calcification of the Arctic coralline red algae Lithothamnion glaciale in response to elevated CO2. Marine Ecology - Progress Series, 2011, 441, 79-87.	1.9	88
60	Coccolith strontium to calcium ratios in Emiliania huxleyi: The dependence on seawater strontium and calcium concentrations. Limnology and Oceanography, 2006, 51, 310-320.	3.1	87
61	Effect of trace metal availability on coccolithophorid calcification. Nature, 2004, 430, 673-676.	27.8	83
62	Impact of CO2 enrichment on organic matter dynamics during nutrient induced coastal phytoplankton blooms. Journal of Plankton Research, 2014, 36, 641-657.	1.8	83
63	Expression of biomineralizationâ€related ion transport genes in <i>Emiliania huxleyi</i> . Environmental Microbiology, 2011, 13, 3250-3265.	3.8	82
64	Preface "Arctic ocean acidification: pelagic ecosystem and biogeochemical responses during a mesocosm study". Biogeosciences, 2013, 10, 5619-5626.	3.3	81
65	Effects of sea surface warming on the production and composition of dissolved organic matter during phytoplankton blooms: results from a mesocosm study. Journal of Plankton Research, 2011, 33, 357-372.	1.8	80
66	Response of bacterioplankton activity in an Arctic fjord system to elevated <i>p</i> CO ₂ : results from a mesocosm perturbation study. Biogeosciences, 2013, 10, 297-314.	3.3	80
67	Effect of elevated CO ₂ on organic matter pools and fluxes in a summer Baltic Sea plankton community. Biogeosciences, 2015, 12, 6181-6203.	3.3	79
68	Effects of long-term high CO ₂ exposure on two species of coccolithophores. Biogeosciences, 2010, 7, 1109-1116.	3.3	78
69	Competitive fitness of a predominant pelagic calcifier impaired by ocean acidification. Nature Geoscience, 2017, 10, 19-23.	12.9	78
70	Interactive Effects of Ocean Acidification and Warming on Growth, Fitness and Survival of the Cold-Water Coral Lophelia pertusa under Different Food Availabilities. Frontiers in Marine Science, 2017, 4, .	2.5	78
71	Growth rate dependence of Sr incorporation during calcification ofEmiliania huxleyi. Global Biogeochemical Cycles, 2002, 16, 6-1-6-8.	4.9	76
72	Primary production during nutrient-induced blooms at elevated CO ₂ concentrations. Biogeosciences, 2009, 6, 877-885.	3.3	76

#	Article	IF	CITATIONS
73	Effects of rising temperature on the formation and microbial degradation of marine diatom aggregates. Aquatic Microbial Ecology, 2009, 54, 305-318.	1.8	76
74	Toxic algal bloom induced by ocean acidification disrupts the pelagic food web. Nature Climate Change, 2018, 8, 1082-1086.	18.8	75
75	Build-up and decline of organic matter during PeECE III. Biogeosciences, 2008, 5, 707-718.	3.3	73
76	FUNCTIONAL GENETIC DIVERGENCE IN HIGH CO ₂ ADAPTED <i>EMILIANIA HUXLEYI</i> POPULATIONS. Evolution; International Journal of Organic Evolution, 2013, 67, 1892-1900.	2.3	71
77	The relationship between physical aggregation of phytoplankton and particle flux: a numerical model. Deep-sea Research Part A, Oceanographic Research Papers, 1992, 39, 1085-1102.	1.5	70
78	Influence of elevated CO ₂ concentrations on cell division and nitrogen fixation rates in the bloom-forming cyanobacterium <i>Nodularia spumigena</i> . Biogeosciences, 2009, 6, 1865-1875.	3.3	69
79	Influence of plankton community structure on the sinking velocity of marine aggregates. Global Biogeochemical Cycles, 2016, 30, 1145-1165.	4.9	69
80	Combined effects of CO ₂ and temperature on carbon uptake and partitioning by the marine diatoms <i><scp>T</scp>halassiosira weissflogii</i> and <i><scp>D</scp>actyliosolen fragilissimus</i> . Limnology and Oceanography, 2015, 60, 901-919.	3.1	68
