Stefano Puglisi-Allegra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6909048/publications.pdf

Version: 2024-02-01

		26610	43868
233	11,257	56	91
papers	citations	h-index	g-index
237	237	237	9356
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Playing With Objects Engages Brain Reward System and Counteracts Stress-Induced Depressive-like Behavior. Biological Psychiatry, 2022, 91, 612-614.	0.7	Ο
2	The neurobiology of nutraceuticals combined with light exposure, a case report in the course of retinal degeneration. Archives Italiennes De Biologie, 2022, 159, 134-150.	0.1	2
3	Within the Ischemic Penumbra, Sub-Cellular Compartmentalization of Heat Shock Protein 70 Overlaps with Autophagy Proteins and Fails to Merge with Lysosomes. Molecules, 2022, 27, 3122.	1.7	1
4	Glymphatic System as a Gateway to Connect Neurodegeneration From Periphery to CNS. Frontiers in Neuroscience, 2021, 15, 639140.	1.4	56
5	Neuroprotective Effects of Curcumin in Methamphetamine-Induced Toxicity. Molecules, 2021, 26, 2493.	1.7	15
6	Autophagy status as a gateway for stress-induced catecholamine interplay in neurodegeneration. Neuroscience and Biobehavioral Reviews, 2021, 123, 238-256.	2.9	15
7	The connections of Locus Coeruleus with hypothalamus: potential involvement in Alzheimer's disease. Journal of Neural Transmission, 2021, 128, 589-613.	1.4	14
8	Stoichiometric Analysis of Shifting in Subcellular Compartmentalization of HSP70 within Ischemic Penumbra. Molecules, 2021, 26, 3578.	1.7	2
9	Translational evidence for lithium-induced brain plasticity and neuroprotection in the treatment of neuropsychiatric disorders. Translational Psychiatry, 2021, 11, 366.	2.4	29
10	Morphology, clearing efficacy, and mTOR dependency of the organelle autophagoproteasome. European Journal of Histochemistry, 2021, 65, .	0.6	1
11	Norepinephrine Protects against Methamphetamine Toxicity through β2-Adrenergic Receptors Promoting LC3 Compartmentalization. International Journal of Molecular Sciences, 2021, 22, 7232.	1.8	7
12	Nilotinib restores memory function by preventing dopaminergic neuron degeneration in a mouse model of Alzheimer's Disease. Progress in Neurobiology, 2021, 202, 102031.	2.8	46
13	Inhibition of Autophagy In Vivo Extends Methamphetamine Toxicity to Mesencephalic Cell Bodies. Pharmaceuticals, 2021, 14, 1003.	1.7	2
14	The Autophagy-Related Organelle Autophagoproteasome Is Suppressed within Ischemic Penumbra. International Journal of Molecular Sciences, 2021, 22, 10364.	1.8	5
15	Computational Modeling of Catecholamines Dysfunction in Alzheimer's Disease at Pre-Plaque Stage. Journal of Alzheimer's Disease, 2020, 77, 275-290.	1.2	15
16	Autophagy-Based Hypothesis on the Role of Brain Catecholamine Response During Stress. Frontiers in Psychiatry, 2020, 11, 569248.	1.3	2
17	Locus Coeruleus and neurovascular unit: From its role in physiology to its potential role in Alzheimer's disease pathogenesis. Journal of Neuroscience Research, 2020, 98, 2406-2434.	1.3	38
18	Concomitant D1 and D2 dopamine receptor agonist infusion in prelimbic cortex is required to foster extinction of amphetamine-induced conditioned place preference. Behavioural Brain Research, 2020, 392, 112716.	1.2	1

#	Article	IF	CITATIONS
19	Functional and Dysfunctional Neuroplasticity in Learning to Cope with Stress. Brain Sciences, 2020, 10, 127.	1.1	17
20	P-cresol Alters Brain Dopamine Metabolism and Exacerbates Autism-Like Behaviors in the BTBR Mouse. Brain Sciences, 2020, 10, 233.	1.1	55
21	Anandamide modulation of circadian- and stress-dependent effects on rat short-term memory. Psychoneuroendocrinology, 2019, 108, 155-162.	1.3	14
22	Histaminergic transmission slows progression of amyotrophic lateral sclerosis. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 872-893.	2.9	27
23	Combined Fluoxetine and Metformin Treatment Potentiates Antidepressant Efficacy Increasing IGF2 Expression in the Dorsal Hippocampus. Neural Plasticity, 2019, 2019, 1-12.	1.0	32
24	Animal models of liability to post-traumatic stress disorder: going beyond fear memory. Behavioural Pharmacology, 2019, 30, 122-129.	0.8	6
25	Cerebellar BDNF Promotes Exploration and Seeking for Novelty. International Journal of Neuropsychopharmacology, 2018, 21, 485-498.	1.0	7
26	A new therapy prevents intellectual disability in mouse with phenylketonuria. Molecular Genetics and Metabolism, 2018, 124, 39-49.	0.5	18
27	Affective evaluation of food images according to stimulus and subject characteristics. Journal of Human Nutrition and Dietetics, 2018, 31, 715-724.	1.3	15
28	MicroRNA-34 Contributes to the Stress-related Behavior and Affects 5-HT Prefrontal/GABA Amygdalar System through Regulation of Corticotropin-releasing Factor Receptor 1. Molecular Neurobiology, 2018, 55, 7401-7412.	1.9	21
29	The role of dopaminergic midbrain in Alzheimer's disease: Translating basic science into clinical practice. Pharmacological Research, 2018, 130, 414-419.	3.1	64
30	Neuregulin 1/ErbB signalling modulates hippocampal mGluRI-dependent LTD and object recognition memory. Pharmacological Research, 2018, 130, 12-24.	3.1	21
31	Motor learning and metaplasticity in striatal neurons: relevance for Parkinson's disease. Brain, 2018, 141, 505-520.	3.7	62
32	miR-34b/c Regulates Wnt1 and Enhances Mesencephalic Dopaminergic Neuron Differentiation. Stem Cell Reports, 2018, 10, 1237-1250.	2.3	47
33	Norepinephrine in the Medial Pre-frontal Cortex Supports Accumbens Shell Responses to a Novel Palatable Food in Food-Restricted Mice Only. Frontiers in Behavioral Neuroscience, 2018, 12, 7.	1.0	7
34	Targeting mGlu5 Metabotropic Glutamate Receptors in the Treatment of Cognitive Dysfunction in a Mouse Model of Phenylketonuria. Frontiers in Neuroscience, 2018, 12, 154.	1.4	10
35	From Traumatic Childhood to Cocaine Abuse: The Critical Function of the Immune System. Biological Psychiatry, 2018, 84, 905-916.	0.7	56
36	Histone deacetylase 5 modulates the effects of social adversity in early life on cocaine-induced behavior. Physiology and Behavior, 2017, 171, 7-12.	1.0	12

