Susanna Törnroth-Horsefield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6910303/publications.pdf

Version: 2024-02-01

35 papers

2,650 citations

331670 21 h-index 35 g-index

35 all docs 35 docs citations

35 times ranked 2804 citing authors

#	Article	lF	Citations
1	Structural mechanism of plant aquaporin gating. Nature, 2006, 439, 688-694.	27.8	752
2	Targeting Aquaporin-4 Subcellular Localization to Treat Central Nervous System Edema. Cell, 2020, 181, 784-799.e19.	28.9	271
3	High-resolution x-ray structure of human aquaporin 5. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13327-13332.	7.1	194
4	Structural insights into eukaryotic aquaporin regulation. FEBS Letters, 2010, 584, 2580-2588.	2.8	137
5	X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6305-6310.	7.1	124
6	Aquaporin gating. Current Opinion in Structural Biology, 2006, 16, 447-456.	5.7	117
7	Structural insights into aquaporin selectivity and regulation. Current Opinion in Structural Biology, 2015, 33, 126-134.	5.7	111
8	Emerging roles for dynamic aquaporin-4 subcellular relocalization in CNS water homeostasis. Brain, 2022, 145, 64-75.	7.6	99
9	Structural and Functional Analysis of SoPIP2;1 Mutants Adds Insight into Plant Aquaporin Gating. Journal of Molecular Biology, 2009, 387, 653-668.	4.2	95
10	Crystal Structure of AcrB in Complex with a Single Transmembrane Subunit Reveals Another Twist. Structure, 2007, 15, 1663-1673.	3.3	88
11	Opening and closing the metabolite gate. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19565-19566.	7.1	77
12	Structural basis for pH gating of plant aquaporins. FEBS Letters, 2013, 587, 989-993.	2.8	67
13	Aquaporin Protein-Protein Interactions. International Journal of Molecular Sciences, 2017, 18, 2255.	4.1	58
14	Phosphorylation-Dependent Regulation of Mammalian Aquaporins. Cells, 2019, 8, 82.	4.1	56
15	Plasma Membrane Abundance of Human Aquaporin 5 Is Dynamically Regulated by Multiple Pathways. PLoS ONE, 2015, 10, e0143027.	2.5	54
16	Mercury increases water permeability of a plant aquaporin through a non-cysteine-related mechanism. Biochemical Journal, 2013, 454, 491-499.	3.7	47
17	Water channel pore size determines exclusion properties but not solute selectivity. Scientific Reports, 2019, 9, 20369.	3.3	41
18	On-chip crystallization for serial crystallography experiments and on-chip ligand-binding studies. IUCrJ, 2019, 6, 714-728.	2.2	41

#	Article	IF	CITATIONS
19	Molecular mechanisms governing aquaporin relocalisation. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183853.	2.6	41
20	Coping with oxidative stress. Science, 2015, 347, 125-126.	12.6	28
21	Phosphorylation of human aquaporin 2 (AQP2) allosterically controls its interaction with the lysosomal trafficking protein LIP5. Journal of Biological Chemistry, 2017, 292, 14636-14648.	3.4	23
22	High Resolution Protein Crystals Using an Efficient Convection-Free Geometry. Crystal Growth and Design, 2013, 13, 775-781.	3.0	19
23	Protein–protein interactions in AQP regulation – biophysical characterization of AQP0–CaM and AQP2–LIP5 complex formation. Faraday Discussions, 2018, 209, 35-54.	3.2	16
24	Moonlighting of <i>Haemophilus influenzae</i> heme acquisition systems contributes to the host airway-pathogen interplay in a coordinated manner. Virulence, 2019, 10, 315-333.	4.4	16
25	Unraveling Human AQP5-PIP Molecular Interaction and Effect on AQP5 Salivary Glands Localization in SS Patients. Cells, 2021, 10, 2108.	4.1	15
26	A microfluidic strategy for the detection of membrane protein interactions. Lab on A Chip, 2020, 20, 3230-3238.	6.0	13
27	Ezrin Is a Novel Protein Partner of Aquaporin-5 in Human Salivary Glands and Shows Altered Expression and Cellular Localization in Sjögren's Syndrome. International Journal of Molecular Sciences, 2021, 22, 9213.	4.1	13
28	<i>Haemophilus influenzae</i> Type f Hijacks Vitronectin Using Protein H To Resist Host Innate Immunity and Adhere to Pulmonary Epithelial Cells. Journal of Immunology, 2015, 195, 5688-5695.	0.8	10
29	Structural Insights into AQP2 Targeting to Multivesicular Bodies. International Journal of Molecular Sciences, 2019, 20, 5351.	4.1	10
30	Phosphorylation of human AQP2 and its role in trafficking. Vitamins and Hormones, 2020, 112, 95-117.	1.7	7
31	Affinity tags can reduce merohedral twinning of membrane protein crystals. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 1183-1186.	2.5	4
32	Cell-free production and characterisation of human uncoupling protein 1–3. Biochemistry and Biophysics Reports, 2017, 10, 276-281.	1.3	3
33	High-yield overproduction and purification of human aquaporins from Pichia pastoris. STAR Protocols, 2022, 3, 101298.	1.2	1
34	Characterization of human aquaporin protein-protein interactions using microscale thermophoresis (MST). STAR Protocols, 2022, 3, 101316.	1.2	1
35	Assessing water permeability of aquaporins in a proteoliposome-based stopped-flow setup. STAR Protocols, 2022, 3, 101312.	1.2	1