81	Phytoplankton Blooms at Increasing Levels of Atmospheric Carbon Dioxide: Experimental Evidence for Negative Effects on Prymnesiophytes and Positive on Small Picoeukaryotes. Frontiers in Marine Science, 2017, 4, .	2.5	68
82	Diurnal changes in seawater carbonate chemistry speciation at increasing atmospheric carbon dioxide. Marine Biology, 2013, 160, 1889-1899.	1.5	66
83	Stimulated Bacterial Growth under Elevated pCO2: Results from an Off-Shore Mesocosm Study. PLoS ONE, 2014, 9, e99228.	2.5	64
84	Influence of Ocean Acidification on a Natural Winter-to-Summer Plankton Succession: First Insights from a Long-Term Mesocosm Study Draw Attention to Periods of Low Nutrient Concentrations. PLoS ONE, 2016, 11, e0159068.	2.5	64
85	Gene expression changes in the coccolithophore <i>Emiliania huxleyi</i> after 500 generations of selection to ocean acidification. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140003.	2.6	62
86	Influence of changing carbonate chemistry on morphology and weight of coccoliths formed by <i>Emiliania huxleyi</i> . Biogeosciences, 2012, 9, 3449-3463.	3.3	61
87	Understanding Ocean Acidification Impacts on Organismal to Ecological Scales. Oceanography, 2015, 25, 16-27.	1.0	61
88	Ocean acidification shows negligible impacts on high-latitude bacterial community structure in coastal pelagic mesocosms. Biogeosciences, 2013, 10, 555-566.	3.3	60
89	Short-term response of the coccolithophore <i>Emiliania huxleyi</i> to an abrupt change in seawater carbon dioxide concentrations. Biogeosciences, 2010, 7, 177-186.	3.3	59
90	Comment on "Phytoplankton Calcification in a High-CO ₂ World". Science, 2008, 322, 1466-1466.	12.6	58

#	Article	IF	CITATIONS
91	Experimental evolution gone wild. Journal of the Royal Society Interface, 2015, 12, 20150056.	3.4	58
92	Calcium isotope fractionation during coccolith formation inEmiliania huxleyi:Independence of growth and calcification rate. Geochemistry, Geophysics, Geosystems, 2007, 8, n/a-n/a.	2.5	57
93	Long-Term Conditioning to Elevated pCO2 and Warming Influences the Fatty and Amino Acid Composition of the Diatom Cylindrotheca fusiformis. PLoS ONE, 2015, 10, e0123945.	2.5	57
94	Dynamics of dimethylsulphoniopropionate and dimethylsulphide under different CO ₂ concentrations during a mesocosm experiment. Biogeosciences, 2008, 5, 407-419.	3.3	56
95	Availability of phosphate for phytoplankton and bacteria and of glucose for bacteria at different <i>p</i> CO ₂ levels in a mesocosm study. Biogeosciences, 2008, 5, 669-678.	3.3	56
96	Dynamics and stoichiometry of nutrients and phytoplankton in waters influenced by the oxygen minimum zone in the eastern tropical Pacific. Deep-Sea Research Part I: Oceanographic Research Papers, 2012, 62, 20-31.	1.4	56
97	Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification. Science Advances, 2016, 2, e1501660.	10.3	56
98	The Influence of Plankton Community Structure on Sinking Velocity and Remineralization Rate of Marine Aggregates. Global Biogeochemical Cycles, 2019, 33, 971-994.	4.9	56
99	High tolerance of microzooplankton to ocean acidification in an Arctic coastal plankton community. Biogeosciences, 2013, 10, 1471-1481.	3.3	54
100	Response of the coccolithophores Emiliania huxleyi and Coccolithus braarudii to changing seawater Mg2+ and Ca2+ concentrations: Mg/Ca, Sr/Ca ratios and Î′44/40Ca, Î′26/24Mg of coccolith calcite. Geochimica Et Cosmochimica Acta, 2011, 75, 2088-2102.	3.9	52
101	Acid test for marine biodiversity. Nature, 2008, 454, 46-47.	27.8	51