#	Article	IF	CITATIONS
37	Intermittent thetaâ€burst stimulation rescues dopamineâ€dependent corticostriatal synaptic plasticity and motor behavior in experimental parkinsonism: Possible role of glial activity. Movement Disorders, 2017, 32, 1035-1046.	2.2	38
38	Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer's disease. Nature Communications, 2017, 8, 14727.	5.8	308
39	Valence, familiarity and arousal of different foods in relation to age, sex and weight. Food Quality and Preference, 2017, 57, 104-113.	2.3	29
40	Interplay of prefrontal cortex and amygdala during extinction of drug seeking. Brain Structure and Function, 2017, 223, 1071-1089.	1.2	19
41	Social threat exposure in juvenile mice promotes cocaineâ€seeking by altering blood clotting and brain vasculature. Addiction Biology, 2017, 22, 911-922.	1.4	13
42	Single Prazosin Infusion in Prelimbic Cortex Fosters Extinction of Amphetamine-Induced Conditioned Place Preference. Frontiers in Pharmacology, 2017, 8, 530.	1.6	6
43	Stress-Induced Reduction of Dorsal Striatal D2 Dopamine Receptors Prevents Retention of a Newly Acquired Adaptive Coping Strategy. Frontiers in Pharmacology, 2017, 8, 621.	1.6	23
44	Early-onset behavioral and neurochemical deficits in the genetic mouse model of phenylketonuria. PLoS ONE, 2017, 12, e0183430.	1.1	15
45	Effects of lack of microRNA-34 on the neural circuitry underlying the stress response and anxiety. Neuropharmacology, 2016, 107, 305-316.	2.0	56
46	Therapeutic brain modulation with targeted large neutral amino acid supplements in the Pah-enu2 phenylketonuria mouse model. American Journal of Clinical Nutrition, 2016, 104, 1292-1300.	2.2	35
47	GABA levels in the ventromedial prefrontal cortex during the viewing of appetitive and disgusting food images. Neuroscience, 2016, 333, 114-122.	1.1	12
48	Alpha-Synuclein Produces Early Behavioral Alterations via Striatal Cholinergic Synaptic Dysfunction by Interacting With GluN2D N -Methyl-D-Aspartate Receptor Subunit. Biological Psychiatry, 2016, 79, 402-414.	0.7	77
49	Norepinephrine in prelimbic cortex delays extinction of amphetamine-induced conditioned place preference. Psychopharmacology, 2016, 233, 973-982.	1.5	5
50	Regulation of nucleus accumbens transcript levels in mice by early-life social stress and cocaine. Neuropharmacology, 2016, 103, 183-194.	2.0	27
51	GABA content within the ventromedial prefrontal cortex is related to trait anxiety. Social Cognitive and Affective Neuroscience, 2016, 11, 758-766.	1.5	33
52	The Relationship Between Specific Pavlovian Instrumental Transfer and Instrumental Reward Probability. Frontiers in Psychology, 2015, 6, 1697.	1,1	16
53	Strain-Dependent Variations in Stress Coping Behavior Are Mediated by a 5-HT/GABA Interaction within the Prefrontal Corticolimbic System. International Journal of Neuropsychopharmacology, 2015, 18, pyu074-pyu074.	1.0	22
54	High versus low fat/sugar food affects the behavioral, but not the cortisol response of marmoset monkeys in a conditioned-place-preference task. Physiology and Behavior, 2015, 139, 442-448.	1.0	9

