Mario A Arteaga-Vazquez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6909906/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The small RNAâ€mediated gene silencing machinery is required in Arabidopsis for stimulation of growth, systemic disease resistance, and suppression of the nitrileâ€specifier gene <i>NSP4</i> by <i>Trichoderma atroviride</i> . Plant Journal, 2022, 109, 873-890.	5.7	13
2	Physiological stabilization, community characterization, and nitrogen degradation dynamics in an an an anammox consortium from estuarine sediments. Water Environment Research, 2021, 93, 636-644.	2.7	1
3	Postâ€mating gene expression of <scp>Mexican</scp> fruit fly females: disentangling the effects of the male accessory glands. Insect Molecular Biology, 2021, 30, 480-496.	2.0	10
4	Vision, challenges and opportunities for a Plant Cell Atlas. ELife, 2021, 10, .	6.0	31
5	Phosphate Starvation Triggers Transcriptional Changes in the Biosynthesis and Signaling Pathways of Phytohormones in Marchantia polymorphaÂ. Biology and Life Sciences Forum, 2021, 4, 89.	0.6	1
6	Transcriptional and Morpho-Physiological Responses of Marchantia polymorpha upon Phosphate Starvation. International Journal of Molecular Sciences, 2020, 21, 8354.	4.1	17
7	Novel tephritid-specific features revealed from cytological and transcriptomic analysis of Anastrepha ludens embryonic development. Insect Biochemistry and Molecular Biology, 2020, 122, 103412.	2.7	0
8	Mechanisms underlying the enhanced biomass and abiotic stress tolerance phenotype of an Arabidopsis MIOX overâ€expresser. Plant Direct, 2019, 3, e00165.	1.9	18
9	<scp>DNA</scp> methylation in <i>Marchantia polymorpha</i> . New Phytologist, 2019, 223, 575-581.	7.3	8
10	Transcriptional landscapes of Axolotl (Ambystoma mexicanum). Developmental Biology, 2018, 433, 227-239.	2.0	31
11	Aspects of Epigenetic Regulation in Cereals. Advances in Botanical Research, 2018, , 361-386.	1.1	0
12	Marchantia liverworts as a proxy to plants' basal microbiomes. Scientific Reports, 2018, 8, 12712.	3.3	46
13	Loss of CG methylation in Marchantia polymorpha causes disorganization of cell division and reveals unique DNA methylation regulatory mechanisms of non-CG methylation. Plant and Cell Physiology, 2018, 59, 2421-2431.	3.1	15
14	Negative regulation of conserved RSL class I bHLH transcription factors evolved independently among land plants. ELife, 2018, 7, .	6.0	31
15	Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell, 2017, 171, 287-304.e15.	28.9	973
16	Evolution of the Metabolic Network Leading to Ascorbate Synthesis and Degradation Using Marchantia polymorpha as a Model System. , 2017, , 417-430.		0
17	MicroRNAs Sequencing for Understanding the Genetic Regulation of Plant Genomes. , 2016, , .		3
18	The Role of microRNAs in Animal Cell Reprogramming. Stem Cells and Development, 2016, 25, 1035-1049.	2.1	8

#	Article	IF	CITATIONS
19	miRNAs analysis during prickly pear development. Acta Horticulturae, 2016, , 99-104.	0.2	0
20	Land Plant Evolution: Listen to Your Elders. Current Biology, 2016, 26, R26-R29.	3.9	4
21	The Naming of Names: Guidelines for Gene Nomenclature in <i>Marchantia</i> . Plant and Cell Physiology, 2016, 57, 257-261.	3.1	60
22	Identification of miRNAs and Their Targets in the Liverwort <i>Marchantia polymorpha</i> by Integrating RNA-Seq and Degradome Analyses. Plant and Cell Physiology, 2016, 57, 339-358.	3.1	70
23	Ancient Origin and Recent Innovations of RNA Polymerase IV and V. Molecular Biology and Evolution, 2015, 32, 1788-1799.	8.9	77
24	Architecture and evolution of a minute plant genome. Nature, 2013, 498, 94-98.	27.8	293
25	Specific Tandem Repeats Are Sufficient for Paramutation-Induced Trans-Generational Silencing. PLoS Genetics, 2013, 9, e1003773.	3.5	48
26	A SCARECROW-RETINOBLASTOMA Protein Network Controls Protective Quiescence in the Arabidopsis Root Stem Cell Organizer. PLoS Biology, 2013, 11, e1001724.	5.6	137
27	Transcriptional analysis of the Arabidopsis ovule by massively parallel signature sequencing. Journal of Experimental Botany, 2012, 63, 3829-3842.	4.8	31
28	Biotic stress in plants: life lessons from your parents and grandparents. Frontiers in Genetics, 2012, 3, 256.	2.3	22
29	Non-coding RNAs in the plant response to abiotic stress. Planta, 2012, 236, 943-958.	3.2	44
30	Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature, 2010, 464, 628-632.	27.8	574
31	Embryo and Endosperm Inherit Distinct Chromatin and Transcriptional States from the Female Gametes in <i>Arabidopsis</i> Â Â. Plant Cell, 2010, 22, 307-320.	6.6	160
32	RNA-mediated <i>trans</i> -communication can establish paramutation at the <i>b1</i> locus in maize. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12986-12991.	7.1	83
33	Paramutation in maize: RNA mediated trans-generational gene silencing. Current Opinion in Genetics and Development, 2010, 20, 156-163.	3.3	121
34	A Dominant Mutation in mediator of paramutation2, One of Three Second-Largest Subunits of a Plant-Specific RNA Polymerase, Disrupts Multiple siRNA Silencing Processes. PLoS Genetics, 2009, 5, e1000725.	3.5	96
35	A spatial dissection of the Arabidopsis floral transcriptome by MPSS. BMC Plant Biology, 2008, 8, 43.	3.6	35
36	Distinct size distribution of endogenous siRNAs in maize: Evidence from deep sequencing in the <i>mop1-1</i> mutant. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14958-14963.	7.1	208

#	Article	IF	CITATIONS
37	A Family of MicroRNAs Present in Plants and Animals. Plant Cell, 2007, 18, 3355-3369.	6.6	138
38	A New Massive (omics) Analysis for Fruit Development and Other Important Traits in Prickly Pear (<:em>:Opuntia<:/em>: spp) 0		0

(Opuntia spp). , 0, , . 38