102	Effect of ocean acidification on the fatty acid composition of a natural plankton community. Biogeosciences, 2013, 10, 1143-1153.	3.3	50
103	Influence of Ocean Acidification and Deep Water Upwelling on Oligotrophic Plankton Communities in the Subtropical North Atlantic: Insights from an In situ Mesocosm Study. Frontiers in Marine Science, 2017, 4, .	2.5	49
104	Simulated ocean acidification reveals winners and losers in coastal phytoplankton. PLoS ONE, 2017, 12, e0188198.	2.5	49
105	Effects of ocean acidification on marine dissolved organic matter are not detectable over the succession of phytoplankton blooms. Science Advances, 2015, 1, e1500531.	10.3	45
106	Enhanced carbon overconsumption in response to increasing temperatures during a mesocosm experiment. Biogeosciences, 2012, 9, 3531-3545.	3.3	44
107	Effects of changes in carbonate chemistry speciation on <i>Coccolithus braarudii</i> : a discussion of coccolithophorid sensitivities. Biogeosciences, 2011, 8, 771-777.	3.3	43
108	Technical note: Sampling and processing of mesocosm sediment trap material for quantitative biogeochemical analysis. Biogeosciences, 2016, 13, 2849-2858.	3.3	38

#	Article	IF	CITATIONS
109	C : N : P stoichiometry at the Bermuda Atlantic Time-series Study station in the North Atlantic Ocean. Biogeosciences, 2015, 12, 6389-6403.	3.3	37
110	Food web changes under ocean acidification promote herring larvae survival. Nature Ecology and Evolution, 2018, 2, 836-840.	7.8	37
111	A ¹³ C labelling study on carbon fluxes in Arctic plankton communities under elevated CO ₂ levels. Biogeosciences, 2013, 10, 1425-1440.	3.3	36
112	Quantifying the time lag between organic matter production and export in the surface ocean: Implications for estimates of export efficiency. Geophysical Research Letters, 2017, 44, 268-276.	4.0	36
113	Genotyping an <i>Emiliania huxleyi</i> (prymnesiophyceae) bloom event in the North Sea reveals evidence of asexual reproduction. Biogeosciences, 2014, 11, 5215-5234.	3.3	35
114	Between―and withinâ€population variations in thermal reaction norms of the coccolithophore <i>Emiliania huxleyi</i> . Limnology and Oceanography, 2014, 59, 1570-1580.	3.1	35
115	Ocean acidification impacts bacteria–phytoplankton coupling at low-nutrient conditions. Biogeosciences, 2017, 14, 1-15.	3.3	35
116	Phytoplankton-bacteria coupling under elevated CO ₂ levels: a stable isotope labelling study. Biogeosciences, 2010, 7, 3783-3797.	3.3	34
117	The modulating effect of light intensity on the response of the coccolithophore <scp><i>G</i></scp> <i>ephyrocapsa oceanica</i> to ocean acidification. Limnology and Oceanography, 2015, 60, 2145-2157.	3.1	34
118	Implications of elevated CO ₂ on pelagic carbon fluxes in an Arctic mesocosm study – an elemental mass balance approach. Biogeosciences, 2013, 10, 3109-3125.	3.3	33
119	Influence of temperature and CO ₂ on the strontium and magnesium composition of coccolithophore calcite. Biogeosciences, 2014, 11, 1065-1075.	3.3	33
120	Growth performance and survival of larval Atlantic herring, under the combined effects of elevated temperatures and CO2. PLoS ONE, 2018, 13, e0191947.	2.5	33
121	High levels of solar radiation offset impacts of ocean acidification on calcifying and non-calcifying strains of Emiliania huxleyi. Marine Ecology - Progress Series, 2017, 568, 47-58.	1.9	33
122	Temperature and nutrient stoichiometry interactively modulate organic matter cycling in a pelagic algal–bacterial community. Limnology and Oceanography, 2011, 56, 599-610.	3.1	32