#	Article	IF	CITATIONS
55	Adversity in childhood and depression: linked through SIRT1. Translational Psychiatry, 2015, 5, e629-e629.	2.4	44
56	Corticolimbic catecholamines in stress: a computational model of the appraisal of controllability. Brain Structure and Function, 2015, 220, 1339-1353.	1.2	23
57	Serotonin and stress coping. Behavioural Brain Research, 2015, 277, 58-67.	1.2	130
58	Neuregulin 1 signalling modulates mGluR1 function in mesencephalic dopaminergic neurons. Molecular Psychiatry, 2015, 20, 959-973.	4.1	36
59	When Chocolate Seeking Becomes Compulsion: Gene-Environment Interplay. PLoS ONE, 2015, 10, e0120191.	1.1	19
60	Animal Models of Compulsive Eating Behavior. Nutrients, 2014, 6, 4591-4609.	1.7	37
61	Consumption of a highly palatable food induces a lasting place-conditioning memory in marmoset monkeys. Behavioural Processes, 2014, 107, 163-166.	0.5	14
62	l-DOPA reverses the impairment of Dentate Gyrus LTD in experimental parkinsonism via β-adrenergic receptors. Experimental Neurology, 2014, 261, 377-385.	2.0	9
63	<i>PINK1</i> heterozygous mutations induce subtle alterations in dopamineâ€dependent synaptic plasticity. Movement Disorders, 2014, 29, 41-53.	2.2	40
64	Stress-induced activation of ventral tegmental mu-opioid receptors reduces accumbens dopamine tone by enhancing dopamine transmission in the medial pre-frontal cortex. Psychopharmacology, 2014, 231, 4099-4108.	1.5	19
65	Paradoxical Abatement of Striatal Dopaminergic Transmission by Cocaine and Methylphenidate. Journal of Biological Chemistry, 2014, 289, 264-274.	1.6	27
66	Strain-dependent differences in corticolimbic processing of aversive or rewarding stimuli. Frontiers in Systems Neuroscience, 2014, 8, 207.	1.2	10
67	Electrophysiological and amperometric evidence that modafinil blocks the dopamine uptake transporter to induce behavioral activation. Neuroscience, 2013, 252, 118-124.	1.1	15
68	Prefrontal/Amygdalar System Determines Stress Coping Behavior Through 5-HT/GABA Connection. Neuropsychopharmacology, 2013, 38, 2057-2067.	2.8	62
69	NS.2.4 - SOCIAL ISOLATION EPISODES DURING PERI-ADOLESCENCE INDUCE DEPRESSION-LIKE PHENOTYPE AND EPIGENETIC MODIFICATIONS COMMON TO BRAIN AND BLOOD IN ADULT MICE. Behavioural Pharmacology, 2013, 24, e19-e20.	0.8	0
70	S.8.2 - EXPOSURE TO AGGRESSIVE ENVIRONMENT DURING THE PERIADOLESCENT PERIOD INDUCES VULNERABILITY TO DRUG-ADDICTION BEHAVIOR IN ADULT MICE. Behavioural Pharmacology, 2013, 24, e9-e10.	0.8	0
71	The three principles of action: a Pavlovian-instrumental transfer hypothesis. Frontiers in Behavioral Neuroscience, 2013, 7, 153.	1.0	44
72	Food Seeking in Spite of Harmful Consequences. Neuromethods, 2013, , 235-254.	0.2	1

#	Article	IF	CITATIONS
73	Behavioral and Neurochemical Characterization of New Mouse Model of Hyperphenylalaninemia. PLoS ONE, 2013, 8, e84697.	1.1	17
74	In vivo catecholaminergic metabolism in the medial prefrontal cortex of ENU2 mice: an investigation of the cortical dopamine deficit in phenylketonuria. Journal of Inherited Metabolic Disease, 2012, 35, 1001-1009.	1.7	22
75	Implication of the VGF-derived peptide TLQP-21 in mouse acute and chronic stress responses. Behavioural Brain Research, 2012, 229, 333-339.	1.2	22
76	Prefrontal/accumbal catecholamine system processes emotionally driven attribution of motivational salience. Reviews in the Neurosciences, 2012, 23, 509-26.	1.4	31
77	Prefrontal/accumbal catecholamine system processes high motivational salience. Frontiers in Behavioral Neuroscience, 2012, 6, 31.	1.0	42
78	Mechanisms underlying the impairment of hippocampal long-term potentiation and memory in experimental Parkinson's disease. Brain, 2012, 135, 1884-1899.	3.7	124
79	The mesoaccumbens dopamine in coping with stress. Neuroscience and Biobehavioral Reviews, 2012, 36, 79-89.	2.9	267
80	Effect of the interaction between the serotonin transporter gene and maternal environment on developing mouse brain. Behavioural Brain Research, 2011, 217, 188-194.	1.2	13
81	Unstable Maternal Environment, Separation Anxiety, and Heightened CO2 Sensitivity Induced by Gene-by-Environment Interplay. PLoS ONE, 2011, 6, e18637.	1.1	71
82	5-Hydroxytryptophan during critical postnatal period improves cognitive performances and promotes dendritic spine maturation in genetic mouse model of phenylketonuria. International Journal of Neuropsychopharmacology, 2011, 14, 479-489.	1.0	33
83	Family-based association study of ITGB3 in autism spectrum disorder and its endophenotypes. European Journal of Human Genetics, 2011, 19, 353-359.	1.4	45
84	Principal pathogenetic components and biological endophenotypes in autism spectrum disorders. Autism Research, 2010, 3, 237-252.	2.1	85
85	Food seeking in spite of harmful consequences is under prefrontal cortical noradrenergic control. BMC Neuroscience, 2010, 11, 15.	0.8	37
86	Altered calcium homeostasis in autism-spectrum disorders: evidence from biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier AGC1. Molecular Psychiatry, 2010, 15, 38-52.	4.1	184
87	Increased vulnerability to psychosocial stress in heterozygous serotonin transporter knockout mice. DMM Disease Models and Mechanisms, 2010, 3, 459-470.	1.2	95
88	Olfactory priming reinstates extinguished chocolate-induced conditioned place preference. Appetite, 2010, 54, 237-240.	1.8	11
89	Involvement of the PRKCB1 gene in autistic disorder: significant genetic association and reduced neocortical gene expression. Molecular Psychiatry, 2009, 14, 705-718.	4.1	75
90	5-Hydroxytryptophan rescues serotonin response to stress in prefrontal cortex of hyperphenylalaninaemic mice. International Journal of Neuropsychopharmacology, 2009, 12, 1067.	1.0	29

