
Silke Haerteis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6912509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasmin in Nephrotic Urine Activates the Epithelial Sodium Channel. Journal of the American Society of Nephrology: JASN, 2009, 20, 299-310.	6.1	236
2	The Î-Subunit of the Epithelial Sodium Channel (ENaC) Enhances Channel Activity and Alters Proteolytic ENaC Activation. Journal of Biological Chemistry, 2009, 284, 29024-29040.	3.4	67
3	Proteolytic activation of the epithelial sodium channel (ENaC) by the cysteine protease cathepsin-S. Pflugers Archiv European Journal of Physiology, 2012, 464, 353-365.	2.8	54
4	Plasmin and chymotrypsin have distinct preferences for channel activating cleavage sites in the γ subunit of the human epithelial sodium channel. Journal of General Physiology, 2012, 140, 375-389.	1.9	41
5	Urokinaseâ€ŧype plasminogen activator (uPA) is not essential for epithelial sodium channel (ENaC)â€mediated sodium retention in experimental nephrotic syndrome. Acta Physiologica, 2019, 227, e13286.	3.8	36
6	Proteolytic Activation of the Human Epithelial Sodium Channel by Trypsin IV and Trypsin I Involves Distinct Cleavage Sites. Journal of Biological Chemistry, 2014, 289, 19067-19078.	3.4	31
7	Pharmacological and electrophysiological characterization of the human bile acid-sensitive ion channel (hBASIC). Pflugers Archiv European Journal of Physiology, 2014, 466, 253-263.	2.8	23
8	Activation of the Human Epithelial Sodium Channel (ENaC) by Bile Acids Involves the Degenerin Site. Journal of Biological Chemistry, 2016, 291, 19835-19847.	3.4	23
9	Cancer-associated cells release citrate to support tumour metastatic progression. Life Science Alliance, 2021, 4, e202000903.	2.8	21
10	Experimental Models of SARS-CoV-2 Infection: Possible Platforms to Study COVID-19 Pathogenesis and Potential Treatments. Annual Review of Pharmacology and Toxicology, 2022, 62, 25-53.	9.4	20
11	Laser speckle contrast analysis (LASCA) technology for the semiquantitative measurement of angiogenesis in in-ovo-tumor-model. Microvascular Research, 2021, 133, 104072.	2.5	19
12	Proteolytic activation of the epithelial sodium channel (ENaC) by factor VII activating protease (FSAP) and its relevance for sodium retention in nephrotic mice. Pflugers Archiv European Journal of Physiology, 2022, 474, 217-229.	2.8	17
13	Extended analysis of intratumoral heterogeneity of primary osteosarcoma tissue using 3D-in-vivo-tumor-model. Clinical Hemorheology and Microcirculation, 2020, 76, 133-141.	1.7	14
14	Bile acids potentiate protonâ€activated currents in <i>Xenopus laevis</i> oocytes expressing human acidâ€sensing ion channel (<scp>ASIC</scp> 1a). Physiological Reports, 2017, 5, e13132.	1.7	11
15	Ion channels in sarcoma: pathophysiology and treatment options. Pflugers Archiv European Journal of Physiology, 2019, 471, 1163-1171.	2.8	10
16	Bile acids inhibit human purinergic receptor P2X4 in a heterologous expression system. Journal of General Physiology, 2019, 151, 820-833.	1.9	9
17	3D monitoring of tumor volume in an in vivo model. Clinical Hemorheology and Microcirculation, 2020, 76, 123-131.	1.7	9
18	Enhanced Resorption of Liposomal Packed Vitamin C Monitored by Ultrasound. Journal of Clinical Medicine, 2020, 9, 1616.	2.4	9

SILKE HAERTEIS

#	Article	IF	CITATIONS
19	Intranasal application of stem cells and their derivatives as a new hope in the treatment of cerebral hypoxia/ischemia: a review. Reviews in the Neurosciences, 2022, 33, 583-606.	2.9	9
20	The degenerin region of the human bile acid-sensitive ion channel (BASIC) is involved in channel inhibition by calcium and activation by bile acids. Pflugers Archiv European Journal of Physiology, 2018, 470, 1087-1102.	2.8	8
21	Subcellular localization of the chemotherapeutic agent doxorubicin in renal epithelial cells and in tumor cells using correlative light and electron microscopy. Clinical Hemorheology and Microcirculation, 2019, 73, 157-167.	1.7	6
22	Assessment of breast cancer primary tumor material in a 3D in vivo model. Clinical Hemorheology and Microcirculation, 2021, 79, 1-10.	1.7	6
23	Demonstration of Proteolytic Activation of the Epithelial Sodium Channel (ENaC) by Combining Current Measurements with Detection of Cleavage Fragments. Journal of Visualized Experiments, 2014, , .	0.3	4
24	pH sensing in skin tumors: Methods to study the involvement of GPCRs, acidâ€sensing ion channels and transient receptor potential vanilloid channels. Experimental Dermatology, 2020, 29, 1055-1061.	2.9	4
25	The Role of Citrate Homeostasis in Merkel Cell Carcinoma Pathogenesis. Cancers, 2022, 14, 3425.	3.7	4
26	Rebuttal to editorial: Sodium retention by uPA in nephrotic syndrome?. Acta Physiologica, 2020, 228, e13427.	3.8	3
27	Histological and SEM Assessment of Blood Stasis in Kidney Blood Vessels after Repeated Intra-Arterial Application of Radiographic Contrast Media. Life, 2020, 10, 167.	2.4	3
28	A polycystin-2 protein with modified channel properties leads to an increased diameter of renal tubules and to renal cysts. Journal of Cell Science, 2021, 134, .	2.0	2
29	Indocyanine Green for Leakage Control in Isolated Limb Perfusion. Journal of Personalized Medicine, 2021, 11, 1152.	2.5	2
30	The 3D in vivo chorioallantoic membrane model and its role in breast cancer research. Journal of Cancer Research and Clinical Oncology, 2022, , 1.	2.5	2