123	Enhanced silica export in a future ocean triggers global diatom decline. Nature, 2022, 605, 696-700.	27.8	31
124	Effect of ocean acidification on the structure and fatty acid composition of a natural plankton community in the Baltic Sea. Biogeosciences, 2016, 13, 6625-6635.	3.3	30
125	Influence of ocean acidification on plankton community structure during a winter-to-summer succession: An imaging approach indicates that copepods can benefit from elevated CO2 via indirect food web effects. PLoS ONE, 2017, 12, e0169737.	2.5	30
126	Exploring biogeochemical and ecological redundancy in phytoplankton communities in the global ocean. Global Change Biology, 2021, 27, 1196-1213.	9.5	30

#	Article	IF	CITATIONS
127	Production, partitioning and stoichiometry of organic matter under variable nutrient supply during mesocosm experiments in the tropical Pacific and Atlantic Ocean. Biogeosciences, 2012, 9, 4629-4643.	3.3	29
128	The viscosity effect on marine particle flux: A climate relevant feedback mechanism. Global Biogeochemical Cycles, 2014, 28, 415-422.	4.9	29
129	Ocean acidification reduces transfer of essential biomolecules in a natural plankton community. Scientific Reports, 2016, 6, 27749.	3.3	29
130	Ocean acidification has different effects on the production of dimethylsulfide and dimethylsulfoniopropionate measured in cultures of Emiliania huxleyi and a mesocosm study: a comparison of laboratory monocultures and community interactions. Environmental Chemistry, 2016, 13, 314.	1.5	29
131	Phytoplankton calcification as an effective mechanism to alleviate cellular calcium poisoning. Biogeosciences, 2015, 12, 6493-6501.	3.3	27
132	The role of coccoliths in protecting <i>Emiliania huxleyi</i> against stressful light and UV radiation. Biogeosciences, 2016, 13, 4637-4643.	3.3	27
133	Water column biogeochemistry of oxygen minimum zones in the eastern tropical North Atlantic and eastern tropical South Pacific oceans. Biogeosciences, 2016, 13, 3585-3606.	3.3	27
134	In situ camera observations reveal major role of zooplankton in modulating marine snow formation during an upwelling-induced plankton bloom. Progress in Oceanography, 2018, 164, 75-88.	3.2	27
135	Effects of ocean acidification on primary production in a coastal North Sea phytoplankton community. PLoS ONE, 2017, 12, e0172594.	2.5	27
136	Effect of elevated CO ₂ on the dynamics of particle-attached and free-living bacterioplankton communities in an Arctic fjord. Biogeosciences, 2013, 10, 181-191.	3.3	26
137	Rapid evolution of highly variable competitive abilities in a key phytoplankton species. Nature Ecology and Evolution, 2018, 2, 611-613.	7.8	26
138	In situ growth and bioerosion rates of <i>Lophelia pertusa</i> in a Norwegian fjord and open shelf cold-water coral habitat. PeerJ, 2019, 7, e7586.	2.0	26
139	Effect of increased <i>p</i> CO ₂ on the planktonic metabolic balance during a mesocosm experiment in an Arctic fjord. Biogeosciences, 2013, 10, 315-325.	3.3	25
140	No observed effect of ocean acidification on nitrogen biogeochemistry in a summer Baltic Sea plankton community. Biogeosciences, 2016, 13, 3901-3913.	3.3	25
141	Technical Note: A simple method for air–sea gas exchange measurements in mesocosms and its application in carbon budgeting. Biogeosciences, 2013, 10, 1379-1390.	3.3	24
142	Ocean acidification challenges copepod phenotypic plasticity. Biogeosciences, 2016, 13, 6171-6182.	3.3	24
143	Concentrations and Uptake of Dissolved Organic Phosphorus Compounds in the Baltic Sea. Frontiers in Marine Science, 2018, 5, .	2.5	24