#	Article	IF	CITATIONS
91	Reduced availability of brain amines during critical phases of postnatal development in a genetic mouse model of cognitive delay. Brain Research, 2008, 1217, 232-238.	1.1	34
92	Identifying Molecular Substrates in a Mouse Model of the Serotonin Transporter × Environment Risk Factor for Anxiety and Depression. Biological Psychiatry, 2008, 63, 840-846.	0.7	130
93	Prefrontal Norepinephrine Determines Attribution of "High―Motivational Salience. PLoS ONE, 2008, 3, e3044.	1.1	80
94	The Medial Prefrontal Cortex Determines the Accumbens Dopamine Response to Stress through the Opposing Influences of Norepinephrine and Dopamine. Cerebral Cortex, 2007, 17, 2796-2804.	1.6	117
95	Comparative immunohistochemical study of the dopaminergic systems in two inbred mouse strains (C57BL/6J and DBA/2J). Journal of Chemical Neuroanatomy, 2007, 33, 67-74.	1.0	44
96	Prefrontal/accumbal catecholamine system determines motivational salience attribution to both reward- and aversion-related stimuli. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5181-5186.	3.3	165
97	Clinical, Morphological, and Biochemical Correlates of Head Circumference in Autism. Biological Psychiatry, 2007, 62, 1038-1047.	0.7	131
98	Case-control and family-based association studies of candidate genes in autistic disorder and its endophenotypes: TPH2 and GLO1. BMC Medical Genetics, 2007, 8, 11.	2.1	51
99	Ethanol consumption and reward depend on norepinephrine in the prefrontal cortex. NeuroReport, 2006, 17, 1813-1817.	0.6	28
100	Dopamine Î ² -Hydroxylase Knockout Mice have Alterations in Dopamine Signaling and are Hypersensitive to Cocaine. Neuropsychopharmacology, 2006, 31, 2221-2230.	2.8	111
101	Paraoxonase gene variants are associated with autism in North America, but not in Italy: possible regional specificity in gene–environment interactions. Molecular Psychiatry, 2005, 10, 1006-1016.	4.1	115
102	Environment makes amphetamine-induced dopamine release in the nucleus accumbens totally impulse-dependent. Synapse, 2005, 58, 211-214.	0.6	14
103	Prefrontal Cortical Norepinephrine Release Is Critical for Morphine-induced Reward, Reinstatement and Dopamine Release in the Nucleus Accumbens. Cerebral Cortex, 2005, 15, 1877-1886.	1.6	111
104	Activation of TRPV1 in the VTA Excites Dopaminergic Neurons and Increases Chemical- and Noxious-Induced Dopamine Release in the Nucleus Accumbens. Neuropsychopharmacology, 2005, 30, 864-870.	2.8	120
105	Dopamine in the Medial Prefrontal Cortex Controls Genotype-Dependent Effects of Amphetamine on Mesoaccumbens Dopamine Release and Locomotion. Neuropsychopharmacology, 2004, 29, 72-80.	2.8	89
106	In vivo evidence that genetic background controls impulse-dependent dopamine release induced by amphetamine in the nucleus accumbens. Journal of Neurochemistry, 2004, 89, 494-502.	2.1	26
107	Susceptibility to amphetamine-induced place preference is predicted by locomotor response to novelty and amphetamine in the mouse. Psychopharmacology, 2004, 172, 264-270.	1.5	68
108	Association between the HOXA1 A218G polymorphism and increased head circumference in patients with autism. Biological Psychiatry, 2004, 55, 413-419.	0.7	94