144	Shift towards larger diatoms in a natural phytoplankton assemblage under combined high-CO2 and warming conditions. Journal of Plankton Research, 2018, 40, 391-406.	1.8	24

#	Article	IF	CITATIONS
145	EPOCA/EUR-OCEANS data compilation on the biological and biogeochemical responses to ocean acidification. Earth System Science Data, 2010, 2, 167-175.	9.9	23
146	Changing nutrient stoichiometry affects phytoplankton production, DOP accumulation and dinitrogen fixation – a mesocosm experiment in the eastern tropical North Atlantic. Biogeosciences, 2016, 13, 781-794.	3.3	23
147	Plankton responses to ocean acidification: The role of nutrient limitation. Progress in Oceanography, 2018, 165, 11-18.	3.2	23
148	Ocean acidification effects on mesozooplankton community development: Results from a long-term mesocosm experiment. PLoS ONE, 2017, 12, e0175851.	2.5	22
149	Response of Subtropical Phytoplankton Communities to Ocean Acidification Under Oligotrophic Conditions and During Nutrient Fertilization. Frontiers in Marine Science, 2018, 5, .	2.5	22
150	Metabolic response of Arctic pteropods to ocean acidification and warming during the polar night/twilight phase in Kongsfjord (Spitsbergen). Polar Biology, 2017, 40, 1211-1227.	1.2	21
151	Effects of Elevated CO2 on a Natural Diatom Community in the Subtropical NE Atlantic. Frontiers in Marine Science, 2019, 6, .	2.5	21
152	Factors controlling plankton community production, export flux, and particulate matter stoichiometry in the coastal upwelling system off Peru. Biogeosciences, 2020, 17, 4831-4852.	3.3	21
153	Effect of ocean acidification and elevated <i>f</i> CO ₂ on trace gas production by a Baltic Sea summer phytoplankton community. Biogeosciences, 2016, 13, 4595-4613.	3.3	20
154	Low CO2 Sensitivity of Microzooplankton Communities in the Gullmar Fjord, Skagerrak: Evidence from a Long-Term Mesocosm Study. PLoS ONE, 2016, 11, e0165800.	2.5	20
155	Impact of trace metal concentrations on coccolithophore growth and morphology: laboratory simulations of Cretaceous stress. Biogeosciences, 2017, 14, 3603-3613.	3.3	20
156	Photoacclimation to abrupt changes in light intensity by Phaeodactylum tricornutum and Emiliania huxleyi: the role of calcification. Marine Ecology - Progress Series, 2012, 452, 11-26.	1.9	20
157	Ocean acidification does not alter grazing in the calanoid copepods Calanus finmarchicus and Calanus glacialis. ICES Journal of Marine Science, 2016, 73, 927-936.	2.5	19
158	Pelagic community production and carbon-nutrient stoichiometry under variable ocean acidification in an Arctic fjord. Biogeosciences, 2013, 10, 4847-4859.	3.3	18
159	Effects of ocean acidification on pelagic carbon fluxes in a mesocosm experiment. Biogeosciences, 2016, 13, 6081-6093.	3.3	18
160	Technical Note: The determination of enclosed water volume in large flexible-wall mesocosms "KOSMOS". Biogeosciences, 2013, 10, 1937-1941.	3.3	18
161	Ocean acidification decreases plankton respiration: evidence from a mesocosm experiment. Biogeosciences, 2016, 13, 4707-4719.	3.3	17
162	Alterations in microbial community composition with increasing <i>f</i> CO ₂ : a mesocosm study in the eastern Baltic Sea. Biogeosciences, 2017, 14, 3831-3849.	3.3	17

#	Article	IF	CITATIONS
163	High CO2 Under Nutrient Fertilization Increases Primary Production and Biomass in Subtropical Phytoplankton Communities: A Mesocosm Approach. Frontiers in Marine Science, 2018, 5, .	2.5	17
164	Changing carbon-to-nitrogen ratios of organic-matter export under ocean acidification. Nature Climate Change, 2021, 11, 52-57.	18.8	17
165	Extreme Levels of Ocean Acidification Restructure the Plankton Community and Biogeochemistry of a Temperate Coastal Ecosystem: A Mesocosm Study. Frontiers in Marine Science, 2021, 7, .	2.5	17
166	Niche construction by nonâ€diazotrophs for N ₂ fixers in the eastern tropical North Atlantic Ocean. Geophysical Research Letters, 2017, 44, 6904-6913.	4.0	16
167	Ocean Acidification Experiments in Large-Scale Mesocosms Reveal Similar Dynamics of Dissolved Organic Matter Production and Biotransformation. Frontiers in Marine Science, 2017, 4, .	2.5	15
168	Plankton Community Respiration and ETS Activity Under Variable CO2 and Nutrient Fertilization During a Mesocosm Study in the Subtropical North Atlantic. Frontiers in Marine Science, 2018, 5, .	2.5	15
169	Ocean Acidification-Induced Restructuring of the Plankton Food Web Can Influence the Degradation of Sinking Particles. Frontiers in Marine Science, 2018, 5, .	2.5	15
170	Changes in organic matter cycling in a plankton community exposed to warming under different light intensities. Journal of Plankton Research, 2014, 36, 658-671.	1.8	14
171	Ciliate and mesozooplankton community response to increasing CO ₂ levels in the Baltic Sea: insights from a large-scale mesocosm experiment. Biogeosciences, 2017, 14, 447-466.	3.3	14
172	Effect of Intensity and Mode of Artificial Upwelling on Particle Flux and Carbon Export. Frontiers in Marine Science, 2021, 8, .	2.5	14
173	Effects of CO ₂ perturbation on phosphorus pool sizes and uptake in a mesocosm experiment during a low productive summer season in the northern Baltic Sea. Biogeosciences, 2016, 13, 3035-3050.	3.3	13
174	Negligible effects of ocean acidification on <i>Eurytemora affinis</i> (Copepoda) offspring production. Biogeosciences, 2016, 13, 1037-1048.	3.3	13
175	Processes That Contribute to Decreased Dimethyl Sulfide Production in Response to Ocean Acidification in Subtropical Waters. Frontiers in Marine Science, 2018, 5, .	2.5	13
176	Can morphological features of coccolithophores serve as a reliable proxy to reconstruct environmental conditions of the past?. Climate of the Past, 2020, 16, 1007-1025.	3.4	13
177	Artificial Upwelling in Singular and Recurring Mode: Consequences for Net Community Production and Metabolic Balance. Frontiers in Marine Science, 2022, 8, .	2.5	13
178	Population-specific responses in physiological rates of <i>Emiliania huxleyi</i> to a broad CO ₂ range. Biogeosciences, 2018, 15, 3691-3701.	3.3	12
179	Mechanisms of P* Reduction in the Eastern Tropical South Pacific. Frontiers in Marine Science, 2017, 4,	2.5	11
180	Ocean acidification increases domoic acid contents during a spring to summer succession of coastal phytoplankton. Harmful Algae, 2020, 92, 101697.	4.8	10

#	Article	IF	CITATIONS
181	Community barcoding reveals little effect of ocean acidification on the composition of coastal plankton communities: Evidence from a long-term mesocosm study in the Gullmar Fjord, Skagerrak. PLoS ONE, 2017, 12, e0175808.	2.5	10
182	Response of Pelagic Calcifiers (Foraminifera, Thecosomata) to Ocean Acidification During Oligotrophic and Simulated Up-Welling Conditions in the Subtropical North Atlantic Off Gran Canaria. Frontiers in Marine Science, 2018, 5, .	2.5	9
183	Application of Stable Carbon Isotopes in a Subtropical North Atlantic MesocosmStudy: A New Approach to Assess CO2 Effects on the Marine Carbon Cycle. Frontiers in Marine Science, 2019, 6, .	2.5	9
184	Analyzing the Impacts of Elevated-CO2 Levels on the Development of a Subtropical Zooplankton Community During Oligotrophic Conditions and Simulated Upwelling. Frontiers in Marine Science, 2019, 6, .	2.5	9