#	Article	IF	CITATIONS
109	Enhanced APOE2 transmission rates in families with autistic probands. Psychiatric Genetics, 2004, 14, 73-82.	0.6	29
110	Altered vulnerability to kainate excitotoxicity of transgenic-Cu/Zn SOD1 neurones. NeuroReport, 2004, 15, 2477-2480.	0.6	12
111	Object recognition impairment in Fmr1 knockout mice is reversed by amphetamine: involvement of dopamine in the medial prefrontal cortex. Behavioural Pharmacology, 2004, 15, 433-442.	0.8	113
112	The behavioral profile of severe mental retardation in a genetic mouse model of phenylketonuria. Behavior Genetics, 2003, 33, 301-310.	1.4	45
113	Norepinephrine in the Prefrontal Cortex Is Critical for Amphetamine-Induced Reward and Mesoaccumbens Dopamine Release. Journal of Neuroscience, 2003, 23, 1879-1885.	1.7	166
114	Deficits in brain serotonin synthesis in a genetic mouse model of phenylketonuria. NeuroReport, 2002, 13, 2561-2564.	0.6	56
115	Predictable stress promotes place preference and low mesoaccumbens dopamine response. Physiology and Behavior, 2002, 75, 135-141.	1.0	15
116	Immunoreactive neurons in the brain of two mouse strains after incubation with an antiserum recognizing Asp-Val-Val-Gly.NH2 (DVVG), the C-terminal fragment of (D-Ala2)-deltorphin I. Journal of Chemical Neuroanatomy, 2002, 24, 189-198.	1.0	5
117	Genetic susceptibility of mesocortical dopamine to stress determines liability to inhibition of mesoaccumbens dopamine and to behavioral â€~despair' in a mouse model of depression. Neuroscience, 2002, 115, 999-1007.	1.1	82
118	Opposite imbalances between mesocortical and mesoaccumbens dopamine responses to stress by the same genotype depending on living conditions. Behavioural Brain Research, 2002, 129, 179-185.	1.2	53
119	The contribution of comparative studies in inbred strains of mice to the understanding of the hyperactive phenotype. Behavioural Brain Research, 2002, 130, 103-109.	1.2	106
120	Genotype- and experience-dependent susceptibility to depressive-like responses in the forced-swimming test. Psychopharmacology, 2002, 164, 138-143.	1.5	71
121	Serotonin transporter gene promoter variants do not explain the hyperserotoninemia in autistic children. Molecular Psychiatry, 2002, 7, 795-800.	4.1	48
122	Opposite genotype-dependent mesocorticolimbic dopamine response to stress. Neuroscience, 2001, 104, 627-631.	1.1	40
123	No association between the 4G/5G polymorphism of the plasminogen activator inhibitor-1 gene promoter and autistic disorder. Psychiatric Genetics, 2001, 11, 99-103.	0.6	9
124	Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. Molecular Psychiatry, 2001, 6, 150-159.	4.1	314
125	Dramatic brain aminergic deficit in a genetic mouse model of phenylketonuria. NeuroReport, 2000, 11, 1361-1364.	0.6	100
126	Adenosine deaminase alleles and autistic disorder: Case-control and family-based association studies. American Journal of Medical Genetics Part A, 2000, 96, 784-790.	2.4	54

STEFANO PUGLISI-ALLEGRA

#	Article	IF	CITATIONS
127	Pain reactivity in children with autistic disorder. Journal of Headache and Pain, 2000, 1, 53-56.	2.5	37
128	Serotonin Depletion and Barrel Cortex Development: Impact of Growth Impairment vs. Serotonin Effects on Thalamocortical Endings. Cerebral Cortex, 2000, 10, 181-191.	1.6	53
129	Behavioral and mesocorticolimbic dopamine responses to non aggressive social interactions depend on previous social experiences and on the opponent's sex. Behavioural Brain Research, 2000, 112, 13-22.	1.2	37
130	Adenosine deaminase alleles and autistic disorder: Case ontrol and familyâ€based association studies. American Journal of Medical Genetics Part A, 2000, 96, 784-790.	2.4	4
131	Of genes, environment, and destiny. Behavioral and Brain Sciences, 1999, 22, 519-520.	0.4	2
132	Strain-dependent effects of anandamide on memory consolidation in mice are antagonized by naltrexone. Behavioural Pharmacology, 1999, 10, 453-457.	0.8	19
133	Strain-dependent involvement of D1 and D2 dopamine receptors in muscarinic cholinergic influences on memory storage. Behavioural Brain Research, 1998, 98, 17-26.	1.2	22
134	Stress promotes major changes in dopamine receptor densities within the mesoaccumbens and nigrostriatal systems. Neuroscience, 1998, 84, 193-200.	1.1	119
135	The effects of anandamide on memory consolidation in mice involve both D1and D2 dopamine receptors. Behavioural Pharmacology, 1997, 8, 707-712.	0.8	43
136	Strain-dependent effects of D2 dopaminergic and muscarinic-cholinergic agonists and antagonists on memory consolidation processes in mice. Behavioural Brain Research, 1997, 86, 97-104.	1.2	24
137	PSYCHOPHARMACOLOGY OF DOPAMINE: THE CONTRIBUTION OF COMPARATIVE STUDIES IN INBRED STRAINS OF MICE. Progress in Neurobiology, 1997, 51, 637-661.	2.8	135
138	Parallel strain-dependent effect of amphetamine on locomotor activity and dopamine release in the nucleus accumbens: an in vivo study in mice. Neuroscience, 1997, 82, 521-528.	1.1	77
139	Brain dopamine receptor plasticity: testing a diathesis-stress hypothesis in an animal model. Psychopharmacology, 1997, 132, 153-160.	1.5	34
140	Strain-dependent effects of dopamine agonists on acetylcholine release in the hippocampus: An in vivo study in mice. Neuroscience, 1996, 70, 653-660.	1.1	31
141	Different effects of repeated stressful experiences on mesocortical and mesolimbic dopamine metabolism. Neuroscience, 1996, 73, 375-380.	1.1	63
142	Psychopharmacology of memory modulation: Evidence for multiple interaction among neurotransmitters and hormones. Behavioural Brain Research, 1996, 77, 1-21.	1.2	79
143	CRH-R1 mRNA expression in two strains of inbred mice and its regulation after repeated restraint stress. Molecular Brain Research, 1996, 40, 310-314.	2.5	17
144	Opposite strain-dependent effects of post-training corticosterone in a passive avoidance task in mice: role of dopamine. Brain Research, 1996, 729, 110-118.	1.1	46

#	Article	IF	CITATIONS
145	Stress, depression and the mesolimbic dopamine system. Psychopharmacology, 1996, 128, 331-342.	1.5	283
146	Strain-dependent effects of cocaine on memory storage improvement induced by post-training physostigmine. Psychopharmacology, 1996, 123, 340-345.	1.5	17
147	Dose-dependent aversive and rewarding effects of amphetamine as revealed by a new place conditioning apparatus. Psychopharmacology, 1996, 125, 92-96.	1.5	41
148	A comparison of the behavioral effects of minaprine, amphetamine and stress. Psychopharmacology, 1995, 121, 73-80.	1.5	56
149	Opposite responses of mesolimbic dopamine system to controllable and uncontrollable aversive experiences. Journal of Neuroscience, 1994, 14, 3333-3340.	1.7	108
150	Strain-dependent effects of post-training cocaine or nomifensine on memory storage involve both D1 and D2 dopamine receptors. Psychopharmacology, 1994, 115, 157-162.	1.5	25
151	Post-training minaprine enhances memory storage in mice: involvement of D1 and D2 dopamine receptors. Psychopharmacology, 1994, 113, 476-480.	1.5	13
152	Influence of early life events on immune reactivity in adult mice. Developmental Psychobiology, 1994, 27, 205-213.	0.9	39
153	Opposite strain-dependent differences for intermale aggressive behavior elicited by individual housing and housing with a female in the mouse. Aggressive Behavior, 1994, 20, 305-314.	1.5	5
154	The effects of morphine on memory consolidation in mice involve both D1 and D2 dopamine receptors. Behavioral and Neural Biology, 1994, 61, 156-161.	2.3	45
155	Effects of subchronic minaprine on dopamine release in the ventral striatum and on immobility in the forced swimming test. Neuroscience Letters, 1994, 166, 69-72.	1.0	9
156	Influence of Brain and Behavioral Lateralization in Brain Monoaminergic, Neuroendocrine, and Immune Stress Responses. Annals of the New York Academy of Sciences, 1994, 741, 271-282.	1.8	14
157	Strain-dependent effects of post-training GABA receptor agonists and antagonists on memory storage in mice. Psychopharmacology, 1993, 111, 134-138.	1.5	45
158	Effects of postnatal stress on dopamine mesolimbic system responses to aversive experiences in adult life. Brain Research, 1993, 604, 232-239.	1.1	54
159	Repeated stressful experiences differently affect the time-dependent responses of the mesolimbic dopamine system to the stressor. Brain Research, 1993, 601, 333-336.	1.1	110
160	Individual housing-induced aggressive behaviour in the laboratory mouse: the case of C57BL/6 strain. Ethology Ecology and Evolution, 1993, 5, 409-409.	0.6	0
161	GENOTYPE-DEPENDENT ADAPTATION OF MESOLIMBIC DOPAMINE SYSTEM AND STRESS-INDUCED BEHAVIORAL SENSITIZATION TO AMPHETAMINE. Clinical Neuropharmacology, 1992, 15, 251A-252A.	0.2	2
162	Strain-dependent effects of post-training dopamine receptor agonists and antagonists on memory storage in mice. Behavioral and Neural Biology, 1992, 58, 58-63.	2.3	31