185	The Possession of Coccoliths Fails to Deter Microzooplankton Grazers. Frontiers in Marine Science, 2020, 7, .	2.5	8
186	Differences in adaptation to light and temperature extremes of Chlorella sorokiniana strains isolated from a wastewater lagoon. Bioresource Technology, 2022, 350, 126931.	9.6	8
187	The Calcium Carbonate Shell of Emiliania huxleyi Provides Limited Protection Against Viral Infection. Frontiers in Marine Science, 2020, 7, .	2.5	7
188	Organic matter partitioning and stoichiometry in response to rising water temperature and copepod grazing. Marine Ecology - Progress Series, 2015, 522, 49-65.	1.9	6
189	Dissolved N:P ratio changes in the eastern tropical North Atlantic: effect on phytoplankton growth and community structure. Marine Ecology - Progress Series, 2016, 545, 49-62.	1.9	6
190	Exploring the distance between nitrogen and phosphorus limitation in mesotrophic surface waters using a sensitive bioassay. Biogeosciences, 2017, 14, 379-387.	3.3	5
191	Influence of the Calcium Carbonate Shell of Coccolithophores on Ingestion and Growth of a Dinoflagellate Predator. Frontiers in Marine Science, 2021, 8, .	2.5	5
192	Ocean acidification causes no detectable effect on swimming activity and body size in a common copepod. Hydrobiologia, 2017, 802, 235-243.	2.0	4
193	Enhanced transfer of organic matter to higher trophic levels caused by ocean acidification and its implications for export production: A mass balance approach. PLoS ONE, 2018, 13, e0197502.	2.5	4
194	Oxidative stress and antioxidant defence responses in two marine copepods in a high CO2 experiment. Science of the Total Environment, 2020, 745, 140600.	8.0	4
195	Impact of increasing carbon dioxide on dinitrogen and carbon fixation rates under oligotrophic conditions and simulated upwelling. Limnology and Oceanography, 2021, 66, 2855-2867.	3.1	4
196	Oligotrophic Phytoplankton Community Effectively Adjusts to Artificial Upwelling Regardless of Intensity, but Differently Among Upwelling Modes. Frontiers in Marine Science, 0, 9, .	2.5	4
197	Photochemical vs. Bacterial Control of H2O2 Concentration Across a pCO2 Gradient Mesocosm Experiment in the Subtropical North Atlantic. Frontiers in Marine Science, 2018, 5, .	2.5	3
198	Nitrogen loss processes in response to upwelling in a Peruvian coastal setting dominated by denitrification $\hat{a} \in $ a mesocosm approach. Biogeosciences, 2021, 18, 4305-4320.	3.3	3

#	Article	IF	CITATIONS
199	Ocean acidification induces distinct metabolic responses in subtropical zooplankton under oligotrophic conditions and after simulated upwelling. Science of the Total Environment, 2022, 810, 152252.	8.0	2
200	Temporal dynamics of surface ocean carbonate chemistry in response to natural and simulated upwelling events during the 2017 coastal El Niño near Callao, Peru. Biogeosciences, 2022, 19, 295-312.	3.3	2
201	A steep learning curve. Nature Geoscience, 2013, 6, 12-13.	12.9	1
202	Metabolic Responses of Subtropical Microplankton After a Simulated Deep-Water Upwelling Event Suggest a Possible Dominance of Mixotrophy Under Increasing CO2 Levels. Frontiers in Marine Science, 2020, 7, .	2.5	1
203	Effects of nutrient enrichments on oligotrophic phytoplankton communities: a mesocosm experiment near Hawaiâ€ĩi, USA. Aquatic Microbial Ecology, 0, , .	1.8	0
204	Ocean Acidification Alters the Predator – Prey Relationship Between Hydrozoa and Fish Larvae. Frontiers in Marine Science, 2022, 9, .	2.5	0