#	Article	IF	CITATIONS
163	Cortical and limbic dopamine and acetylcholine release as neurochemical correlates of emotional arousal in both aversive and non-aversive environmental changes. Neurochemistry International, 1992, 20, 265-270.	1.9	25
164	Repeated stressful experiences differently affect limbic dopamine release during and following stress. Brain Research, 1992, 577, 194-199.	1.1	247
165	Chronic cocaine alters limbic extracellular dopamine. Neurochemical basis for addiction. European Journal of Pharmacology, 1992, 212, 299-300.	1.7	91
166	Effects of acute and repeated exposure to stress on the hypothalamo-pituitary-adrenocortical activity in mice during postnatal development. Hormones and Behavior, 1992, 26, 474-485.	1.0	62
167	Nonhuman behavioral models in the genetics of disturbed behavior. Journal of Psychiatric Research, 1992, 26, 367-382.	1.5	17
168	Chronic stress induces strain-dependent sensitization to the behavioral effects of amphetamine in the mouse. Pharmacology Biochemistry and Behavior, 1992, 43, 53-60.	1.3	64
169	Behavioral effects of RO 41-9067: A novel D2 dopamine receptor agonist. Drug Development Research, 1992, 27, 425-433.	1.4	6
170	Post-training dopamine receptor agonists and antagonists affect memory storage in mice irrespective of their selectivity for D1 or D2 receptors. Behavioral and Neural Biology, 1991, 56, 283-291.	2.3	82
171	Repeated stressful experiences differently affect brain dopamine receptor subtypes. Life Sciences, 1991, 48, 1263-1268.	2.0	25
172	Acute stress induces time-dependent responses in dopamine mesolimbic system. Brain Research, 1991, 554, 217-222.	1.1	206
173	Changes in brain dopamine and acetylcholine release during and following stress are independent of the pituitary-adrenocortical axis. Brain Research, 1991, 538, 111-117.	1.1	309
174	Genotype-dependent effects of chronic stress on apomorphine-induced alterations of striatal and mesolimbic dopamine metabolism. Brain Research, 1991, 542, 91-96.	1.1	77
175	LY 171555-induced hyperdefensiveness in the mouse does not implicate benzodiazepine receptors. Psychopharmacology, 1991, 103, 449-454.	1.5	12
176	D1 and D2 receptor antagonists differently affect cocaine-induced locomotor hyperactivity in the mouse. Psychopharmacology, 1991, 105, 335-339.	1.5	118
177	Prepartal chronic stress increases anxiety and decreases aggression in lactating female mice Behavioral Neuroscience, 1991, 105, 663-668.	0.6	61
178	LY 171555-induced catalepsy and defensive behavior in four strains of mice suggest the involvement of different D2 dopamine receptor systems. Pharmacology Biochemistry and Behavior, 1990, 36, 327-331.	1.3	21
179	Role of genotype in the adaptation of the brain dopamine system to stress. Neuroscience and Biobehavioral Reviews, 1990, 14, 523-528.	2.9	46
180	Effects of defeat experiences on dopamine metabolism in different brain areas of the mouse. Aggressive Behavior, 1990, 16, 271-284.	1.5	58

STEFANO PUGLISI-ALLEGRA

#	Article	IF	CITATIONS
181	Chronic GM1 administration effects on dopaminergic drug response following chronic stress in intact mice. Pharmacological Research, 1990, 22, 185.	3.1	Ο
182	Hippocampal glucocorticoid receptor and behavior: A correlative study in rats and mice. Journal of Steroid Biochemistry and Molecular Biology, 1990, 37, 405-409.	1.2	7
183	Stress activation of limbic and cortical dopamine release is prevented by ICS 205-930 but not by diazepam. European Journal of Pharmacology, 1990, 175, 211-214.	1.7	71
184	Behavioral and biochemical changes monitored in two inbred strains of mice during exploration of an unfamiliar environment. Physiology and Behavior, 1990, 47, 749-753.	1.0	59
185	Strain-dependent differences in hippocampal glucocorticoid binding capacity and active avoidance in the mouse. Behavioural Brain Research, 1990, 37, 185-188.	1.2	8
186	Social Behavior of the House Mouse: A Potential Model for Preclinical Studies on Stress. , 1990, , 31-40.		0
187	Genotype-Dependent Adaptation of Brain Dopamine System to Stress. , 1990, , 171-182.		2
188	Genotype-dependent modulation of LY 171555-induced defensive behavior in the mouse. Psychopharmacology, 1989, 97, 166-168.	1.5	20
189	Stress-induced enhancement of dopamine and acetylcholine release in limbic structures: role of corticosterone. European Journal of Pharmacology, 1989, 165, 337-338.	1.7	197
190	Stress-induced decrease of 3-methoxytyramine in the nucleus accumbens of the mouse is prevented by naltrexone pretreatment. Life Sciences, 1989, 45, 1031-1037.	2.0	23
191	Chronic cocaine enhances defensive behaviour in the laboratory mouse: involvement of D2 dopamine receptors. Psychopharmacology, 1988, 96, 437-441.	1.5	32
192	The D2 dopamine receptor agonist LY171555 induces catalepsy in the mouse. Pharmacology Biochemistry and Behavior, 1988, 30, 765-768.	1.3	29
193	A classical genetic analysis of two apomorphine-induced behaviors in the mouse. Pharmacology Biochemistry and Behavior, 1988, 30, 143-147.	1.3	30
194	Effects of immobilization stress on dopamine and its metabolites in different brain areas of the mouse: role of genotype and stress duration. Brain Research, 1988, 441, 153-160.	1.1	96
195	Pharmacological evidence for a role of D2 dopamine receptors in the defensive behavior of the mouse. Behavioral and Neural Biology, 1988, 50, 98-111.	2.3	47
196	Different effects of acute and chronic stress on two dopamine-mediated behaviors in the mouse. Physiology and Behavior, 1988, 43, 223-227.	1.0	48
197	Effects of corticotropin releasing factor and sauvagine on social behavior of isolated mice. Peptides, 1987, 8, 935-938.	1.2	43
198	Age-dependent changes of brain GABA levels, turnover rates and shock-induced aggressive behavior in inbred strains of mice. Pharmacology Biochemistry and Behavior, 1987, 26, 83-88.	1.3	43

STEFANO PUGLISI-ALLEGRA

#	Article	IF	CITATIONS
199	Chronic stress reduces the analgesic but not the stimulant effect of morphine in mice. Brain Research, 1986, 380, 357-358.	1.1	16
200	Passive Avoidance Behavior in Mice: Interaction Between Age and Genotype. Experimental Aging Research, 1986, 12, 107-109.	0.6	20
201	Genetic differences in daily rhythms of pain sensivity in mice. Pharmacology Biochemistry and Behavior, 1985, 23, 91-92.	1.3	32
202	Different effects of apomorphine on climbing behavior and locomotor activity in three strains of mice. Pharmacology Biochemistry and Behavior, 1985, 23, 555-557.	1.3	46
203	The effect of age on two kinds of aggressive behavior in inbred strains of mice. Developmental Psychobiology, 1985, 18, 477-482.	0.9	13
204	Pharmacological evidence for a protective role of the endogenous opioid system on electroshock-induced seizures in the mouse. Neuroscience Letters, 1985, 62, 241-247.	1.0	15
205	Diurnal variations in electroconvulsive shock-induced seizures: Involement of endogenous opioids. Neuroscience Letters, 1985, 57, 237-240.	1.0	18
206	A genetic analysis of stereotypy in the mouse: Dopaminergic plasticity following chronic stress. Behavioral and Neural Biology, 1985, 44, 239-248.	2.3	41
207	Opioid antagonism of electroschock-induced seizures. Pharmacology Biochemistry and Behavior, 1984, 20, 767-769.	1.3	16
208	An ethopharmacological analysis of morphine effects in fish (Macropodus Opercularis). Behavioural Processes, 1984, 9, 315-321.	0.5	5
209	Morphine and memory in DBA/2 mice: Effects of stress and of prior experience. Behavioural Brain Research, 1984, 11, 3-10.	1.2	48
210	Chronic stress enhances apomorphine-induced stereotyped behavior in mice: Involvement of endogenous opioids. Brain Research, 1984, 298, 138-140.	1.1	83
211	Serotonin levels and turnover in different brain areas of isolated aggressive or non-aggressive strains of mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1984, 8, 365-371.	2.5	38
212	Psychobiology of Opioids. International Review of Neurobiology, 1984, 25, 277-337.	0.9	55
213	Effects of n-di-propylacetate on aggressive behavior and brain GABA level in isolated mice. Pharmacology Biochemistry and Behavior, 1983, 18, 717-720.	1.3	29
214	Social isolation: Effects on pain threshold and stress-induced analgesia. Pharmacology Biochemistry and Behavior, 1983, 19, 679-681.	1.3	73
215	Strain-dependent modulation of memory by stress in mice. Behavioral and Neural Biology, 1983, 38, 133-138.	2.3	42
216	Anticonvulsant effects of stress: role of endogenous opioids. Brain Research, 1983, 271, 193-195.	1.1	37

#	Article	IF	CITATIONS
217	Psychopharmacogenetics of opioids. Trends in Pharmacological Sciences, 1983, 4, 350-352.	4.0	31
218	Opiate analgesia: Evidence for circadian rhythms in mice. Brain Research, 1982, 249, 265-270.	1.1	55
219	Circadian variations of noradrenaline, 5-hydroxytryptamine and dopamine in specific brain areas of C57B1/6 and BALB/c mice. Brain Research, 1982, 232, 472-478.	1.1	26
220	Circadian variations in stress-induced analgesia. Brain Research, 1982, 252, 373-376.	1.1	31
221	Behavioural data on dermorphins in mice. European Journal of Pharmacology, 1982, 82, 223-227.	1.7	23
222	γ-Aminobutyric acid in brain areas of isolated aggressive or non-aggressive inbred strains of mice. Pharmacology Biochemistry and Behavior, 1982, 16, 57-61.	1.3	64
223	Effects of opiate antagonists on social and aggressive behavior of isolated mice. Pharmacology Biochemistry and Behavior, 1982, 17, 691-694.	1.3	26
224	Effects of naloxone and naltrexone on locomotor activity in C57BL/6 and DBA/2 mice. Pharmacology Biochemistry and Behavior, 1982, 16, 561-563.	1.3	36
225	Effects of opiate antagonists on two kinds of aggressive behavior in mice. Aggressive Behavior, 1982, 8, 175-177.	1.5	11
226	Effects of n-dipropylacetate on isolation-induced aggressive behavior and brain GABA levels in mice. Aggressive Behavior, 1982, 8, 201-203.	1.5	2
227	Involvement of the GABAergic System on Shock-induced Aggressive Behavior in Two Strains of Mice. Pharmacology Biochemistry and Behavior, 1981, 14, 13-18.	1.3	72
228	Naloxone potentiates shock-induced aggressive behavior in mice. Pharmacology Biochemistry and Behavior, 1981, 15, 513-514.	1.3	26
229	Effects of sodium n-dipropylacetate, muscimol hydrobromide and (R,S) nipecotic acid amide on isolation-induced aggressive behavior in mice. Psychopharmacology, 1980, 70, 287-290.	1.5	51
230	An automated device for screening the effects of psychotropic drugs on aggression and motor activity in mice. Pharmacology Biochemistry and Behavior, 1980, 13, 287-290.	1.3	13
231	Effects of apomorphine and sodium di-n-propylacetate on the aggressive behaviour of three strains of mice. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 1979, 3, 491-502.	0.6	27
232	A technique for the measurement of aggressive behavior in mice. Behavior Research Methods & Instrumentation, 1977, 9, 503-504.	0.3	15
233	Effects of genetic and nutritional factors on post-natal reflex and behavioral development in the mouse. Experimental Aging Research, 1975, 1, 41-56.	0.6	18